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receptor density underlies 
intraregional and interregional 
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Local and global functional connectivity densities (lFCD and gFCD, respectively), 
derived from functional magnetic resonance imaging (fMRI) data, represent the 
degree of functional centrality within local and global brain networks. While these 
methods are well-established for mapping brain connectivity, the molecular and 
synaptic foundations of these connectivity patterns remain unclear. Glutamate, 
the principal excitatory neurotransmitter in the brain, plays a key role in these 
processes. Among its receptors, the α-amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid receptor (AMPAR) is crucial for neurotransmission, particularly in 
cognitive functions such as learning and memory. This study aimed to examine the 
association of the AMPAR density and FCD metrics of intraregional and interregional 
functional centrality. Using [11C]K-2, a positron emission tomography (PET) tracer 
specific for AMPARs, we measured AMPAR density in the brains of 35 healthy 
participants. Our findings revealed a strong positive correlation between AMPAR 
density and both lFCD and gFCD-lFCD across the entire brain. This correlation was 
especially notable in key regions such as the anterior cingulate cortex, posterior 
cingulate cortex, pre-subgenual frontal cortex, Default Mode Network, and Visual 
Network. These results highlight that postsynaptic AMPARs significantly contribute 
to both local and global functional connectivity in the brain, particularly in network 
hub regions. This study provides valuable insights into the molecular and synaptic 
underpinnings of brain functional connectomes.
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Introduction

Functional magnetic resonance imaging (fMRI) is widely used to 
examine the functional connectivity between different areas and 
functional networks in the human brain using correlation analysis 
(Logothetis, 2008). However, the molecular and synaptic basis of 
functional connectivity remains unclear. Hypothesis-driven seed 
correlation analysis is advantageous when there is strong theoretical 
support for extracting regions of interest (ROIs) (Fox and Raichle, 
2007). Alternatively, data-driven functional connectivity density 
(FCD) metrics map hubness (Tomasi and Volkow, 2010), the number 
of functional connectivities with all other brain voxels, without 
needing predefined ROIs (Zhang and Volkow, 2019).

Prior studies have shown that higher functional connectivity 
density is supported by higher metabolic rate of glucose (Tomasi et al., 
2013; Shokri-Kojori et al., 2019). Indeed, strong correlations have been 
found between glucose metabolism and FCD in the default mode 
network (DMN), dorsal attention network (DAN), and visual network 
(VN) (Tomasi et al., 2013). However, glucose metabolism is an indirect 
indicator of neural activity. Alteration of functional connectivity 
density could be seen in several neurological and psychiatric disorders 
such as Parkinson’s disease (Hu et al., 2017), epilepsy (Li et al., 2019), 
cognitive impairment (Miao et  al., 2022; Song et  al., 2022), 
substance-use disorders (Konova et al., 2015; Manza et al., 2018), 
developmental disorders (Tomasi and Volkow, 2012; Tomasi and 
Volkow, 2019), schizophrenia (Li et al., 2022), and depression (Zhang 
et al., 2016; Zou et al., 2016). Nonetheless, no studies have examined 
the effect of neural activity at a synaptic level on functional 
connectivity in living humans.

Molecular imaging has become increasingly important for a 
comprehensive understanding of the human functional connectome. 
Molecular imaging can provide insights into neurotransmission in 
chemical synapses, which imaging modalities like MRI and 
electrophysiology cannot (Sala et al., 2023). Recently, efforts have been 
made to generate brain atlases of various synapses, with the aim of 
applying these to translational research (Zachlod et al., 2023). The 
glutamatergic nervous system is hypothesized to be the basis of brain 
function (Reiner and Levitz, 2018) and is implicated in psychiatric 
illnesses such as schizophrenia (Uno and Coyle, 2019) and mood 
disorders (Guglielmo et  al., 2022). Glutamate is a pivotal 
neurotransmitter responsible for excitatory neurotransmission in the 
brain, and glutamatergic synapses account for the vast majority of all 
excitatory synapses in the brain (Nakanishi, 1992; Traynelis et al., 
2010). Among the glutamate receptors, 

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor 
(AMPAR) plays a crucial role in conveying fast excitatory synaptic 
transmission and underlies synaptic plasticity (Malinow and Malenka, 
2002), which is the fundamental of learning and memory (Diering 
and Huganir, 2018). The synaptic trafficking of AMPARs is a crucial 
molecular mechanism underlying experience-dependent synaptic 
plasticity (Takahashi et  al., 2003; Kessels and Malinow, 2009; 
Mitsushima et al., 2011; Mitsushima et al., 2013; Miyazaki et al., 2021). 
Furthermore, previous reports showed that AMPAR had interactions 
with other neurotransmitters such as striatal-enriched protein tyrosine 
phosphatase 61, which also regulated N-methyl-D-aspartate (Won 
et  al., 2019), and with a variety of proteins that contribute to its 
complex regulation (Matthews et al., 2021). AMPAR is protected from 
desensitization during synaptic activity by Shisa6, a single 
transmembrane protein and a stable and directly interacting AMPAR 
auxiliary subunit (Klaassen et  al., 2016), which supports our 
hypothesis that AMPARs centrally comprise functional interactomes 
via many types of proteins and neurotransmitters. Experience-
dependent synaptic reorganization can underlie the functional 
connectome, and thus, AMPAR can be  a key synaptic molecule 
supporting the functional networks in the brain. We have recently 
developed the positron emission tomography (PET) for AMPAR, [11C]
K-2, the first technology to visualize and quantify AMPAR (Miyazaki 
et al., 2020). [11C]K-2 depicts AMPAR on the cell surface which is a 
physiologically crucial fraction (Arisawa et al., 2021).

Using the ligand [11C]K-2, this study aimed to examine the 
association between AMPAR density and functional connectivity. 
We used three data-driven FCD metrics (Tomasi and Volkow, 2010) 
because there were no previous studies identifying specific functional 
connectivity pathways related to AMPAR in humans: local FCD 
(lFCD) (i.e., short-range FCD) maps how many nearby voxels are 
significantly connected to every voxel in the brain, the number of 
edges at a certain voxel in a cluster, and indexes short-range 
(intraregional) centrality; global FCD (gFCD) maps the total number 
of voxels connected with every brain voxel; and the difference between 
gFCD and lFCD (i.e., long-range FCD) which indexes interregional 
functional centrality (Tomasi and Volkow, 2012).

