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Tutor auditory memory for
guiding sensorimotor learning in
birdsong
Yoko Yazaki-Sugiyama*

Neuronal Mechanism for Critical Period Unit, OIST Graduate University, Okinawa, Japan

Memory-guided motor shaping is necessary for sensorimotor learning. Vocal

learning, such as speech development in human babies and song learning in

bird juveniles, begins with the formation of an auditory template by hearing adult

voices followed by vocally matching to the memorized template using auditory

feedback. In zebra finches, the widely used songbird model system, only males

develop individually unique stereotyped songs. The production of normal songs

relies on auditory experience of tutor’s songs (commonly their father’s songs)

during a critical period in development that consists of orchestrated auditory and

sensorimotor phases. “Auditory templates” of tutor songs are thought to form in

the brain to guide later vocal learning, while formation of “motor templates”

of own song has been suggested to be necessary for the maintenance of

stereotyped adult songs. Where these templates are formed in the brain and

how they interact with other brain areas to guide song learning, presumably with

template-matching error correction, remains to be clarified. Here, we review

and discuss studies on auditory and motor templates in the avian brain. We

suggest that distinct auditory and motor template systems exist that switch their

functions during development.

KEYWORDS

auditory, song learning, critical period, sensorimotor learning, songbird, template
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Introduction

Sensorimotor learning depends on memory formation, followed by matching a motor
pattern to the memorized template. When learning to speak, human babies shape their
auditory detection skills based on the sensory environment. Later, they sculpt their
vocalization using auditory feedback, which is restricted within the range of acquired
auditory perception. Similalrly, songbirds learn to sing first by memorizing a tutor’s
songs (TS), commonly their father’s songs, and then by matching their vocalizations to
the memorized TS via auditory feedback during the song-learning period (Figure 1).
Depending on the bird species, only males or both sexes sing to attract mating partners, to
identify their territory, and to facilitate individual recognition. Early behavioral studies in

Abbreviations: AFP, anterior forebrain pathway; AIV, ventral intermediate arcopallium; CMM,
caudomedial mesopallium; LC, locus coeruleus; LMAN, lateral magnocellular nucleus of the anterior
neostriatum; NCM, caudal mesopallium; Nif, nucleus interface; RA, robust nucleus of the arcopallium;
RAcup, “cup” adjacent to RA; SNc, substantia nigra pars compacta; TS, tutor’s songs; Uva, nucleus
Uvaeformis; VP, ventral pallidum; VTA, ventral tegmental area.
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FIGURE 1

Conceptual diagram of the zebra finch song learning process:
template formation and template matching. Juveniles form a tutor
auditory template by listening to tutor’s songs, which may facilitate
formation of own song motor template. Juveniles develop their
own adult songs by matching their vocalization to the template
(unclear whether tutor song template or own song template), using
auditory feedback. Template matching with auditory feedback is
believed to continue until adulthood, as disturbing auditory
feedback leads to song degradation.

white crowned sparrows (Zonotrichia leucophrys), which form
memories and start to sing in different seasons, explained
beautifully the multistep process of song learning; isolation after
hearing and memorizing TS in the spring does not prevent juveniles
from developing normal adult songs and learning from TS when
they start to sing in the fall. If juveniles are isolated from TS before
auditory learning or are deafened in the period between auditory
and sensorimotor learning, song learning fails to develop properly.
These behavioral studies emphasize the importance of forming
auditory memories of TS by listening to the tutor and the necessity
of auditory feedback during sensorimotor learning (Konishi, 1965;
Marler, 1970).

In zebra finches (Taeniopygia guttata), the widely used songbird
model system, only males sing, and females do not. Male zebra
finches develop individually unique songs in the largely overlapping
auditory and sensorimotor learning phases and retain them
throughout their life. Their songs are similar, but never identical,
to TS, which is important for identity recognition. Sensorimotor
learning ends irrespectively of the level of similarity between
own song and TS or song maturity. Thus, the pre-determined
time course of song learning based on age is suggested. These
observations raise questions on how error signals shape the motor
pattern of singing, especially in later phases of song learning,
if auditory memories of TS instruct sensorimotor learning and
regulate the song-learning time window. Alternatively, do birds
construct a “motor template” by hearing TS? The “template” and
“template matching” theories have been discussed in songbird
research for decades, but only vague and occasionally confusing
definitions of song templates (auditory memory of TS or a bird’s
own motor pattern) have been provided. In this review, we sought
to discuss how and where in the brain song templates are stored to
be utilized for song learning.

