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Topological data analysis of the
firings of a network of stochastic
spiking neurons

Xiaotian Bai, Chaojun Yu* and Jian Zhai

School of Mathematical Sciences, Zhejiang University, Hangzhou, China

Topological data analysis is becoming more and more popular in recent years.

It has found various applications in many di�erent fields, for its convenience

in analyzing and understanding the structure and dynamic of complex systems.

We used topological data analysis to analyze the firings of a network of

stochastic spiking neurons, which can be in a sub-critical, critical, or super-critical

state depending on the value of the control parameter. We calculated several

topological features regarding Betti curves and then analyzed the behaviors of

these features, using them as inputs for machine learning to discriminate the three

states of the network.
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1 Introduction

The critical brain hypothesis that the brain operates near a critical phase transition

point for optimal information processing functions (Beggs and Plenz, 2003; Kinouchi and

Copelli, 2006; Beggs, 2008; Shew et al., 2011; Shew and Plenz, 2013) has been studied for

20 years. Though there are controversies (Touboul and Destexhe, 2010, 2017; Destexhe and

Touboul, 2021), this hypothesis is still well supported (Fontenele et al., 2019; Plenz et al.,

2021; Beggs, 2022). Therefore, it remains an important problem about how to determine

whether a neural system is critical or not. Usually, it is assessed via neural avalanches (Beggs

and Plenz, 2003). When the distributions of avalanche size and duration follow power-law

and the corresponding exponents obey the crackling scaling relation (Muñoz et al., 1999;

Sethna et al., 2001), the neural system is considered critical. However, as far as we know, there

are yet no sufficient conditions for the criticality of neural systems, and much more studies

should be devoted to finding more methods for assessing the criticality in neuroscience.

On the other hand, recently applied topology has become an important tool in

neuroscience and found numerous applications in several aspects, for its convenience in

analyzing and understanding the structure and dynamic of neural systems. By constructing

simplicial complex from brain activity data, one can identify the topological features

of functional modules, hierarchical organization, and diseases in brain. For example, in

2015, the Blue Brain Project reconstructed a data-driven model of the rat neocortical

microcircuitry which supports the diverse information processing (Markram et al., 2015),

and later in 2017, they did a further topological analysis on the microcircuitry and found

that the high-dimensional topological structure appeared and disintegrated with the spatial-

temporal stimulus (Reimann et al., 2017). Moreover, by applying the persistent homology

and nerve theorem, one can extract global features of the external environment by analyzing

the co-firing activities of cells (Curto and Itskov, 2008; Giusti et al., 2015). For instance, in

the hippocampus, by modeling the place cells with different firing parameters (i.e., firing
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rates, place field size, and number of neurons), the computation of

persistent homology on the co-firing activities gives a topological

information about the environment and the learning region

wherein the corresponding parameters can make the model

generate stable topological representation (Dabaghian et al.,

2012). Furthermore, many other topological analysis methods and

biophysiological factors were considered in the spatial learning in

the hippocampus. Arai et al. (2014) explored the effects of θ phase

precession on spatial learning, and later on, they evaluated the effect

of decaying connections between hippocampus neurons (Babichev

et al., 2018) and the replay mechanism (Babichev et al., 2019) using

a novel topological technique called zigzag persistent homology.

Topological data analysis (TDA) is also successfully applied in

other spatial cognitive systems such as head-direction cells, grid

cells, and conjunctive cells that span low-dimension topological

structures embedded in high-dimensional neural activity space

(Curto, 2016; Kang et al., 2021; Gardner et al., 2022) in which

persistent cohomology techniques are used. Moreover, persistent

homology has been used to analyze the spiking data generated

from artificial neural network (Spreemann et al., 2018; Bardin et al.,

2019) in which spike train correlations were seen as the input to

construct simplicial complex.

With these wide applications in neuroscience, TDA may also

be a promising candidate for addressing the problem regarding

criticality. As a first step, we applied TDA to the firings of a network

of stochastic spiking neurons in order to see how topological

features would behave as the network dynamics change and if TDA

can discriminate the three states of the network, i.e., sub-critical,

critical, and super-critical states.