Since AMPARs facilitate synaptic transmission and plasticity, 
processes essential for establishing and maintaining neural 
connections, we hypothesized a positive correlation between AMPAR 
density and short-and long-range FCD patterns across the whole brain 
and in each brain region or network.

Materials and methods

Ethics statement

The data for this study were derived from the studies approved by 
the Yokohama City University Human Investigation Committee and 
Yokohama City University Certified Institutional Review Board, 
following the ethical guidelines for medical and health research 
involving human participants by the Japan Ministry of Health, Labour 
and Welfare and the Clinical Trials Act in Japan (jRCTs031180052, 
jRCTs031200083). The study also conformed to the Declaration of 
Helsinki. All participants provided written informed consent after 
receiving detailed information about the protocol and demonstrated 
sufficient decision-making capacity as measured by the MacArthur 

Abbreviations: fMRI, functional magnetic resonance imaging; lFCD, local functional 

connectivity density; gFCD, global functional connectivity density; AMPAR, 

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor; PET, positron 

emission tomography; ROIs, regions of interest; DMN, default mode network; 

VN, visual network; DSM-IV, Diagnostic and statistical manual of mental disorders 

fourth edition; AC, attenuation correction; T1WI, T1-weighted images; TR, repetition 

time; TE, time to echo; RsfMRI, resting-state fMRI; AFNI, analysis of functional 

NeuroImages; ANTs, advanced normalization tools; GM, gray matter; WM, white 

matter; CSF, cerebrospinal fluid; SPM 8, statistical parametric mapping 8; SUVR, 
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Competence Assessment Tool for Clinical Research (Appelbaum and 
Grisso, 2001).

Participants

We included 35 healthy participants from two studies. All 
participants were registered and recruited by the medical research 
recruitment company Cismor. Five of the participants were extracted 
from the first study (jRCTs031180052). This study examined the 
feasibility of [11C]K-2 PET imaging in living humans including healthy 
individuals and patients with psychiatric disorders. The participants 
were male, aged 30–49 years, capable of providing informed consent, 
and did not show any diagnostic criteria for psychiatric conditions 
according to the Diagnostic and Statistical Manual of Mental 
Disorders Fourth Edition (DSM-IV) (American Psychiatric 
Association, 1994) criteria using the structured clinical interview for 
DSM-IV (First et  al., 1996), the DSM Fifth Edition (American 
Psychiatric Association, 2013) criteria, and the International 
Classification of Diseases Tenth Edition (World Health Organization, 
1992) criteria. The remaining 30 healthy participants were included 
from a second study (jRCTs031200083). This study included 
participants with broader ranges of age and sex and examined 
differences in AMPAR distribution between healthy individuals and 
patients with psychiatric disorders, such as depression, bipolar 
disorder, schizophrenia, and autism spectrum disorder. It was 
conducted to determine biological differences in AMPAR between 
patients with psychiatric disorders and healthy individuals. The 
inclusion criteria for the second study were the same as those in the 
first study, except for the age range (20–69 years) and sex (males and 
females). The exclusion criteria were the same for the two studies; 
individuals were excluded if they were pregnant, nursing, or wishing 
to be pregnant, had a history of epilepsy, met criteria for substance 
abuse within six months before the study; had a positive urine drug 
screen for illicit drugs; received treatment with perampanel; met 
contraindications for MRI scan; had a significant neurological or 
general medical condition; or showed abnormal laboratory test values 
of serum creatinine ≥1.5 mg/dL, aspartate aminotransferase ≥150 
IU/L, or alanine aminotransferase ≥150 IU/L. We used single-center 
data to ensure homogeneity of imaging data in the current study, and 
the age of the original participants in the data used in this study 
ranged from 24 to 49 years.

In vivo PET imaging

The participants underwent PET with [11C]K-2 and MRI. PET 
imaging was performed using a TOSHIBA Aquiduo scanner 
(TOSHIBA Medical) and a Celesteion PCA-9000A/2A scanner 
(Canon Medical). These two types of PET had to be  used for 
administrative and operational reasons in parallel. Aquiduo provided 
an axial FOV of 240 mm and 80 contiguous 2.0 mm thick slices. A 4.7 
s transmission scan was performed for attenuation correction (AC), 
then a 60 s intravenous injection of [11C]K-2 (372.9 ± 14.1 MBq) was 
given with the flow rate of 60 ~ 80 μL/s, which was followed by an 
emission scan of 60 min in all studies, with frames of 18 × 10 s, 2 × 30 
s, 7 × 60 s, 1 × 2 min, 1 × 3 min, 3 × 5 min and 3 × 10 min. Dynamic 
images were reconstructed with a 2D-Ordered Subset Expectation 

Maximization (OSEM) using four iterations, 14 subsets, a 128 matrix, 
a zoom with Gaussian kernel of 2.8 and 5.0 mm full width at half 
maximum (FWHM). Celesteion provided an axial FOV of 240 mm 
and 96 contiguous 2.0 mm thick slices. A 15.2 s transmission scan was 
performed for AC, and a 60 s intravenous injection of [11C]K-2 
(376.8 ± 8.1MBq) was administered with the flow rate of 60 ~ 80 μL/s, 
followed by an emission scan of 60 min, with 35 frames. Dynamic 
images were reconstructed with 3D-OSEM coupled with Time of 
Flight (TOF) using two iterations, 20 subsets, a 128 matrix, a zoom 
with Gaussian kernel of 1.0 and 5.0 mm FWHM. Sixteen of all thirty-
five healthy participants were allocated to the Aquiduo scanner, and 
nineteen of all participants were scanned with the Celesteion scanner.

