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Introduction: Neural circuits develop during critical periods (CPs) and exhibit

heightened plasticity to adapt to the surrounding environment. Accumulating

evidence indicates that the maturation of inhibitory circuits, such as gamma-

aminobutyric acid and parvalbumin-positive interneurons, plays a crucial role

in CPs and contributes to generating gamma oscillations. A previous theory

of the CP mechanism suggested that the maturation of inhibition suppresses

internally driven spontaneous activity and enables synaptic plasticity to respond

to external stimuli. However, the neural response to external stimuli and

neuronal oscillations at the neural population level during CPs has not yet been

fully clarified. In the present study, we aimed to investigate neuronal activity

responsiveness with respect to the maturation of inhibition at gamma-band

frequencies.

Method: We calculated inter-trial phase coherence (ITPC), which quantifies

event-related phase modulations across trials, using a biologically plausible

spiking neural network that generates gamma oscillations through interactions

between excitatory and inhibitory neurons.

Results: Our results demonstrated that the neuronal response coherence to

external periodic inputs exhibits an inverted U-shape with respect to the

maturation of inhibition. Additionally, the peak of this profile was consistent with

the moderate suppression of the gamma-band spontaneous activity.

Discussion: This finding suggests that the neuronal population’s highly

reproducible response to increased inhibition may lead to heightened synaptic

plasticity. Our computational model can help elucidate the underlying

mechanisms that maximize synaptic plasticity at the neuronal population level

during CPs.

KEYWORDS

critical period, gamma-aminobutyric acid, spontaneous activity, inter-trial phase
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1 Introduction

Neural circuits are shaped by experiences to adapt to

the surrounding environment, especially during early postnatal

life (Hensch, 2004; Takesian and Hensch, 2013; Werker and

Hensch, 2015). In particular, brain plasticity is one of the

observed hallmarks during specific windows of significant brain

maturational processes known as “critical periods (CPs).” CP

plasticity proceeds sequentially in somatosensory, auditory, insula,

amygdala, and visual areas (Reh et al., 2020). With the onset of CP

plasticity, rapid brain development enables cognitive abilities such

as visual and auditory functions, language acquisition, and social

and emotional functions (Rice and Barone Jr, 2000; Knudsen, 2004;

Kolb et al., 2013; Larsen and Luna, 2018). Accumulating evidence

indicates that the maturational process of inhibitory circuits

triggers the initiation of CP (Hensch, 2004, 2005; Toyoizumi et al.,

2013; Takesian and Hensch, 2013; Wong-Riley, 2021).

The maturation of the inhibitory circuits alters the excitatory-

inhibitory (E/I) balance during CPs (Hensch and Fagiolini, 2005;

Morishita et al., 2010; Li et al., 2012; Werker and Hensch,

2015; Fang et al., 2021; Hunter et al., 2024). In particular,

inhibitory factors such as gamma-aminobutyric acid (GABA)

and parvalbumin-positive (PV) interneurons are crucial for CPs

by facilitating an optimal E/I balance (Hensch, 2004; Takesian

and Hensch, 2013). GABA, the main inhibitory neurotransmitter,

controls the maturation of interneurons and accelerates CP

onset (Ben-Ari et al., 2012; Le Magueresse and Monyer, 2013).

PV interneurons account for approximately 40% of GABAergic

inhibitory neurons and form interconnected and synchronized

networks (Hensch, 2004; Le Magueresse and Monyer, 2013; Larsen

and Luna, 2018; Markram et al., 2004). Such inhibition regulates

neural activity, which results in an appropriate E/I balance to

initiate a CP (Fagiolini and Hensch, 2000; Takesian and Hensch,

2013; Hug and Mpai, 2024).

Plasticity during CPs has received considerable attention in

neuroscience for more than 60 years (Wiesel and Hubel, 1963). The

primary visual cortex (V1) has been thoroughly studied because

it reflects the development of neuronal plasticity, specifically the

ocular dominance (OD) plasticity caused bymonocular deprivation

(MD) (Wiesel and Hubel, 1963; Kuhlman et al., 2013; Toyoizumi

et al., 2013; Quast et al., 2023). MD during CPs strengthens the

spiking response of neurons to the open eye (OD plasticity), and

this shift is particularly predominant during CP (Long et al., 2005;

Hensch, 2005). It has been demonstrated in a computational model

that sufficient inhibition causes significant OD shifts to the open eye

following MD (Toyoizumi et al., 2013). The study concluded that

thematuration of inhibition changed the neuronal activity response

pattern from internally spontaneous to externally driven, thereby

shifting the source of learning cues to external stimuli. However,

these analyses were limited to the visual system and used a single

pyramidal neuron model. Consequently, neuronal oscillations at

the population level remain unclear. Further validation is necessary

to clarify the contribution of inhibitory maturation to population-

level neuronal oscillations.