2 An integrate-and-fire neural
network

For our purposes we considered the firing dynamics of an

excitatory/inhibitory stochastic integrate-and-fire network, which

has a mean-field directed percolation critical point with a fully

connected structure (Girardi-Schappo et al., 2021). With this

critical point, the network has three states depending on the control

parameter, i.e., critical, sub-critical, and super-critical states.

Here, we briefly introduce the model. The network is composed

of N neurons, and each neuron is a stochastic leaky integrate-and-

fire unit with discrete time step equal to 1 ms, connected in an

all-to-all graph. The membrane potential of each neuron i, either

excitatory (E) or inhibitory (I), evolves as

V
E/I
i [t + 1] =

[

µiV
E/I
i [t]+ Iexti [t]+ 1

N

∑NE
j=1 JijX

E
j [t]−

1
N

∑NI
j=1 WijX

I
j [t]

]

(

1− X
E/I
i [t]

)

, (1)

where µi is the leakage parameter, Iexti [t] is an external current, NE

and NI are, respectively, the number of excitatory and inhibitory

neurons, and the non-negative element Jij (Wij) gives the synaptic

weight between the jth presynaptic excitatory (inhibitory) neuron

and the ith postsynaptic neuron. Jij = 0 orWij = 0 means that the

neurons are not connected. X
E/I
i [t] is a stochastic Boolean variable

denoting if at time t a neuron fires (X
E/I
i [t] = 1) or not (X

E/I
i [t] =

0). It turns to 1 with a piecewise linear sigmoidal probability 8(V),

8(V) = (V − θ)Ŵ2(V − θ)2(VS − V)+ 2(V − VS), (2)

where θ is the firing threshold, Ŵ is the firing gain constant

(Brochini et al., 2016), 2(·) is the Heaviside function, and VS =

θ +1/Ŵ is the saturation potential. The total number of neurons in

the network is N = NE + NI , with p = NE/N and q = NI/N.

The average over neurons of Eq. (1) yields the mean-field

of the network, which presents a mean-field directed percolation

(MF-DP) critical point (Girardi-Schappo et al., 2020, 2021):

VE/I[t+1] =
[

µVE/I[t]+ Iext[t]+ pJρE[t]− qWρI[t]
] (

1− ρE/I[t]
)

,

(3)

where J = 〈Jij〉, W = 〈Wij〉, I
ext[t] = 〈Iexti [t]〉, and µ =

〈µi〉 are mean-field approximations, with 〈.〉 denoting average over

neurons, and ρE/I[t] = 1/NE/I
∑

j X
E/I
j [t]. DenotingW = pJ−qW

and g = W/J (which intuitively represents the level of inhibition),

then the critical point will lie at (see Girardi-Schappo et al., 2021 for

a detailed derivation)

Wc =
1− µ

Ŵ
, gc =

p

q
−

1− µ

qŴJ
, (4)

where µ = 0 will be taken in this study, since this is valid, and

µ > 0 does not present any new phenomenology (Girardi-Schappo

et al., 2021).

3 Methods for analysis

To analyze the firings of the network introduced above, we do

topological data analysis here. First, we introduce the topological

framework that is necessary for TDA.

3.1 Topological framework

3.1.1 Simplicial complex
A simplicial complex is a mathematical structure in algebraic

topology for approximating the shape and properties of spaces,

constructed from the basic geometric objects, i.e., simplices (plural

of simplex). Given a set of vertices V, a n-simplex is defined as the

convex hull of (n+1) affine independent vertices in V. For example,

geometrically, a 0-simplex is a vertex or a point, a 1-simplex is an

edge, a 2-simplex is a triangle, and so on. A simplicial complex can

be constructed from simplices if they satisfy two conditions: first, if

a simplex is included in the simplicial complex, then so are its faces,

for example, if a triangle is a part of a simplicial complex, its three

edges and vertices must be part of the complex as well; second, the

intersection of any two simplices in the complex is either empty

or a face of them, see Figure 1 for an example of simplices and a

simplicial complex.