PET camera validation using phantom

To determine reconstruction parameters of PET images, and 
validate PET cameras, we performed PET scans on all types of PET 
cameras using brain tumor (BT) phantom (Itoi Factory Inc.) 13, which 
has multiple spheres of different sizes (diameter 7.5, 10, 13, 16, 27, 
38mm) placed inside the cavity. The background area and the spheres 
of the BT phantom were filled with the activity of 5 and 10 kBq/mL 
using 18F-FDG, respectively. The evaluation was made based on three 
criteria: (1) recovery rate, (2) uniformity, and (3) quantitative 
performance. How to set up a circular ROI for recovery analysis: 
we performed this on the slice in which the sphere of each size was 
most clearly depicted. Then, we set an ROI with the same size as each 
sphere and 10 circular ROIs with a size of about 100 mm2 in the 
background area (6 pieces at a distance of 15 mm or more from the 
phantom edge and 4 pieces at the center). How to set ROI for 
uniformity analysis: We performed this for three slices in which no 
sphere is depicted. Then we used slices separated by at least 10 mm 
from each other. We set 16 circular ROIs with a size of about 100 
mm2 in the background area (12 at a distance of 15 mm or more from 
the phantom edge and 4 at the center). For each ROI, we calculated 
the average value of SUV (SUVmean). The evaluation criteria were 
defined as follows. 1) recovery rate: SUVmean of each HOT sphere is 
90% or more for 38mm sphere, 85% or more for 27mm sphere, 70% 
or more for 20mm sphere, and 60% or more with 16mm sphere. 2) 
Uniformity: The standard deviation of the relative error of SUVmean 
for the set ROI was 0.0249 or less. (C) Quantitative performance: the 
SUVmean of the set ROI should fall within the range of 0.95 to 1.05 
against the theoretical value. We confirmed that all PET cameras used 
in this study could meet these criteria.

MRI acquisition

Each participant underwent an MRI scan on a GE DISCOVERY 
MR750 3.0 T with 3.0T GEM Coil Suite (General Electric Medical 
Systems) to permit accurate delineation of the brain regions for data 
analysis. High-resolution 3D-T1-weighted images (T1WI) were 
acquired using the following parameters with the sequence of 3D 
BRAVO: voxel size = 0.9 × 0.9 × 0.9 mm, repetition time (TR) /time 
to echo (TE) = 7.0/3.1 ms, flip angle (FA) = 8°, FOV =  230 mm × 230 
mm × 180 mm, and Matrix = 256 × 256 × 200. Resting-state 
functional MRI (rsfMRI) data were acquired with a T2*-weighted 
gradient-echo echo planar imaging sequence and the following 

https://doi.org/10.3389/fncir.2024.1497897
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Yatomi et al. 10.3389/fncir.2024.1497897

Frontiers in Neural Circuits 04 frontiersin.org

parameters: TR, 2500 ms; TE, 30 ms; flip angle (FA) = 80°, matrix, 
64 × 64; slice thickness, 3.2 mm; voxel size, 3.3 × 3.3 × (slice thickness) 
3.2 mm3; the number of time points, 240; and scanning duration, 
10 min. A 70 cm inner diameter built-in body coil was used for RF 
transmission, and a Head Neck Unit in a 19-channel (12 channels of 
them were used at a head scan) GEM Coil 3.0T (49.5 cm × 38.8 
cm × 35.4 cm) was used for reception.

MRI data preprocessing

Structural and functional images were preprocessed with the 
fMRIPrep v23.2.0 (Esteban et al., 2019), which is based on Nipype 
v1.8.6 (Gorgolewski et al., 2011). This process used tools from FMRIB 
Software Library (FSL) v6.0.3 (Jenkinson et al., 2012), Analysis of 
Functional NeuroImages (AFNI) v22.0.11 (Cox, 1996; Cox and Hyde, 
1997), Advanced Normalization Tools (ANTs)1 v2.3.5, and Freesurfer2 
v7.1.1. Functional images processed after fMRIPrep were denoised 
with XCP-D v0.6.0 (Ciric et  al., 2018; Mehta et  al., 2024). These 
pipelines were conducted as follows: (1) intensity non-uniformity 
correction with N4 bias correction which applied N4 algorithm 
implemented in ANTs and skull-stripping for T1WI; (2) T1 
segmentation into gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF); (3) slice timing correction; (4) distortion-
correction with participant-specific fieldmap images; (5) realignment 
of all volumes to a selected reference volume including the estimation 
of head motion; (6) normalization to the Montreal Neurological 
Institute (MNI) space with the ICBM 152 Nonlinear Asymmetrical 
template version 2009c (Fonov et al., 2011; Manera et al., 2020); (7) 
surface driven alignment of functional and anatomical MRI data; (8) 
censoring of high-motion outlier, framewise displacement calculation, 
and thresholding; (9) bandpass filtering with a passband between 
0.01–0.08 Hz; and (10) confound regression with six motion estimates, 
WM, CSF, and global signal. Normalized fMRI time series were 
resampled to a 2 mm isotropic voxel size. To take advantage of the 
most probable area that has WM, we segmented WM independently 
of the segmentation in fMRIPrep to establish a reference region. The 
criteria for segmentation included a probability of the presence of 
WM > 0.9, the 8 mm-smoothed GM < 0.05, and the 8 mm-smoothed 
CSF < 0.05, with Statistical Parametric Mapping 8 (SPM 8) (Miyazaki 
et al., 2020).

AMPAR-PET preprocessing

A summed image 30–50 min after the injection of [11C]K-2 was 
obtained for all PET images of each participant using the PMOD 
PNEURO tool v3.8 (PMOD Technologies) as 30–50 min is the best 
time frame for the quantitative analysis (Miyazaki et  al., 2020). 
Standardized uptake value ratio (SUVR)30–50 min images were obtained 
by dividing the radioactivity values by a reference region of WM. The 
volume of interest of the WM was obtained by fulfilling the following 
conditions for voxel value: probability of the presence of WM > 0.9, 

1 http://hdl.handle.net/10380/3113

2 https://surfer.nmr.mgh.harvard.edu/

the 8 mm-smoothed GM < 0.05, and the 8 mm-smoothed CSF < 0.05, 
using SPM 8 (Miyazaki et al., 2020). Because we found a good linear 
relationship between (SUVR)30–50 min and a non-displaceable binding 
potential (BPnd), which is a quantitative index of receptor density and 
is commonly utilized, in the previous study (Miyazaki et al., 2020), 
we  used (SUVR)30–50  m as the representative of AMPAR density. 
(SUVR)30–50 min images were processed as follows. SUVR images were 
co-registered to respective original T1WI images and normalized with 
the transformation information from native T1WI to the ICBM 152 
Nonlinear Asymmetrical template version 2009c (Fonov et al., 2011; 
Manera et al., 2020) to the template using ANTs. The preprocessed 
SUVR images were then smoothed with a Gaussian kernel of 8 mm 
full width at half maximum (FWHM). Subsequently, SUVR images 
were restricted to areas of SUVR >1 using AFNI because we targeted 
areas to be analyzed in areas where AMPAR and WM had almost no 
AMPAR, according to a previous report (Miyazaki et al., 2020). To 
restrict SUVR images to GM, we used a 2 mm isotropic-resampled 
GM mask. This mask, which only includes areas with image values 
above 10%, was extracted from standard tissue probability maps 
available in SPM12 (Wellcome Trust Centre for Neuroimaging, 
London, UK; https://www.fil.ion.ucl.ac.uk/spm/) in MATLAB 
R2019b. Normalized SUVR images were resampled to a 2  mm 
isotropic voxel size.