“Template matching” theory

In describing the song template system, Peter Marler
determined in his early studies that templates serve as filters
to detect own species song first, and later for the formation of
memories of TS and motor learning guidance; these definitions
suggest that templates have multiple functions depending on

the developmental time course (Marler, 1970). Marler later
described preactive (active) and latent templates. The former
normally acts as a filter for preferential learning from own
species songs and later guides song learning if birds are not
exposed to adult songs, while the latter guides motor learning
with respect to the formed memory of adult songs (Marler,
1984; Marler and Nelson, 1992; Marler, 1997). Marler and others,
with slight variations, have indicated that template formation
requires auditory experiences of conspecific adult songs in
addition to innate predispositions. Normally birds learn to sing
by hearing TS, suggesting that memories of TS function as
templates, while isolated birds use an internal song model as
template [reviewed in Mooney (2009)]. While isolated songs
feature abnormal acoustic characteristics, such as longer duration
and limited variety of syllables with relatively simple features,
prolonged isolation (over generations) somewhat normalizes songs,
suggesting the presence of innate predispositions (Fehér et al.,
2009). Templates may facilitate memory formation of TS (or
memories of TS are “templates” as themselves) and for shaping
motor learning later. Whether auditory memory of TS and motor
templates, namely the preactive and latent templates described
in the early work of Peter Marler, are distinct has yet to be
clarified.

TS memories are believed to be formed for song learning (tutor
templates), as social isolation (absence of tutor template) leads
to abnormal song development. However, zebra finches do not
develop an exact copy of TS for their own song development.
Each individual among siblings intentionally develops own unique
songs by coping distinct parts of father’s songs (Tchernichovski
and Nottebohm, 1998). Additionally, song learning concludes
regardless of the level attained (similarity to TS), but depending on
a developmental time course. These notions indicate that template
matching with error correction with TS auditory memories alone
would not lead to the development of individual songs and suggest
that motor templates must be established. In the following sections,
we discuss the brain circuits that host specific song templates and
aspects of their temporal development.

Song motor template in the
premotor area, HVC, the apex of the
song system

HVC sits at the apex of the song system and constitutes the
premotor area for singing behavior (Figure 2). Pioneering chronic
multiunit recordings in HVC have shown firing activity when an
adult male zebra finch sings (McCasland and Konishi, 1981). HVC
comprises two types of projection neurons and interneurons and
shows auditory responsiveness to playback of bird’s own songs
(BOS) under anesthesia (Mooney, 2000). Other studies, including
a detailed electrophysiological study with antidromic neuronal
identification in awake singing birds, have revealed sequential
sparse firing in a group of HVC neurons, which extends over the
entire song duration (Hahnloser et al., 2002). Cooling HVC affects
the temporal pattern of vocal behavior by slowing down the timing
of the song (Long and Fee, 2008). Even in the absence of tutoring
experiences, sequential activity in HVC can be observed, while pre-
existing sequences become tightly associated with new own song
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FIGURE 2

Neural circuits for template matching. Neural circuits necessary for
song production and learning have been well identified as the song
system (colored in cyan). Area X, the basal ganglia locus of the song
system, is reported to receive dopaminergic error signals from VTA
when auditory feedback is distorted. The premotor region of the
song system, HVC, also receives sensory inputs from multiple
auditory areas, including the telencephalic nucleus interface (NIf).
Optogenetic activation of NIf projections to HVC encode the
duration of song syllables. In contrast, accumulated studies have
suggested that tutor memory forms in a higher auditory area, the
caudal mesopallium (NCM), from which we found a transient
projection to HVC during the song learning period.