By defining the simplices and how they construct a simplicial

complex, we can capture the structure of a specific space. In this

study, we constructed the simplicial complex by treating the spike
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FIGURE 1

Examples of simplices and a simplicial complex, 0-, 1-, 2-, 3-simplex, and a simplicial complex (which consists of five 0-simplices, five 1-simplices,

and one 2-simplex) from left to right.

trains of neurons as the vertices in a complex, and the weight

value between two vertices is equal to the dissimilarity of their

corresponding spike trains. We will construct the commonly used

Vietoris-Rips complex. That is, the complex is consisted of all

vertices at first. Then, given a threshold, an edge between any two

vertices is added to the complex if the weight value between them is

less than the threshold. Moreover, a triangle or higher-dimensional

simplex is added also if all its edges are in the complex. After

adding all such simplices, a Vietoris-Rips complex with regard to

the threshold is obtained.

3.1.2 Betti numbers and persistent homology
Given a simpilicial complex 6, let Hk(6) donate the k-

dimensional homology of 6. The dimension of Hk(6) which

counts the k-dimensional “holes” in 6 is called the kth Betti

numbers, βk, i.e, β0 gives the number of connected components,

β1 is the number of loops in 6, β2 is the number of voids, and so

on. See Figure 2 for an example. Here, we only consider the zeroth

betti numbers and the first betti numbers.

As stated above, we can construct one complex via a single

constant threshold. However, its homology could not represent the

properties of the underlying space well, and it is difficult to choose

a suitable threshold. Instead, we need to build a filtration, which is a

nested family of complexes with regard to an increasing sequence of

thresholds. At the beginning of the filtration, it consists of vertices

only, i.e., there are only 0-simplices. As the threshold increases

from zero to one (the maximum value of the weight), higher-

dimensional simplices will appear. By this construction, we will get

a nested family of complexes, and betti numbers can be computed

in each complex. Calculating the homology of the complexes of all

thresholds requires the persistent homology theory, which gives a

way to study how the topological features such as “holes” change

across the filtration. Given two parameters ǫ0 and ǫ1, if the feature

at Hk(ǫ0) is still present at Hk(ǫ1), it is said that the feature

persists from ǫ0 to ǫ1, and the features that persist more longer

as the threshold increases are more significant, while others are

considered as noise. The lifetime that records the “birth” (the time

when holes appear) and “death” (the time when holes disappear)

of features could offer more information across the filtration about

the underlying data, so we can track the betti numbers in each

dimension as a function of the filtration threshold, which gives rise

to Betti curves. See Figure 3 for an example. The features of the Betti

curves will be analyzed later.

3.2 Analyzing network dynamics

In the following, we applied a method based on persistent

homology to analyze network dynamics using topological

features of spaces built from various spike train distances

(Bardin et al., 2019). Three different measures of spike

train similarity are chosen here for analyzing the spiking

data, i.e., the Pearson correlation, SPIKE-synchronicity

(Kreuz et al., 2015), and SPIKE-distance (Kreuz et al.,

2013).

Pearson correlation can be used to measure the correlation

between spike trains recorded from different neurons. It compares

the spike trains of two neurons and estimates whether neurons

tend to fire together or exhibit temporal dependencies, which can

provide insights into the functional connectivity and information

processing in neural circuits (Cohen and Kohn, 2011). However,

Pearson correlation encounters many challenges such as temporal

precision and time lagged correlations; thus, it is necessary

to use other measures as well for complements. Here, we

used two additional measures, namely, SPIKE-synchronicity and

SPIKE-distance. SPIKE-synchronicity counts the simultaneous

appearances of spikes in two spike trains, while SPIKE-distance

measures the dissimilarity between spike trains. Notice that both

Pearson correlation and SPIKE-synchronicity are bounded in

[0, 1], with value 1 indicating the spike trains are identical,

and they are converted to similarity measures through the

function x 7→ 1 − x. In contrast, spike trains with

larger SPIKE-distance value are considered more dissimilar.