Functional connectivity density mapping

Pearson’s correlation was calculated to assess the strength of 
functional connectivity, Cij, between voxels i and j. We defined a local 
functional connectivity graph G = (V, E), where each brain voxel is 
represented as a vertex (V) in the graph. An edge (E) is drawn between 
two voxels, vi and vj, if the temporal correlation of their fMRI signals 
Cij exceeds 0.6 (Tomasi and Volkow, 2010; Thompson et al., 2016) and 
vj is part of a spatially connected cluster of voxels that includes vi, and 
lFCD was defined as the number of edges associated with Gi. In 
analogy to G, we also defined global functional connectivity graph 
H = (W, F), where each brain voxel is represented as a vertex (W). An 
edge (F) connects two vertices, wi and wj if the temporal correlation 
of their fMRI signals Cij exceeds 0.6, regardless of whether wj is part 
of a spatially connected cluster with wi. Additionally, gFCD was 
defined as the number of edges associated with Hi. Since the number 
of voxels that gFCD estimated included the number of voxels 
estimated by lFCD, gFCD-lFCD was used as the interregional 
functional centrality. The lFCD algorithm (Tomasi and Volkow, 2010) 
calculates whether an original voxel is significantly connected to other 
voxels and radially adjacent to each other (including voxels that are 
not necessarily adjacent to the original voxel), and stops the calculation 
when there are no more adjacent significantly connected voxels 
around the cluster formed with the original voxel. If we consider a 
cluster around the original voxel created in this way as a “region” 
connected to each other by significant connectivity, we can define 
lFCD as intraregional functional centrality and then voxels and 
clusters that are not connected to that region but have significant 
connectivity with the original voxel will be contained in a different 
“region” than the “region” containing the original voxel. Thus, we can 
define gFCD-lFCD, which represents the number of connectivities 
between the original voxel and those distant regions, as the functional 
centrality between regions, named as interregional functional 
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centrality. To improve the normal distributions of lFCD and gFCD, 
we used log (lFCD) [i.e., short-range FCD (srFCD)] and log (gFCD-
lFCD) [i.e., long-range FCD (lrFCD)]. We used the terms “srFCD” 
and “lrFCD” differentiated from lFCD and gFCD-lFCD, respectively, 
for two reasons. First of all, they included the literally critical meanings 
that we wanted to express, srFCD as functional connectivity density 
within a short range and lrFCD as functional connectivity density 
within a long range. In addition, they have been used in the previous 
reports and we  thought that the use of their terms was useful for 
interpretation. An isotropic 8 mm FWHM Gaussian kernel was used 
for the spatial smoothing of the srFCD and lrFCD images. FCD 
calculations were carried out in AFNI using 3dLFCD and 
3dDegreeCentrality functions (Craddock and Clark, 2016). In this 
study, functional centrality indicates Functional Connectivity Density 
(FCD), whose meaning is based on the number of significant 
functional connectivity with other voxels in each original voxel. 
Functional centrality is originally derived from the meaning of 
“Degree Centrality,” which is a concept of graph theory in a broader 
sense. In other words, “Degree Centrality” is the degree of centrality 
of how many voxels a voxel is central to a connected voxel, and 
functional centrality is a definition of the term that includes the 
definition (Telesford et al., 2011). In the whole parts, we used the 
terms srFCD and lrFCD, where we only want to describe the facts of 
the results. On the other hand, we used the term functional centrality 
when we want to emphasize the concept “Degree Centrality” with a 
view to generalizing our results and discussions.

Statistical analyses

The mean of 35 preprocessed SUVR images was calculated to 
examine the relationship between AMPAR and srFCD or lrFCD 
across the entire brain. Similarly, the mean of 35 srFCD or 35 lrFCD 
images were calculated. Within each ROI delineated by the Hammers 
atlas (Hammers et al., 2003; Gousias et al., 2012), as well as all seven 
networks defined in Yeo’s 7-network atlas (Yeo’s atlas) (Thomas Yeo 
et  al., 2011), we  calculated mean values of SUVR, srFCD, and 
lrFCD. After we confirmed the distribution patterns of SUVR, srFCD, 
lrFCD, and gFCD did not conform to normal distribution with the 
Kolmogorov–Smirnov test (Supplementary Table S6), the Spearman 
rank correlation test was used to ascertain whether a statistically 
significant correlation existed between SUVR and srFCD or lrFCD 
across the 83 ROIs of the Hammers Atlas. The Spearman rank 
correlation test was also used to assess the voxel-wise correlation 
between SUVR and srFCD or lrFCD within each ROI or network for 
each participant. Subsequently, Fisher’s z-transformation was applied 
to normalize the step-distributed correlation coefficients. 
We performed multiple comparison correction in the following two 
steps. Step  1: The Bonferroni correction was used to correct for 
multiple comparisons for 83 ROIs and 7 networks. Thus, statistical 
significance was defined by p < 0.05/90. R version 4.1.3 (R Core Team, 
2022) was used for this purpose. Step  2: spin-based permutation 
correction was conducted to control potential spatial autocorrelation 
to the whole brain correlation analysis and to the voxel-based analyses 
in ROIs in Hammers atlas (correlation between SUVR and srFCD: 33 
areas survived after step1, correlation between SUVR and lrFCD: 41 
areas survived after step1) and 7 areas in Yeo’s atlas after step 1. In 