after exposure to TS (Mackevicius et al., 2023). These series of
studies have suggested that microcircuits within HVC regulate the
generation of the song motor pattern. Perturbating the activity
of the motor thalamic nucleus Uvaeformis (Uva), which projects
to HVC, and imaging of Uva synaptic activity in HVC further
support a model whereby thalamic input to “starter cells” in HVC
drives sequential neuronal activity in the nucleus (Moll et al., 2023).
Moreover, fractions of HVC neurons projecting to Area X (HVCx
neurons) have reported to work as “mirror neurons” (Prather
et al., 2008; Fujimoto et al., 2011). Studies in swamp sparrows
and Bengalese finches revealed that antidromically identified single
HVCx neuronal units exhibit neuronal firing both during singing
and BOS playback, exactly the same time in the song phase,
suggesting auditory-vocal information in single neurons. Notably,
these studies were performed in adult zebra finches in which songs
are “crystallized”. Contingent aversive stimulation in adult birds
shifts the pitch of targeted syllables, but the pitch reverts to baseline
when the perturbation is removed, suggesting that song templates
are retained after song crystallization (Janata and Margoliash, 1999;
Sober and Brainard, 2009). Is this template a TS auditory memory?
Does the TS auditory template or the motor template (preactive or
latent) guide song learning?

Song motor plasticity driven by the
anterior forebrain pathway (AFP)

Early studies on the lateral magnocellular nucleus of the
anterior neostriatum (LMAN), the output region of the basal
ganglia–thalamocortical loop of the song system, were implicated
LMAN as the site associated with the tutor template. After LMAN
lesions, juveniles loose motor plasticity which leads to poor song

learning from TS (Bottjer et al., 1984; Scharff and Nottebohm,
1991). Juvenile LMAN neurons respond to playback of TS (Solis
and Doupe, 1997, 1999). However, LMAN neurons do not respond
to TS that is no longer similar to bird’s own song by re-learning
from another tutor (Yazaki-Sugiyama and Mooney, 2004). Later
studies have shown that LMAN contributes to acute song motor
plasticity. LMAN activity is higher when zebra finches are singing
undirected songs than direct songs, which are characterized by
less variable acoustic features (Sossinka and Böhner, 1980; Jarvis
et al., 1998; Hessler and Doupe, 1999). LMAN lesion reduces
song variability in adults, suggesting defects in motor plasticity,
similar to the previous finding in juveniles. Microsimulation of
LMAN alters the song motor pattern (Kao et al., 2005). LMAN
projects to a motor area, the robust nucleus of the arcopallium
(RA), where neurons receive direct inputs from HVC. As described
above, several studies have suggested that LMAN is responsible
for error/error corrections (the output of a comparator). Still,
important questions remain regarding the source of auditory
feedback and the site of representation of the TS memory template.
Additionally, whether the TS or motor template is compared to
auditory feedback remains to be clarified.

Auditory feedback to the song
system

Recent studies using advanced techniques that allow
manipulation of specific inputs to HVC have reported that
optogenetical activation of the telencephalic nucleus interface
(NIf) input at HVC synapses shapes the duration of syllables, while
severing the NIf–HVC projection before, but not after, auditory
learning from tutor disrupts song learning from tutor (Zhao
et al., 2019). HVC rhythmic activity emerges in parallel with the
emergence of new syllables during development (Okubo et al.,
2015). Interestingly, in vivo intracellular recordings in awake zebra
finches revealed that HVC neurons projecting to RA respond to TS
in juveniles, but these responses are suppressed by local inhibitory
circuits in adults (Vallentin et al., 2016).

