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Olfactory information processing 
viewed through mitral and tufted 
cell-specific channels
Tatsumi Hirata *

Brain Function Laboratory, National Institute of Genetics, SOKENDAI, Mishima, Japan

Parallel processing is a fundamental strategy of sensory coding. Through 
this processing, unique and distinct features of sensations are computed and 
projected to the central targets. This review proposes that mitral and tufted cells, 
which are the second-order projection neurons in the olfactory bulb, contribute 
to parallel processing within the olfactory system. Based on anatomical and 
functional evidence, I discuss potential features that could be conveyed through 
the unique channel formed by these neurons.

KEYWORDS

olfactory system, tufted cell, mitral cell, mouse, neurogenic tagging, parallel 
processing

Introduction

From a neurodevelopmental perspective, the timing of neuronal birth determines their 
permanent phenotypes (Hirata and Iwai, 2019), including morphology, physiology and 
connection patterns (Leone et al., 2008; Fame et al., 2011; Suzuki and Hirata, 2013). Thus, this 
neurodevelopmental principle should form the functional basis of the brain. We hypothesized 
that if projection neurons of the olfactory bulb are classified neurodevelopmentally, we might 
be able to find a wiring logic of olfactory circuits. Chronologically ordered arrangement of 
olfactory bulb axons in the lateral olfactory tract (Inaki et al., 2004; Yamatani et al., 2004) 
further encouraged us to take this approach, even though the link between the chronotopic 
arrangement of axon shafts and the final destinations of their collateral branches remained 
unclear. These provided the springboard for our dissection of olfactory circuits using 
neurogenic tagging. Based on our and others’ findings, I will discuss the potential logic of 
olfactory information processing.

Logic of olfactory information processing

The anatomical principle of the peripheral olfactory system is feature detection of odorant 
molecules; olfactory sensory neurons that express the same odorant receptor converge their 
axons onto a few fixed glomeruli of the olfactory bulb, thereby constructing the stereotypical 
odor map (Mori et al., 2006; Mori and Sakano, 2011). This odor map is then transferred to the 
next targets by two major projection neurons, mitral cell (MC) and tufted cell (TC) in the main 
olfactory bulb (Mori and Sakano, 2021). Their projections are often described as diffuse and 
widespread (Ghosh et al., 2011; Miyamichi et al., 2011; Sosulski et al., 2011). While specific 
odorant information sometimes appears over-represented in a few target areas (Miyamichi 
et al., 2011; Inokuchi et al., 2017), the spatial odor map across the olfactory bulb is basically 
lost in most of the olfactory target areas due to non-topographic projections.
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FIGURE 1

Neurogenic tagging of MCs and TCs. (A) A diagram illustrating neurogenic tagging. In the driver mice, tamoxifen (TM)-inducible CreER is transiently 
expressed during a short time window soon after neuronal birth. A single injection of TM during the neurodevelopmental stage induces loxP 
recombination only in the cells expressing CreER. Modified from Hirata et al. (2021). (B) MCs labeled with green fluorescent protein (green, left) and 
TCs labeled with tdTomato (magenta, right) in the mouse olfactory bulb at postnatal day 21. TM was injected at embryonic day 12.5 (TM12.5) and 15.5 
(TM15.5). The complete genotypes of the mice are Neurog2CreER(G2A); Cdhr1tTA; ROSA26-TREmGFP for TM12.5 and Neurog2CreER(G2A); Cdhr1tTA; 
TREtdTomato-sypGFP for TM15.5 [see Hirata et al., 2019 for details]. Bar  =  100  μm. GLL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell layer; 
GRL, granule cell layer.

This strategy seems somewhat exceptional as a sensory system. 
Although external information is typically represented as a spatial 
map in many sensory systems, the maps are usually transferred 
sequentially to higher centers by the labeled-line principle (Kaas, 
1997; Cang and Feldheim, 2013). By contrast, the odor map degrades 
rapidly. This has led to the assumption that olfactory information 
processing relies on indiscriminate integration of odorant information 
by mixing projections from the peripheral odor map (Davison and 
Ehlers, 2011).