In addition to influencing the timing of CPs, the E/I

balance plays a crucial role in neuronal activity, particularly in

generating gamma-band oscillations. These oscillations, induced

by interactions between excitatory and inhibitory neurons, support

cognitive functions and are especially observed during the

development of visual functions in CPs (Börgers and Kopell, 2003;

Benasich et al., 2008; Lefort et al., 2009; Quast et al., 2023).

Furthermore, the gamma-band activity in local circuits responds

to external signals, particularly auditory and visual stimuli.

For example, studies investigating auditory steady-state response

(ASSR) and steady-state visual evoked potential (SSVEP) have

shown that the synchrony at gamma-band frequencies strongly

correlates with the consistency of external stimuli and neural

responses (Tsuchimoto et al., 2011; Tada et al., 2021; Bakhtiari et al.,

2023).

Sufficient inhibition alters E/I balance and regulates neuronal

activity, thereby inducing synaptic plasticity and generating

gamma-band oscillations in response to external stimuli (Uhlhaas

et al., 2009; Faini et al., 2018; Reh et al., 2020). Based on insights

from the findings of CP onset, in this study, we hypothesized that

neural activity at gamma-band frequencies would become more

responsive and exhibit consistent responses to external stimuli

due to the maturational process of the GABAergic system. To

validate this hypothesis, we quantified the neuronal population

response to external inputs at different inhibition levels using the

Inter-Trial Phase Coherence (ITPC) analysis on our biologically

plausible spiking neural network (SNN) model, which considers

the lognormal distribution of excitatory postsynaptic potentials

(EPSPs). ITPC analysis quantifies event-related phase modulations

across trials (Tallon-Baudry et al., 1996; Cavanagh et al., 2009).

Specifically, ITPC values indicate how consistently a neural

network responds to identical stimuli across trials.

2 Materials and methods

2.1 Spiking neural network model

We utilized an SNN with a long-tailed distribution of EPSPs

based on the model proposed by Teramae et al. (2012). All

neurons were described using a leaky integrate-and-fire (LIF)

model. The SNN consisted of 10, 000 excitatory pyramidal (Pyr)

neurons (NE = 10, 000) and 2, 000 inhibitory neurons (NI =
2, 000). In our model, inhibitory neurons exclusively represent PV

interneurons because PV interneurons play a pivotal role in CPs,

particularly in generating gamma-band oscillations and regulating

synaptic plasticity (Hensch, 2005; Werker and Hensch, 2015; Quast

et al., 2023). As shown in Figure 1, periodic stimuli were input

to the SNN as spike trains to evaluate stimulus-evoked neural

activity. Detailed descriptions of the inputs are provided in the

Supplementary material. Here, the additional spikes generated by

the Poisson process were input into the SNN during all simulations

to maintain the neural activity (see Figure 1).

In this study, we simulated two types of SNN activity

to evaluate gamma-band neural activity: spontaneous neural

activity and stimulus-evoked neural activity. The former represents

spiking activity in the absence of an external periodic input and

demonstrates gamma-band oscillations in our model. Spontaneous

gamma-band activity typically emerges from interactions between

excitatory and inhibitory neurons (Buzsáki and Wang, 2012). The
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latter represents spiking activity driven by periodic stimuli at

gamma-band frequencies. This evoked gamma-band activity was

phase-locked to the stimulus onset of each trial (Tallon-Baudry

and Bertrand, 1999). For the stimulus-evoked neural activity at the

gamma-band frequency, we employed periodic input frequencies

fs = 40 [Hz] and 80 [Hz] because these input frequencies have been

utilized in physiological experiments (Tsuchimoto et al., 2011; Tada

et al., 2021). Periodic input signals are provided to Pyr neurons

(j = 1, 2, ..., NE) and PV interneurons (j = NE + 1, ..., NE + NI) in

the SNN. The membrane potential of the neurons vj(t) is expressed

as follows:

dvj

dt
= −

1

τm
(vj − VL)− gEY,j(vj − VE)− gIY,j(vj − VI)

+
∑

i

Win
j, i

∑

si

δ(t − si), (1)

Y =

{

E for 1 ≤ j ≤ NE,

I for NE + 1 ≤ j ≤ NE +NI,

if vj(t) ≥ Vthr [mV], then vj(t) → Vr [mV], (2)

where the decay constants of the membrane τm are 10.5 [ms] for

Pyr neurons and 3.1 [ms] for PV interneurons (Neske et al., 2015;

Wagatsuma et al., 2023). The reversal potentials of the synaptic

currents for the neurons and the leak current were VE = 0 [mV]

(Pyr neurons), VI = −80 [mV] (PV interneurons), and VL = −70

[mV].
∑

i W
in
j, i

∑

si
δ(t − si) describes the input currents generated

by the input spike trains with spike time si and the input to the

SNN through synaptic weights Win
j, i (see Supplementary material).

Note that si spans the entire timing of the spike train from the ith

input. Neurons in the SNN fired when the membrane potentials

reached the threshold potential Vthr = −50 [mV]. Subsequently,

the potentials were reset to Vr = −60 [mV] in Equation 2.