Not only auditory feedback but dopaminergic signals have also
been reported to shape song learning, as reported in reinforcement
learning (Scharff and Nottebohm, 1991; Brainard and Doupe,
2000). The basal ganglia locus of the song system, Area X,
receives dopaminergic inputs from the ventral tegmental area
(VTA) (Person et al., 2008). VTA receives auditory inputs from
the surrounding part of the arcopallium (ventral intermediate
arcopallium [AIV]) (the “cup” adjacent to RA [RAcup]), suggesting
a role in auditory feedback. Area X projects to the ventral
pallidum (VP), which projects to VTA and the substantia nigra pars
compacta (SNc) (Gale et al., 2008). VP receives inputs from AIV
and sends projections to HVC and RA (Li and Sakaguchi, 1997).
This architecture collectively demonstrates that the basal ganglia–
thalamocortical pathway forms a loop with dopaminergic inputs.
Inactivating VTA neurons in Bengalese finches (Lonchura striata
var. domestica) disrupts the ability of the birds to shift pitches
of songs to avoid aversive stimulation (Hoffmann et al., 2016).
Electrophysiological recordings from VTA neurons have revealed
a role in computing performance error signals upon distorted
auditory feedback (Gadagkar et al., 2016) and natural fluctuations
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in performance of VTA neurons projecting to Area X (Duffy et al.,
2022). Dopaminergic signals in Area X are depend on performance,
and diminishing during courtship (Roeser et al., 2023). To compute
error-based reinforcement signals, neurons require inputs from
both auditory feedback of own vocalization and a template (target
motor pattern). A question remains unresolved: is this template a
memory of TS or a motor template? The studies described here
were performed in adult birds, which raises the issue of whether
the template matching systems during juvenile song learning and
adult song maintenance overlap.

Auditory memory in auditory
forebrain: song memory and song
discrimination

As described in the previous sections, auditory
guiding/feedback signals to HVC appear to instruct song learning,
while performance error is computed in the VTA–Area X circuit.
Except for the information on syllable length from NIf to HVC,
the type of information that arrives at HVC or VTA for template
matching and its source remains largely unknown. In addition
to research on the song system, more recent studies have shown
that TS memories are stored in brain regions within the auditory
pathways, especially in higher auditory areas. The expression
level of the immediate-early gene, ZENK, a molecular marker
for neuronal activity, in the zebra finch higher auditory area,
the caudomedial nidopallium (NCM), is higher in birds exposed
to TS playback than in those exposed to unfamiliar zebra finch
songs (Gobes et al., 2010). In both sexes, NCM has been suggested
to be the site of memory storage of auditory experiences, not
exclusively for song learning. NCM lesions after conditioning with
song stimulation diminishes song discrimination ability in adult
males (Gobes and Bolhuis, 2007; Canopoli et al., 2014; Yu et al.,
2023), while lesions in adult females disrupt song preference to
experienced songs (Tomaszycki and Blaine, 2014).

A series of studies have suggested the involvement of NCM
in song learning as a TS memory brain region. ZENK expression
levels upon TS exposure positively correlate with the amount of
song learning from a tutor (Bolhuis et al., 2000, 2001; Terpstra
et al., 2004). Pharmacological blockade of a signaling pathway in
NCM prevents juveniles to learn from TS (London and Clayton,
2008). An electrophysiological study revealed distinct habituation
rates in NCM auditory responses upon repeated exposure to TS
and unfamiliar song (Phan et al., 2006). We have reported that
a small subset of juvenile NCM neurons show almost exclusive
auditory responsiveness to a learned TS (Yanagihara and Yazaki-
Sugiyama, 2016; Katic et al., 2022). In contrast to the other brain
loci in the song system, nearly all neurons are selective to the bird’s
own song (Doupe and Konishi, 1991; Solis and Doupe, 1997; Janata
and Margoliash, 1999). In NCM, electrophysiological experiments
revealed two types of neurons distinct in their spiking shapes and
firing rates (Schneider and Woolley, 2013; Yanagihara and Yazaki-
Sugiyama, 2016), including inhibitory neurons (Spool et al., 2021).
Only a subset (∼15%) of broader spiking NCM neurons acquire
selectivity to TS soon after (∼1 h) listening to tutor singing (Katic
et al., 2022). This timeline parallels a previous finding, in that TS
memory forms by hearing only a few renditions of songs. The

responsiveness of these neurons is exclusive to TS and not even
to birds’ own songs, suggesting that they comprise the neuronal
substrates of auditory memory.