Importantly, these three measures all depend on the size

of the time window, and for simplicity here, we used the

same time-binning as in Bardin et al. (2019). For computing

SPIKE-synchronicity and SPIKE-distance, we used the Python

package PySpike (Mulansky and Kreuz, 2016), while Pearson

correlation was computed by the Python package Elephant

(Denker et al., 2018). Note that given two spike trains, these

measures may have very different values, see Figure 4 for

an example.

From each similarity measure, we can computed the persistent

homology of the Vietoris-Rips complex of the weighted graph and

then extracted four features from the zeroth and first Betti curves.

The four features (see Figure 5) are the filtration value at which

the Betti-0 curve starts to decrease (we called it the turning point

of the Betti-0 curve), the area under the Betti-0 curve, the global

maximum of the Betti-1 curve, and the area under the Betti-1 curve,

which are referred to later as feature 1, 2, 3, 4, respectively. Since

Frontiers inNeural Circuits 03 frontiersin.org

https://doi.org/10.3389/fncir.2023.1308629
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Bai et al. 10.3389/fncir.2023.1308629

FIGURE 2

Examples of betti numbers, from left to right - a point, a circle, a 2-dimensional sphere, and a 2-dimensional torus. All of them have one connected

component, so their 0-dimension betti number β0 is 1. The circle has one loop, so its 1-dimension betti number β1 is 1. Both the sphere and torus

have a 2-dimension void inside; thus, their β2 are 1. Furthermore, the torus has two loops, and its β1 is equal to 2.

FIGURE 3

Examples of a filtration and the Betti cuvre. Top: the simplicial complexs with increasing filtration thresholds. Bottom: the Betti curves of the

simplicial complexs in dimension 0 and 1. Note that this is just an illustration, the distance on the graph should not be taken as the true distance

between di�erent points.

there are three different similarity measures, a total of 12 features

can be extracted.

These features can then used as the input for machine

learning in order to discern information about the global network

dynamics. Following Bardin et al. (2019), machine learning here

was achieved by the support vector machine (SVM, a supervised

machine learning algorithm used for classification and regression)

methods (Cortes and Vapnik, 1995) using a radial basis function
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(a real-valued function whose value depends only on the distance

from some center point) kernel with L2-regularization (a kind

of distance). We trained an L2-regularized SVM classifier on our

selected standardized features to identify the different regimes,

whose regularizing hyperparameter was selected with a tenfold

cross-validation (a resampling procedure used to evaluate machine

learning models on a limited data sample). During training,

an 80%-20% training-testing sample partition was used, and

performance of the classifier was evaluated by an accuracy score.

We considered three different classifications, aiming to see if

topological features can capture some essential characteristics of

each dynamical regime that help to distinct themselves from others.

The first one discards the critical state and only distinguishes super-

critical from sub-critical states, and the second one distinguishes all

three states, while the last one distinguishes critical from the other

two non-critical states. The last one is to investigate whether the

critical state bears some special topological features, motivated by

the variety of functional benefits of criticality in neural networks

FIGURE 4

Pair of neuronal spike trains for which Pearson correlation measure

is 0.17, SPIKE-synchronicity measure is 1, and SPIKE-distance

measure is 0.31, with a time bin of 4 ms.

(Kinouchi and Copelli, 2006; Beggs, 2008; Shew et al., 2011; Shew

and Plenz, 2013).

4 Results

In order to see how topological features change as the network

goes through the super-critical, critical, and sub-critical states, we

generated network dynamics for different values of the control

parameter g by numerical simulations. We varied g from 1.20 to

1.80 in a step of 0.01 and run 10 simulations for each value of g. To

discriminate better between critical and non-critical states later, we

generated another 190 simulations for the critical point g = 1.50 so

that there are enough samples of critical states.

Note that for µ = 0, p = 0.8, q = 0.2,Ŵ = 10, J = 10,

from Eq. (4), we can see that the mean-field critical point lies at

g = 1.5, which is only reached in the limit of infinite network size.