step 2, the mean SUVR, srFCD, and lrFCD images were resampled to 
1 mm3 spatial resolution to warrant to extract values from the voxel of 
the precise coordinates of vertices in the normalized surface template 
space in Freesurfer applied in the spin-test (Alexander-Bloch et al., 
2018). Those image values in the coordinates of 10242 vertices for the 
bilateral hemisphere were extracted and projected onto the normalized 
sphere data implemented in Freesurfer fsaverage5 (see text footnote 
2). All sphere data were rotated at angles uniformly chosen between 
zero and 360, about each of the x (left–right), y (anterior–posterior), 
and z (superior–inferior) axes. Each permutation-rotated SUVR was 
tested for correlation with srFCD or lrFCD, and the correlation 
coefficients were stored for comparison with the correlation between 
the original SUVR and srFCD or lrFCD. The testing probability was 
defined as the number of the null correlations (the results of 
correlation using 1000 times permutation) outperforming the real 
correlation being divided by 1000  in each ROI or network, and 
statistical significance was set to p < 0.05 in step 2. The subcortex areas 
and bilateral cerebellum areas were excluded in step 2 (in correlations 
between SUVR and srFCD: the bilateral cerebellum and right 
putamen, in correlations between SUVR and lrFCD: the bilateral 
cerebellum, putamen, and caudate) because the spin-test does not 
cover those areas for permutation (Alexander-Bloch et  al., 2018). 
Step 2 results are shown in Supplementary Tables S3, S4. To assess the 
correlation between absolute values of FCD and the degree of the 
correlation between SUVR and FCD, we performed the Spearman’s 
rank correlation test after the above 2 steps correction to calculate the 
correlation between srFCD values and correlation coefficients between 
SUVR and srFCD using the corrected 32 regions (including the 
bilateral cerebellum and right putamen) and the correlation between 
lrFCD values and correlation coefficients between SUVR and lrFCD 
using the corrected 41 regions (including the bilateral cerebellum, 
putamen, and caudate), where p-value <0.05 was recognized as 
significant. Before those calculations, we  also confirmed that the 
distribution patterns of srFCD and lrFCD values in Hammers ROIs 
and correlations between SUVR and srFCD or lrFCD were not 
normal, respectively, with the Shapiro–Wilk test 
(Supplementary Table S7). Normality was not met in each data except 
for correlations (z values) between SUVR and srFCD. We  also 
calculated correlations between SUVR and gFCD in 83 ROIs in 
Hammers Atlas, 7 networks in Yeo’s Atlas according to the same 
manner in the above methods also using the above 2 steps’ correction 
(Supplementary Figure S1; Supplementary Table S5). The subcortex 
areas (the bilateral cerebellum, putamen, and caudate) and bilateral 
cerebellum areas were also excluded in calculating correlations 
between SUVR and gFCD in step 2 because the spin-test does not 
cover those areas for permutation (Alexander-Bloch et  al., 2018). 
Step 2 was done with python version 3.9.7 (extraction of vertex values 
in SUVR, srFCD, lrFCD, and gFCD images), Matlab R2019b (to 
conduct spin-test), and R version 4.1.3 (for calculation of images such 
as multiplication and addition between images).

Results

We conducted a PET scan with [11C]K-2 and a resting-state fMRI 
(rsfMRI) scan in thirty-five healthy participants aged 38.1 ± 7.1 years 
(mean ± SD), including 22 males (62.9%).
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ROI-wise positive correlation among the 
whole brain analysis

To investigate the relationship between SUVR and FCD across the 
whole brain, we calculated mean SUVR, srFCD, and lrFCD images 
across all participants. We calculated the average values of these mean 
images within 83 ROIs in the Hammers atlas and tested the correlation 
between mean SUVR and mean srFCD or mean lrFCD across ROIs. 
We found a significant positive correlation between SUVR and srFCD 
(r = 0.48, p = 4.7 × 10−6; Figure 1A) and between SUVR and lrFCD 
(r = 0.53, p = 4.4 × 10−7; Figure 1B). These results suggest a positive 
correlation between increased SUVR and increased intraregional and 
interregional functional centralities in humans. To account for 
potential spatial autocorrelation, we  conducted a spin-based 
permutation test (Alexander-Bloch et  al., 2018) to validate the 
correlation between SUVR and srFCD or lrFCD across the entire 
cortex. We projected the mean SUVR for each of the 20,484 vertices 
across the left and right hemispheres (10,242 vertices per hemisphere) 
onto normalized spherical data using Freesurfer. The spherical 
coordinates were then rotated 1,000 times at random angles (0–360 
degrees) around the x (left–right), y (anterior–posterior), and z 
(superior–inferior) axes, as per the spin-test methodology (Alexander-
Bloch et al., 2018). We compared the real correlation coefficients (0.53 
for srFCD and 0.63 for lrFCD) with those from the null distribution 
generated by the spin-test. In both cases, the null hypothesis was 
rejected (p < 0.001), confirming the robustness of the 
observed correlations.

Voxel-wise regional analysis within 
anatomical ROIs

We tested for differences in the relationship between SUVR 
and FCD within 83 ROIs. Only positive correlations between 

SUVR and srFCD or lrFCD were statistically significant within 
ROIs. The highest mean correlations between SUVR and srFCD 
were observed in the bilateral anterior cingulate cortex (ACC) 
(left: r = 0.67, right: r = 0.71), bilateral posterior cingulate cortex 
(PCC) (left: r = 0.50, right: r = 0.57), and bilateral superior 
parietal gyrus (left: r = 0.56, right: r = 0.58) (Figures  2A, 3). 
Conversely, regions with low mean correlations (r < 0.30) (Cohen, 
1992) between SUVR and srFCD included the left cerebellum 
(r = 0.27), right inferior frontal gyrus (r = 0.28) (Figures 2A, 3). 
For the correlation between SUVR and lrFCD, the highest mean 
correlations were found in the bilateral ACC (left: r = 0.73, right: 
r = 0.82), bilateral PCC (left: r = 0.64, right: r = 0.78), bilateral 
caudate nucleus (left: r = 0.68, right: r = 0.74), left subgenual 
frontal cortex (left: r = 0.73), and bilateral pre-subgenual frontal 
cortex (psFC) (left: r = 0.86, right: r = 0.91) (Figures  2B, 3B). 
None of the regions exhibited low mean correlation coefficient 
(r < 0.30) between SUVR and lrFCD. We further applied spatial 
autocorrelation correction using the spin-test (Alexander-Bloch 
et  al., 2018) on ROIs that survived multiple comparison 
corrections—35 ROIs for the correlation between SUVR and 
srFCD, and 46 ROIs for the correlation between SUVR and 
lrFCD. Initially, we identified which vertices in the normalized 
surface data (totaling 20,484 vertices across the entire brain) 
corresponded to each ROI in the Hammers atlas. Using the 
spherical mean SUVR data calculated for all vertices, we assessed 
whether the correlation between mean SUVR and mean srFCD or 
lrFCD within each ROI was greater than the correlations obtained 
from 1,000 spin-based permutations of SUVR in each multiple 
comparison-corrected ROI. After correcting for spatial 
autocorrelation in the cortex, we  identified 29 ROIs with 
significant correlations between SUVR and srFCD, and 35 ROIs 
with significant correlations between SUVR and lrFCD 
(Figures 2A,B; Supplementary Tables S3, S4). These results suggest 
that certain brain areas facilitate communication between 

FIGURE 1

(A) Positive Correlation between SUVR mean and srFCD mean. (B) Positive correlation between SUVR mean and lrFCD mean. Each dot indicates each 
ROI in Hammers atlas. srFCD, short-range functional connectivity density; SUVR, standardized uptake value ratio; ROI, region of interest; lrFCD, long-
range functional connectivity density.
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AMPAR-related excitatory signals and functional centrality more 
efficiently than others.