Despite cumulative studies that has implicated the zebra
finch NCM in memory formation, neither a direct anatomical
connection between NCM and the song system (Vates et al., 1996)
nor instructive NCM neuronal activity during juvenile singing
has been elucidated. NCM has reciprocal connections with the
caudomedial mesopallium (CMM) which projects to HVC (Vates
et al., 1996). While AFP in the song system receives dopaminergic
reinforcement signals for song learning as discussed in the previous
paragraph, NCM receives inputs from the noradrenergic locus
coeruleus (LC), the brain region that controls attention and arousal
states and noradrenergic release (Velho et al., 2012). LC to NCM
inputs are suggested to send social information for song learning
(Katic et al., 2022). These connectivity patterns collectively show
that the song system and auditory pathway are integrated with
a neuromodulatory system (Figure 2). Using viral technology to
manipulate gene expression in target neurons and whole-brain
axonal tracing with tissue clearing, we recently reported a transient
projection to HVC from the subset of NCM neurons responsive
to TS playback. The TS-responsive NCM neurons project to
HVC, HVC-shelf, AIV, CMM, and Area X in juveniles, but the
HVC projection disappears in adults. Inducing cell death in
these NCM TS-responsive neurons by targeting the expression of
CaCaspase disrupts song learning in juveniles but not in adults
(Louder et al., 2024). While these results do not specify which of
the projections from NCM are necessary for song learning, the
NCM–HVC temporal connections comprise a candidate circuit
for auditory TS memory-guided sensorimotor learning; moreover,
dynamic rewiring of the interareal neural circuit may regulate
the developmental time course of song learning. This raises
the question of the fate of TS auditory memories over the
developmental period.

Discussion

Whether a brain area is related to the process of distinguishing
individual songs or in memory formation and storing cannot
be decidedly determined in lesion experiments. Rather than
disrupting auditory memories, the lesion experiments described
above might have interrupted song discrimination. Sensory
memories are thought to last long, perhaps permanently. In some
bird species, sensory and sensorimotor learning is separated by
2–3 months, suggesting (at a minimum) month-long auditory
memories. In zebra finches that learned two songs sequentially from
two distinct tutors, the level of Zenk expression upon exposure
to TS correlates with the amount of song learning from either
tutor (Olson et al., 2016), suggesting that NCM is the substrate
for TS memory encoding in adults, while neuronal substrates for
TS memory in adults have yet to be identified. Auditory memories
of TS are necessary for song learning, but storage may occur in
different brain regions in juveniles and adults, specifically before
and after song learning.

Similarly, while auditory learning can be extended if TS are
not provided (e.g., in isolation), the song crystallizes at a specific
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developmental time regardless of the level of learning. Even in
the absence of TS experiences, juvenile birds start to sing at a
specific time point during development. These observations suggest
that the time course of sensory and sensorimotor learning are
independently regulated but well-coordinated. Forming a memory
during early auditory learning is necessary and TS memories
are thought to guide sensorimotor learning. The higher auditory
area is a strong, but likely not exclusive, candidate as the locus
of TS memory encoding. Moreover, different brain regions may
be responsible for the generation of auditory memory to guide
sensorimotor learning during development and song recognition
in the latter stage. Detailed dissections of neural circuits over
the entire song learning period and manipulation of specific
circuits during song learning are expected to enrich knowledge
on the song template, TS template, or own song motor template
systems, and provide insights into the relevant spatial and temporal
characteristics in the brain. Furthermore, such studies likely have
implications for bilingualism in humans. Early experiences of
adults in non-native language settings have positive influences
on auditory discrimination ability of bowling or intonations even
when speaking ability of the second language is limited. Retention
of connections that guide the flow from auditory memories to the
motor area may be a key factor for re-opening re-learning or new
song learning in adults. Hearing is one thing, doing (mimicking)
might be another. The long-existing song template theory should
be explored in more depth to thoroughly understand its concepts.
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