Nevertheless, for a finite-size network, we still consider g = 1.5

as the critical point since the distributions of avalanche size and

duration at g = 1.5 seem to follow power-law, along with finite-size

effects (the exponential decay occurs at larger size as N increases,

see Figure 6), which is commonly considered as a signature of

criticality in neuroscience (Beggs and Plenz, 2003).

For simplicity and limited computational resources, in all our

numerical simulations, unless otherwise stated, we used a fixed total

numberN = 1000 neurons and set p = 0.8 and q = 0.2 as reported

for cortical data (Somogyi et al., 1998). Note that though for living

neural networks the ratio of excitatory to inhibitory neurons varies

from 3:1 to 9:1 and remains roughly constant for different sensory

areas within a species (Alreja et al., 2022), this ratio would not alter

the dynamics of the network here (Girardi-Schappo et al., 2020).

Each simulation was run for 1,000,000 time steps, with the first

transient 10,000 steps discarded. One time step is set to be equal

to a biologically plausible time, i.e., 1 ms, with the spike of a neuron

takes one time step here. We set the external field h = 0 and used

FIGURE 5

Example of the four features extracted from a filtration: the filtration threshold at which the Betti-0 curve starts to decrease (left, green), the global

maximum (right, red) of the Betti-1 curve, and the area under each curve (gray area) starting from 0.
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A B

FIGURE 6

Complementary cumulative distribution function (CCDF) of neuronal avalanches at g = 1.5, for µ = 0,p = 0.8,q = 0.2,Ŵ = 10, J = 10. (A) CCDF of

avalanche size; (B) CCDF of avalanche duration. Dashed lines indicate mean-field predictions. Both distributions start to be power-law like, followed

by an exponential cuto� that grows with network size N, indicative of the finite-size e�ect. These suggest that for finite-size networks the mean-field

critical point g = 1.5 can still be considered critical.

TABLE 1 Default parameters used during simulations.

N p q J Ŵ g µ θ Iext

1000 0.8 0.2 10 0.2 1–2 0 1 1

an offline driving mechanism to keep the network dynamics on,

which means that a randomly chosen neuron is set to be active

immediately after the activity of the network died out. See Table 1

for values of parameters used in the simulations.

For each simulation, we first computed three pairwise spike

train similarity measures and then the persistent homology of the

Vietoris-Rips complex of the weighted graph. Features discussed

above from the zeroth and first Betti curves are then extracted.

A total of 12 features were extracted during each simulation, see

Figure 7.

From Figure 7, one can see that the four features of Pearson

correlation and SPIKE-distance measure behave quite similarly.

When g > 1.5, i.e., the network is in a sub-critical state, all

features increase as g becomes larger, while for g < 1.5, i.e., when

the network is in a super-critical state, all features first increase

and then decrease. This may have reflected that under these two

dissimilarity measures, the overall distance among all neurons

increases and the groups they form due to their co-activity are

connected more complicatedly as inhibition gets stronger (g gets

larger). We predict that it is easy to discriminate the super-critical,

critical, and sub-critical states using features of these two measures

since the curves are relatively monotonous in a certain interval

around the critical state g = 1.5. Meanwhile, we conjecture that the

smoother the curves, the easier the classification. These are verified

in our classifying results, see Table 2.

However, for SPIKE-synchronicity measure, things are quite

different. Overall, as g increases, feature 1 first increases and then

decreases up to a certain level, feature 2 behaves similarly but it

increases again not far from the critical point g = 1.5, feature

3 first increases and then seems to decrease back to the starting

level, while feature 4 increases all the time. We have no idea why

it behaves so differently from the other two measures. A possible

explanation is that SPIKE-synchronicity measure reflects more

accurately the synchronous activity of neurons and it may have

been influenced a lot by the special role of criticality. This requires

more future study that provides deep insights into the meanings

of these features. Nevertheless, we conjecture that compared to

the other two measures, the classification accuracy would drop a

bit when using the four features of SPIKE-synchronicity measure,

which again can be confirmed in Table 2.