We next investigated whether the absolute values of FCD were 
associated with the strength of the correlation between SUVR and 
FCD. Given that higher FCD would correspond to larger correlation 
coefficients, reflecting a closer relationship between SUVR and FCD 
in regions with high FCD. The relationship between srFCD values and 
the correlation coefficients between SUVR and srFCD was 
significantly positive (r = 0.38, p = 0.034) (Figure 4A). In contrast, 
lrFCD values showed no significant correlation with the correlation 
coefficients between SUVR and lrFCD (r = 0.24, p = 0.13) (Figure 4B). 
These findings suggest that intraregional functional centrality (srFCD) 
is closely linked to the degree of its correlation with SUVR, whereas 
interregional functional centrality (lrFCD) is not. However, almost all 
ROIs included in the DMN and VN, which showed the highest 
correlation coefficients between SUVR and both srFCD and lrFCD, 
showed relatively high srFCD, and ten of them (the bilateral cuneus: 
parts of the VN, the bilateral superior parietal gyrus, bilateral PCC, 
right angular gyrus, bilateral lateral remainder occipital lobe, and (a 
part of) right ACC: parts of the DMN) were included in the top ten 
srFCD group (Supplementary Table S1). In addition, nine regions per 
top ten lrFCD values group (the bilateral cuneus and right lingual 
gyrus: parts of the VN, the bilateral superior parietal gyrus, left PCC, 
right angular gyrus, left lateral remainder occipital lobe, and (a part 

of) left ACC: parts of the DMN) were also included in the DMN and 
VN (Supplementary Table S2).

Voxel-wise regional analysis within 
functional networks

Because task-positive and task-negative functional networks are 
segregations of comprehensive functions (Eickhoff et  al., 2007; 
Thomas Yeo et al., 2011), we also examined the relationship between 
SUVR and FCD within different cortical functional networks. Using 
Yeo’s atlas (Thomas Yeo et al., 2011), which comprised 7 networks 
covering the whole cortex, we extracted independent SUVR, srFCD, 
and lrFCD images for each network. We then computed voxel-wise 
correlations between SUVR and srFCD or lrFCD within each network. 
In all seven functional networks, we  found positive correlations 
between SUVR and both srFCD and lrFCD (Table 1) (Figures 5A,B). 
Notably, the correlation coefficients in DMN were among the highest, 
with 0.44 between SUVR and srFCD, and 0.61 between SUVR and 
lrFCD. Similarly, the VN showed high correlation coefficients of 0.50 
between SUVR and srFCD, and 0.64 between SUVR and lrFCD 
(Table 1). To control spatial autocorrelation, spin-based permutation 
correction (Alexander-Bloch et al., 2018) was performed. Using all 
SUVR data in 1000 times permutation around the brain sphere, 

FIGURE 2

Correlation map between AMPAR density (SUVR) and FCD in 35 healthy participants. Color gradation of each ROI in Hammers atlas reflects the degree 
of the mean correlation coefficient. (A) Correlation map between SUVR and srFCD. 32 regions where all the participants showed adjustments were 
displayed (p < 0.05/90). All 29 regions in the cortex were spatial autocorrelation-corrected with spin-based permutation (p < 0.05). (B) Correlation 
map between SUVR and lrFCD. 41 regions where all the participants showed statistically significant correlation coefficients after multiple comparison 
adjustments were displayed (p < 0.05/90). All 36 regions in the cortex were spatial autocorrelation-corrected with spin-based permutation (p < 0.05). 
AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor; lrFCD, long-range functional connectivity density; srFCD, short-range 
functional connectivity density; SUVR, standardized uptake value ratio; FCD, functional connectivity density.
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FIGURE 3

The mean correlation coefficients of multiple comparison-corrected and spatial autocorrelation-corrected areas in Hammers atlas between AMPAR 
density (SUVR) and FCD in 35 healthy participants. The bar graphs in the left column shows the mean correlation coefficients between SUVR and 
srFCD. The bar graphs in the right column shows the mean correlation coefficients between SUVR and lrFCD. The names in the center at the same 
height as these bars are those of the corresponding brain regions in Hammers Atlas. The large headings follow the major divisions of Hammers Atlas. 
The mean correlation coefficients of 32 areas between SUVR and srFCD are corresponding to Figure 2A. The mean correlation coefficients of 41 areas 
between AMPAR density (SUVR) and lrFCD are corresponding to Figure 2B. Bars represent the mean and whiskers show the SD. AMPAR, α-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid receptor; lrFCD, long-range functional connectivity density; srFCD, short-range functional connectivity 
density; SUVR, standardized uptake value ratio; FCD, functional connectivity density; SD, standard deviation.

FIGURE 4

Correlation between FCD and the mean correlation coefficient between AMPAR density (SUVR) and FCD. (A) Correlation between srFCD and the mean 
correlation coefficient (z value) across the 32 areas (corresponding to Figure 2A). (B) Correlation between lrFCD and the mean correlation coefficient (z 
value) across the 41 areas (corresponding to Figure 2B). AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor; lrFCD, long-range 
functional connectivity density; srFCD, short-range functional connectivity density; SUVR, standardized uptake value ratio; FCD, functional connectivity 
density.
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we compared the correlation of the real data with correlation using 
artificially permutated data between SUVR and srFCD or lrFCD for 
each network. The association between AMPAR and srFCD or lrFCD 
was significant in all networks (p < 0.001) except for the Limbic 
Network (Supplementary Tables S3, S4). These results suggest that 
most functional networks, particularly the DMN and VN, exhibit a 
robust relationship between SUVR and both intraregional and 
interregional functional centralities at rest.