This review argues that MCs and TCs offer an alternative 
perspective: parallel processing in the olfactory system. The parallel 
processing is another common strategy of the sensory system 
(Young, 1998). As exemplified by the visual system, different features 
of information are extracted from the original map and sent to 
separate target areas in parallel (Nassi and Callaway, 2009), thereby 
sharpening and enhancing specific features for increased biological 
significance. While olfactory information features remain elusive, 
I propose to discuss potential features that MC and TC channels can 
convey in the olfactory system based on previous observations (Mori 
and Sakano, 2021).

MCs and TCs in the olfactory system

Around 20 MCs and 50 TCs relay information received by each 
glomerulus to higher brain centers (Nagayama et al., 2014). These two 
projection neuron types occupy distinct layers of the main olfactory 
bulb and exhibit morphological differences (Mori et al., 1983; Orona 
et  al., 1984). Furthermore, they fire action potentials at different 
phases of the respiratory cycle (Fukunaga et al., 2012; Igarashi et al., 
2012). Electrophysiological analyses suggested that MCs are highly 
tuned for detection of specific odorants, whereas TCs respond more 
broadly to a wider range of stimuli (Schneider and Scott, 1983; Ezeh 
et al., 1993; Nagayama et al., 2004; Griff et al., 2008). Thus, MCs and 

TCs seem well-poised to convey different kinds of information 
extracted from the same glomeruli.

Although MCs and TCs exhibit molecular differences (Tepe et al., 
2018; Zeppilli et  al., 2021), clear discrimination based on gene 
expression has proven elusive. Previous studies indicated that MCs are 
born earlier than TCs (Hinds, 1968; Bayer, 1983; Grafe, 1983). 
I conceived that the birthdate difference can be used to effectively 
separate these populations. While a study demonstrated differential 
labeling of olfactory bulb neurons based on birth timing by in utero 
electroporation, this technique only revealed heterogeneous MC 
populations (Imamura et al., 2011; Imamura and Greer, 2015; Chon 
et  al., 2020). Therefore, we  opted for a different genetic method, 
neurogenic tagging, which allows for separate visualization and 
manipulation of MCs and TCs based on their distinct birthdates 
(Hirata et al., 2019).

Neurogenic tagging of olfactory 
projection neurons

The neurogenic tagging method uses a driver mouse line in 
which tamoxifen (TM)-inducible Cre recombinase, CreER is 
expressed only transiently for a short time window immediately 
after neuronal fates are committed (Figure 1). For this purpose, 
CreER is driven under the enhancer/ promoter of neural 
differentiation genes such as neurogenins and neuroDs using the 
bacterial artificial chromosome transgenic approach (Hirata et al., 
2021). A single TM dose at a specific developmental stage induces 
loxP recombination only in the cells soon after neuronal 
commitment. These “tagged” neurons are then susceptible to 
various experimental manipulations using recombination-
dependent reporters or effectors. Several driver lines are available 
for neurogenic tagging (Hirata et al., 2021). Representative images 
of tagged neurons across the brain by all the drivers are open in 
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public in the NeuroGT database,1 visualized using a global neuron-
specific reporters (TaumGFP-nLacZ, Hippenmeyer et  al., 2005, 
Jax#021162).

Among the driver lines, the Neurog2creER (G2A) driver is ideal for 
studying olfactory projection neurons (Hirata et al., 2019). While this 
method labels a mixture of multiple projection neuron types, MCs and 
TCs are the major populations when tamoxifen is injected at E12.5 
and E15.5, respectively (Figure  2). TCs are typically categorized 
further as internal, middle, and external subtypes based on their 
location within the olfactory bulb layer (Mori et al., 1983; Orona et al., 
1984). However, in the analysis using neurogenic tagging mice, 
external TCs far outnumber the other TC subtypes (Hirata et  al., 
2019). Therefore, this review will primarily focus on external TCs as 
representative of TCs.