Of course, different combinations of features would result in

different accuracy of classification. But overall, we find that a very

high accuracy of classification would be gained when using features

whose changing curve over g is smooth and relatively monotonous

in a certain interval around the critical point g = 1.5, as can be seen

from Figure 7 and Table 2.

5 Discussion

In this study, we applied TDA to a stochastic

excitatory/inhibitory network model that has a mean-field critical

point (Girardi-Schappo et al., 2020, 2021). With the existence of

a critical point, the network can be super-critical, critical, or sub-

critical. We are interested in the behaviors of topological features

of the network as it changes among these different dynamical

regimes. Three different similarity measures are considered here

Frontiers inNeural Circuits 06 frontiersin.org

https://doi.org/10.3389/fncir.2023.1308629
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Bai et al. 10.3389/fncir.2023.1308629

A B C

D E F

G H I

J K L

FIGURE 7

Features extracted from simulations. Values of features are averaged over 10 simulations for each value of g. For each row, one same feature is

displayed, respectively, for three spike train similarity measures, i.e., the Pearson correlation, SPIKE-synchronicity, and SPIKE-distance. And the four

di�erent features used here are (A–C) the turning point of the Betti-0 curve; (D–F) the area under the Betti-0 curve; (G–I) the maximum of the

Betti-1 curve; (J–L) the area under the Betti-1 curve.
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TABLE 2 Mean accuracy of various classifications.

Pearson correlation SPIKE-synchronicity SPIKE-distance

Features Acc. 1 Acc. 2 Acc. 3 Acc. 1 Acc. 2 Acc. 3 Acc. 1 Acc. 2 Acc. 3

1, 2, 3, 4 99.96% 98.38% 97.56% 98.52% 96.79% 91.68% 100.00% 99.42% 98.13%

2, 3, 4 99.96% 98.13% 97.25% 99.32% 97.17% 92.91% 99.83% 98.54% 97.82%

1, 3, 4 99.53% 97.92% 96.58% 98.52% 96.88% 91.55% 100.00% 99.38% 97.31%

3, 4 99.07% 96.58% 92.28% 99.07% 97.13% 93.20% 99.11% 96.29% 93.23%

1, 2, 4 100.00% 98.75% 98.10% 95.93% 93.71% 81.20% 100.00% 99.96% 98.45%

2, 4 99.96% 98.42% 98.07% 93.86% 92.38% 80.73% 99.96% 99.08% 98.29%

1, 4 99.75% 98.58% 97.47% 94.49% 92.54% 80.44% 100.00% 99.71% 97.47%

4 97.84% 95.33% 88.99% 89.28% 87.46% 73.23% 98.14% 95.21% 91.42%

1, 2, 3 99.96% 98.67% 97.41% 95.38% 91.75% 78.70% 99.32% 98.38% 97.91%

2, 3 100.00% 98.46% 97.31% 94.45% 92.42% 76.36% 98.43% 96.67% 96.99%

1, 3 99.58% 97.92% 97.03% 94.49% 91.54% 76.14% 99.15% 98.46% 96.52%

3 93.52% 91.38% 77.31% 87.08% 85.38% 73.16% 92.37% 89.54% 79.78%

1, 2 100.00% 98.96% 98.83% 93.39% 89.88% 76.93% 100.00% 99.79% 98.99%

2 100.00% 99.08% 98.83% 80.00% 79.96% 78.01% 85.13% 82.25% 97.94%

1 100.00% 98.79% 98.32% 77.33% 74.13% 70.73% 85.08% 83.08% 97.34%

Features 1–4 refer, respectively, to the turning point of the Betti-0 curve, the area under the Betti-0 curve, the maximum of the Betti-1 curve, and the area under the Betti-1 curve. Three different

similarity measures (Pearson correlation, SPIKE-synchronicity, and SPIKE-distance) are separately considered here, with each having 15 combinations of the four features used for classification.