Discussion

Here, we investigated the relationship between AMPAR density 
and intraregional/interregional functional centrality of the whole 
brain, anatomical regions, and functional networks in healthy 
participants. We found that AMPAR density was positively correlated 
with srFCD and lrFCD across the whole brain as well as within the 
corrected anatomical ROIs and functional networks. These findings 
provide biological context to resting-state fMRI data, revealing a 
consistent positive association between AMPAR density and 
functional centrality across the whole brain, with regional differences 
observed in specific regions and networks.

Positive correlation between AMPAR 
density and functional centrality in the 
whole brain

Across the whole brain, both srFCD and lrFCD were positively 
correlated with AMPAR density, suggesting that AMPAR density plays 
a significant role in proximal and distal neuronal communication. 
This leads to various cognitive processes mediated by excitatory 
signals in the entire brain. In an animal study, learning-induced 
AMPAR trafficking, increasing the amplitude of evoked synaptic 
transmission (Whitlock et al., 2006). In another report, injection of 
AMPAR agonist into the ventral tegmental area in mice augmented 
functional connectivities between the ventral tegmental area and the 
core or shell of the nucleus accumbens, as measured using fMRI 

(Jaime et  al., 2019), which is also consistent with our study. 
Additionally, it was noted that administration of perampanel, an 
AMPAR antagonist, induced a selective increase in functional 
connectivities with Magnetoencephalography (MEG) in humans in 
the alpha band (connectivities originating from the left superior 
parietal lobule) and beta band (connectivities originating from the left 
postcentral gyrus, right inferior parietal gyrus, and left caudate) 
(Routley et  al., 2017). The results provide collateral evidence that 
AMPAR density influences functional connectivity based on neural 
activity also in humans, which is in line with the results of our study. 
One study also stated that AMPAR distribution derived from 
autoradiography data was one of the most dominantly related 
neurotransmitters to MEG power as an index of functional signal, 
though participants who provided AMPAR data were different from 
living participants who provided MEG data (Hansen et al., 2022). 
Consistent with that previous result, this study proved that AMPAR 
in living humans is also strongly related to functional centralities, as 
comprehensive indexes of functional signal, in the same participants. 
Our study is consistent with a previous report that BOLD signals on 
rsfMRI predominantly reflect synaptic activity (Logothetis et al., 2001).

Positive correlation between AMPAR 
density and functional centrality in each 
region and each network

Regional differences in correlations were observed between 
AMPAR density and FCD. The regions with the strongest correlations 
between AMPAR density and intraregional and interregional 
functional centrality included the ACC, PCC, and superior parietal 
gyrus (precuneus) which were part of the DMN. The correlations 
between AMPAR and interregional functional centrality in the psFC 
and caudate nucleus were also strong. The weak correlation regions 
between AMPAR density and intraregional functional centrality 
included the left cerebellum and right inferior frontal gyrus. The 
weakest correlation region between AMPAR density and interregional 
functional centrality was also the left cerebellum, though every region 
that has a significant correlation between AMPAR density and lrFCD 
did not exhibit a weak correlation. Regions with stronger correlations, 
including the ACC, PCC, superior parietal gyrus, caudate nucleus, 
and psFC can ghighdeliver more efficient signaling due to the close 
association between AMPAR density and functional centrality.

The correlation between AMPAR density and intra-or interregional 
functional centrality in each functional network was positive. These 
strong correlations may indicate the relevance of AMPARs in 
determining the functional centrality of these networks during the 
resting state. In this study, almost all ROIs included in the DMN and 
VN, which showed the highest correlation coefficients between AMPAR 
density and both srFCD and lrFCD, showed relatively high srFCD 
values, including the top ten srFCD group. Consistent with these results, 
a significant positive correlation was observed between srFCD and the 
correlation coefficient between AMPAR density and srFCD across ROIs 
in Hammers atlas (Figure 4A). DMN and VN also included nine regions 
from the top ten lrFCD value group (Supplementary Table S2). 
Although no significant correlation was found between lrFCD and the 
correlation between AMPAR density and lrFCD considering anatomical 
regions, it is possible that the unit of functional networks rather than the 
unit of anatomical regions could be related to the biological functional 

TABLE 1 Correlation coefficients between AMPAR density (SUVR) and 
srFCD or lrFCD in 6 networks of Yeo’s atlas.

Network Mean correlation 
coefficient 

(between SUVR 
and srFCD)

Mean correlation 
coefficient 

(between SUVR 
and lrFCD)

CEN 0.37 ± 0.12 0.55 ± 0.13

DAN 0.32 ± 0.11 0.53 ± 0.11

DMN 0.44 ± 0.079 0.61 ± 0.097

SN 0.30 ± 0.099 0.47 ± 0.12

Somatomotor 0.30 ± 0.12 0.54 ± 0.13

Visual 0.50 ± 0.11 0.64 ± 0.12

srFCD, short-range functional connectivity density [log (lFCD)]; lrFCD, long-range 
functional connectivity density [log (gFCD-lFCD)]; CEN, Central Executive Network; DAN, 
Dorsal Attention Network; DMN, Default Mode Network; SN, Salience Ventral Attention 
Network; Somatomotor, Somatomotor Network; Visual, Visual Network. Values are shown 
as mean ± SD. The p-value in each correlation in all participants was multiple comparison-
adjusted (p < 0.05/90). After multiple comparison correction, all functional networks except 
for Limbic Network survived in spatial autocorrelation correction (p < 0.05).
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networks associated with AMPAR. Another study showed that regions 
of high lFCD can act as hubs of resting functional networks (Tomasi and 
Volkow, 2011). The ACC and PCC were among the regions with the 
highest lFCD values in the previous study (Tomasi and Volkow, 2010). 
These observations suggest that AMPAR density is closely correlated 
with functional centrality in regions that serve as functional centers in 
the resting-state functional networks. Overall, the differences in the 
correlations between AMPAR density and FCD among various 
anatomical regions may reflect variations in their respective biological 
functions at rest. The correlations between AMPAR density and srFCD 
or lrFCD were especially high in the DMN and VN, with the mean 
correlation values >0.4 or 0.6, and > 0.5 or 0.6, respectively. The DMN 
included the ACC, PCC, and psFC among the highest correlations 
between AMPAR density and srFCD or lrFCD among all the regions. 
Since the DMN is mostly deactivated in a task-positive state (Raichle 
et al., 2001; Raichle, 2015; Menon, 2023), it could be assumed that the 
DMN may be more related to neural activities than the other networks 
in a task-negative state. This phenomenon could contribute to one of 