Target projections of MCs and TCs

To visualize axon trajectories of MCs and TCs clearly, reporter 
proteins are expressed specifically only by olfactory bulb neurons that 
are neurogenic tagged, by combining neurogenic tagging and 
tetracycline-controlled transcription activation under the olfactory 
bulbs-specific promoter (Hirata et al., 2019; also see genotypes in the 
Figure 2 caption). Previously, TC axons were suggested to target only 
anterior region of the olfactory target areas (Haberly and Price, 1977; 
Scott, 1981; Igarashi et al., 2012). Our analysis revealed a surprising 
degree of convergence of TC axons; the axons only targeted to two 
small domains within the olfactory areas (Figure  2). One of the 
targets is the pars externa of the anterior olfactory nucleus, which 
uniquely receives topographic projections from the main olfactory 
bulb (Schoenfeld and Macrides, 1984). Its exclusive projections to the 
contralateral side suggest that the pars externa functions in bilateral 
integration of olfactory information (Haberly and Price, 1978b; 
Kikuta et al., 2010). The other TC target is the most anterolateral 
isolation of the CAP compartments (aiCAP) within the olfactory 
tubercle. Across the tubercle, dozens of CAP compartments are 
distributed in a patchy fashion, and their spatial locations vary 
between individual mice (Fallon et al., 1978; Meyer and Wahle, 1986). 
Among them, the aiCAP in the most anterolateral part of the tubercle 
consistently stands out as the largest and strongly expresses dopamine 
receptor 1. Notably, this small target receives TC projections from all 
glomeruli of the main olfactory bulb (Hirata et al., 2019).

MC axons exhibit a much more widespread distribution, 
projecting to all of the olfactory target areas (Figure 2). However, 
interestingly, the axons are specifically excluded from the aiCAP, 
making it a unique target exclusively innervated by TCs (Hirata et al., 
2019). The pars externa appears to receive convergent inputs from 
both MCs and TCs, but the anatomical complexity of this subnucleus 
makes definitive conclusions challenging.

This observation provides compelling anatomical evidence for a 
dedicated TC-specific channel within the olfactory system. Although 
TC and MC projections were hypothesized to converge onto the same 
secondary target areas, the existence of the exclusive TC target offers 

1 https://ssbd.riken.jp/neurogt/

exciting possibilities for TC-specific information processing within 
the olfactory system.

Potential features represented by the 
TC Channel

What kind of features can be represented in the TC channel? As 
described already, TCs respond to a broad range of odorants at a low 
threshold (Schneider and Scott, 1983; Ezeh et al., 1993; Fukunaga 
et al., 2012; Igarashi et al., 2012). Combined with the fact that the 
aiCAP receives converging TC projections from all the olfactory bulb, 
this compact target could rapidly detect more-or-less indiscriminate 
odor stimuli. Because the aiCAP belongs to the dopamine reward 
system (Fallon et al., 1978; Haberly and Price, 1978a; Wesson and 
Wilson, 2011; Murata et al., 2015), the odor detection at aiCAP may 
directly influence value-based behavior in mice through this 
reward system.

FIGURE 2

Projections of MCs and TCs revealed by neurogenic tagging. Pie 
charts on the top show the proportion of neuron types neurogenic-
tagged. MCs and TCs are preferentially labeled when TM was 
injected at embryonic day 12.5 (TM12.5. left) and 15.5 (TM15.5, right), 
respectively. The diameter of the charts reflects the number of 
neurons. The brain diagrams on the bottom summarize axon 
projections of TM2.5 and TM15.5-tagged neurons. The asterisk 
indicates aiCAP within the olfactory tubercle. imTC, internal and 
middle TC; eTC, external TC; MOB, main olfactory bulb; AON, 
anterior olfactory nucleus; pE, pars externa; LOT, lateral olfactory 
tract; TT, tenia tecta; OT, olfactory tubercle; CoA, cortical amygdala; 
PLCo, posterolateral cortical amygdala; PC, piriform cortex; EC, 
entorhinal cortex. Modified from Hirata et al. (2021).
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The pars externa, another TC target, likely operates in partnership 
with MCs. Its unique topographic connections linking ipsilateral and 
contralateral olfactory bulbs suggest a potential role of this subnucleus 
in spatial function, such as the localization of odor sources (Kikuta 
et al., 2010).

Future perspectives

The power of neurogenic tagging lies in its ability to manipulate 
the tagged neurons (Hirata et al., 2021). Thus, we are now in the stage 
to explore the actual meaning of olfactory parallel circuits. We have 
begun testing the olfactory behaviors of mice when MC or TC circuits 
are specifically activated or suppressed using chemogenetics. This 
method also paves the way for monitoring neuronal activities in 
various areas when neuronal activities of each olfactory channel is 
selectively modulated. Such approaches hold immense promise for 
unveiling the specific functions of MC and TC circuits within the 
olfactory system, ultimately leading to a deeper understanding of the 
logic behind olfactory information processing.
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