Acc. 1, Acc. 2, and Acc. 3 refer to the mean accuracy averaged over 20 simulations of three different classifications, i.e., distinguishing super-critical from sub-critical states, distinguishing all

three states, and distinguishing critical from non-critical states, respectively.

for constructing simplices that are basic elements of TDA, namely,

Pearson correlation, SPIKE-synchronicity, and SPIKE-distance.

Four features regarding Betti curves are calculated for analysis,

which are then used as inputs for machine learning to discriminate

the three states of the network. However, it should be noted that

the behaviors of such features are yet hard to explain. Betti-0

number counts the number of connected components in the

complex, and the turning point of and the area under Betti-0 curve

reflects, respectively, the smallest distance and the overall distance

of all vertices. Betti-l number counts the number of 1-dimensional

“holes” in the complex. The global maximum of and the area under

the Betti-1 curve are difficult to understand, and they may have

reflected the underlying complicated distributions of local groups

due to their firing activity. Why these features vary as in Figure 7

remains to be uncovered.

Nevertheless, our study shows that topological features can

reflect many important implicit aspects of network dynamics,

and some of these features make it possible to classify different

dynamical regimes of the network easily. This is a promising

direction for developing new methods for assessing the criticality

of neural systems. Nevertheless, the study here bares many

limitations. First of all, we only considered a special network

model in its mean-field case, and more realistic ones with various

connections could be studied. Second, there is only one control

parameter g in our network model, which reduces the difficulty

of classification sufficiently, as compared to the work of Bardin

et al. (2019), where there are two control parameters. In fact, for

our case, there are simpler classification methods. For example,

using the mean network activity and its variance as the input

TABLE 3 Mean accuracy of classification using the mean network activity

and its variance.

Features Acc. 1 Acc. 2 Acc. 3

1, 2 100.00% 99.42% 99.68%

2 99.41% 96.71% 91.36%

1 100.00% 100.00% 100.00%

Features 1 and 2 refer to the mean network activity ρ and its variance, respectively. For each

sample, there are 990,000 time steps, ρ is calculated as the firing rate ρ(t) =
∑

i Xi[t] averaged

over all time steps. On the other hand, every 10,000 time steps a mean firing rate is calculated

and then the variance of these mean firing rates are used for approximating the variance of ρ.

Acc. 1, Acc. 2 and Acc. 3 are the same as in Table 2.

for machine learning can classify the three regimes with high

accuracy as well, see Table 3. Then why do we choose TDA? Mainly

because we think TDA is a method that is worth developing

since it contains more underlying information, and it uses only

the firing data which is not limited to the model used here.

When more complicated models and more regimes are considered,

classification is very likely to become much more difficult, and

TDA could be more useful then. Of course, this requires more

future studies.

Apart from that, the resolution of the control parameter

g in this study is chosen to be 0.01. Though we think it

is relatively small, it may happen that as the resolution

gets higher and higher, the classification would ultimately

fail due to the lack of enough samples. Nevertheless, up

to a suitable resolution, the classification should work,
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and its accuracy would be still high as long as there are

enough samples.

Additionally, we did not provide any control for the results.

For example, we did not show how TDA measures behave on

shuffled data. As we checked, after shuffling the firing data, the

correlations between neurons reduced greatly, and consequently,

the elements of distance matrices became very close to each other,

which resulted in an extremely long time of the computation

of the features that is beyond our computational resources. But

based on these distance matrices, we think the features of such

shuffled data would not display much changes as compared to the

original data.

Moreover, we applied three commonly used similarity

measures for analyzing spike trains, but there is no guarantee

that these measures capture all or the most important aspects

of network dynamics best, so are the four features we chose

for analysis. More measures and features could be explored to

reflect network dynamics better. More future work could be

devoted to investigating whether there are topological features (or

combinations of them) that reflect the super-critical, critical, and

sub-critical states of neural networks unambiguously, which is very

meaningful given the various functional benefits (Kinouchi and

Copelli, 2006; Beggs, 2008; Shew et al., 2011; Shew and Plenz, 2013)

that criticality can offer to neural systems.
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