the strongest correlations between AMPAR density and FCD observed 
in the DMN. Thus, the configuration of the DMN based on AMPAR 
density could add biological significance to the concept of “DMN” as a 
resting-state network that may be activated by synchronizing with the 
AMPAR density function on a synaptic level. Recent studies revealed 
various cognitive processes among the DMN and other networks at 
resting-state (Smith et al., 2018; Weber et al., 2022), which was not 
contradictory to our findings that correlations between AMPAR density 
and intra-and interregional functional centrality were positive in six 
functional networks, including the DMN. Another report showed that 
connectivities measured with MEG from several areas around the 
DMN, that are, the left superior parietal lobule, left superior parietal 
lobule, and right inferior parietal gyrus to several areas increased with 
the administration of an AMPAR antagonist in humans (Routley et al., 
2017), which may account for the robust relationship between AMPAR 
density and functional centrality in the DMN at rest.

Several reasons can explain the low correlations in some regions. 
Significant differences were observed in the connectivities of the 
cerebellum to the parietal region or the frontal region between the 
resting state and the state while performing some tasks (Katz and 
Knops, 2016). Connectivity between the inferior frontal gyrus or insula 
and the DMN increases during tasks (Elton and Gao, 2015). Further 
study during task performance should be warranted to test the change 
in the relationship between AMPAR and FCD in these areas.

The VN mainly comprises the cuneus that showed a strong 
correlation between AMPAR density and intraregional and 
interregional functional centrality of 0.50 and 0.64, respectively. First, 
visual stimulation at rest could drive activation of the VN, because 
participants were instructed not to sleep and their eyes were open. 
This could lead to a strong correlation between AMPAR and FCD. It 
has also been reported that the VN is activated at rest and during 
action (Smith et al., 2009; Cornblath et al., 2020). One animal study 
demonstrated that AMPAR blockade in the primary visual cortex 
reduced cell firing frequency and diminished spatial phase-selective 
simple cell responses while generating phase-invariant complex cell 
responses (Rivadulla et  al., 2001). Furthermore, another previous 
study showed that an increase of serotonin secretion at layer 4 to layer 
2/3 synapses in the barrel cortex of mice after being deprived of their 
vision promoted trafficking of AMPARs and then enhanced excitatory 
input, improving whisker tactile function (Jitsuki et al., 2011). These 
compensatory cortical reorganizations of synapses may support the 
strong correlation between AMPAR density and functional networks 
in vision.

We considered several reasons that the association between 
AMPAR and FCD was not significant in the Limbic Network. FCD, 
which reflects the BOLD signal, is sensitive to blood volume and 
blood oxygenation and is influenced by tissue-specific factors like 
cellular density, myelination, water content, iron content, and 
vascularization. These elements collectively contribute to the observed 
lower signal-to-noise in the Limbic Network, with vascularization 
playing an important role in signal variation within T2*-weighted 
imaging. Furthermore, MRI hardware limitations further exacerbate 
the lower SNR in limbic regions. Specifically, the RF coil geometry and 
design limit RF penetration into deeper structures, reducing SNR in 
areas like the hippocampus, amygdala, and related limbic regions. 
Additionally, B1+ inhomogeneity, which we addressed using N4 bias 
field correction, may further impact SNR in these areas, though 
current correction methods may not fully resolve this issue. Cortical 

FIGURE 5

Violin plots of correlation coefficients (z value) between AMPAR 
density (SUVR) and FCD. (A) Correlation between srFCD and SUVR in 
6 Networks of Yeo’s atlas. (B) Correlation between lrFCD and SUVR in 
6 Networks of Yeo’s atlas. CEN: Central Executive Network, DAN: 
Dorsal Attention Network, DMN: Default Mode Network, SN: 
Salience Ventral Attention Network, SOM: Somatomotor Network, 
VIS: Visual Network; AMPAR, α-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid receptor; lrFCD, long-range functional 
connectivity density; srFCD, short-range functional connectivity 
density; SUVR, standardized uptake value ratio; FCD, functional 
connectivity density.
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regions, by comparison, show higher SNR due to their closer 
proximity to RF coil elements, which enhances spatial image quality. 
The Limbic Network is also associated with emotional processing 
(Dan et al., 2023), and the resting state in this study scarcely demanded 
any emotional processing. Further investigation is necessary for 
confirmation of the correlation between AMPAR density and srFCD 
or lrFCD in the Limbic Network in performing some tasks, especially 
emotional tasks. This is essential because AMPAR plays a crucial role 
in the basis of experience-dependent synaptic plasticity (Takahashi 
et  al., 2003; Kessels and Malinow, 2009; Mitsushima et  al., 2011; 
Mitsushima et al., 2013) and may be related to emotional experience-
dependent fMRI signal activation.

Limitations

This study had some limitations. First, the direction or destination 
of the functional connectivity was not examined. Secondly, we did not 
interview the state of consciousness during rsfMRI scanning in our 
participants after the scanning. The relationship between cognitive 
performance or the state of consciousness and the correlation between 
AMPAR density and functional centrality should be warranted in the 
future. Third, brain receptors other than AMPARs were not 
considered. Finally, although we found a strong relationship between 
AMPAR and the degree of functional connections in the whole brain, 
the impact of AMPAR density on the strength of functional 
connectivity was not assessed.

Conclusion

In conclusion, this study suggests that AMPAR density plays an 
important role in modulating functional centrality in the resting-state 
brain. Since functional networks are activated during tasks, task-based 
fMRI studies are warranted to understand the dynamic interaction 
between AMPAR and functional centrality. Moreover, comparisons 
between healthy individuals and patients with psychiatric disorders 
may deepen our understanding of the pathophysiological mechanisms 
underlying these disorders. For example, using the correlation 
between SUVR and srFCD or lrFCD revealed with this study, 
comparison between healthy subjects and psychiatric disorders 
including schizophrenia, depression, bipolar disorders, and autism 
spectrum disorders in the whole brain, in functional networks, and in 
some anatomical brain resions should be investigated. The findings of 
this study could help develop strategies benefiting the studies of the 
brain’s functions and brain diseases.
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