According to Equation 3, Pyr neurons and PV interneurons in the

SNN transmit information to each other using their conductance.

The conductance of Pyr and PV neurons are represented by

gEY, j(t) and gIY, j(t), respectively. Specifically, gEY, j(t) and gIY, j(t)

(Y = E or I) represent the conductances of α-amino-3-hydroxy-

5-methyl-4-isoxazole propionic acid (AMPA) and GABAergic

synapses, respectively. The dynamics of conductance conform to

the following equations (Teramae and Fukai, 2007):

dgXY, j

dt
= −

gXY, j

τs
+

∑

k

GXY

k

∑

sk

δ(t − sk − dk), (3)

X = E, I, Y =

{

E for 1 ≤ j ≤ NE,

I for NE + 1 ≤ j ≤ NE +NI,

where δ(t) is the Dirac delta function and τs, sk, and dk denote

the decay constants of the synaptic currents (τs = 2 [ms] for Pyr

neurons and τs = 4 [ms] for PV interneurons), spiking time of

the input from the kth neuron, and synaptic delay, respectively.

GEE

k
, GEI

k
, GII

k
, and GIE

k
represent the synaptic weights of Pyr-to-

Pyr, Pyr-to-PV, PV-to-PV, and PV-to-Pyr neurons, respectively.

When a spike is received at time t = (sk + dk) from the kth

presynaptic neuron, the spike weighted by GXY

k
is transmitted to the

jth postsynaptic neuron.

As previously mentioned, our model considers the long-tailed

distribution of EPSPs. Specifically, we applied this characteristic

to the synaptic weights of Pyr-to-Pyr neurons (GEE

k
). First, EPSP

amplitudes VEPSP [mV] are generally distributed across a few large

synaptic connections to many small synaptic connections (Lefort

et al., 2009). This distribution can be approximated as a lognormal

distribution, as shown in Figure 2. Therefore, we generate VEPSP by

using the following equation:

p(x) =
exp[−(log x− µ)2/2σ 2]

√
2πσx

, (4)

where x is the amplitude of the EPSPs (Teramae et al., 2012). We set

σ = 1.0 and µ − σ 2 = log(0.2) in the approximation. Second, we

calculated the EPSP values to be biologically plausible (Lefort et al.,

2009). If the calculated value of the EPSPs exceeded 2EPSP [mV]

(VEPSP ≥ 2EPSP), the value was regenerated to be less than 2EPSP

[mV] by Equation 4, following the rejected samplingmethod. Here,

we changed the EPSP threshold 2EPSP to examine the dominance of

the spontaneous activity. The lack of a few large EPSPs decreases

autonomous spontaneous activity, whereas large EPSPs enhance it

(Teramae et al., 2012). Specifically, we changed the EPSP threshold

2EPSP from 5 [mV] to 10 [mV] within a biologically plausible range

(Lefort et al., 2009). In addition, VEPSP is an observable value, and

it must be converted into a synaptic weight for use in our model.

Thus, we finally translated VEPSP into the synaptic weight G
EE

k
based

on a previous study, which considered the relationship between the

EPSP and GEE

k
as GEE

k
= VEPSP/100 (Nobukawa et al., 2019).

2.2 Manipulation of synaptic weights of
inhibitory-to-excitatory and
excitatory-to-inhibitory neurons

As described above in Section “2.1 Spiking Neural Network

Model,” we modeled the conductance of GABAergic and AMPA

synapses as synaptic weights from PV neurons (GIY

k
) and Pyr

neurons (GEY

k
) based on previous research (Teramae and Fukai,

2007). Specifically, in this study, we modified synaptic weights

from PV-to-Pyr neurons (GIE

k
) and Pyr-to-PV neurons (GEI

k
), which

are related to the degree of GABAergic neurotransmission to Pyr

neurons and glutamatergic neurotransmission to PV interneurons,

respectively (Teramae and Fukai, 2007).

To model GABA maturation, which plays a key role in CPs,

we changed the synaptic weights from PV to Pyr neurons with

0.0017 ≤ GIE

k
≤ 0.0045. In addition, we investigated the influence

of reduced glutamatergic neurotransmission on PV interneurons

during post-CP development. Faini et al. reported a significant

reduction in glutamatergic synaptic strength in PV interneurons

(Faini et al., 2018). To simulate this in our model, we decreased

the Pyr-to-PV synaptic weights from the original value of GEI

k
=

0.018 to GEI

k
= 0.013. Furthermore, Faini et al. concluded that

the strength of glutamatergic thalamic input on PV interneurons

is weakened during post-CP. To account for this, we also reduced

the synaptic weight Win
j,i , which represents the strength between

input neurons and PV interneurons, from its initial value of

0.5 [mV] to 0.1 [mV].
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FIGURE 1

Schematic of a spiking neural network (SNN) model used in this study. This model is composed of excitatory pyramidal (Pyr) neurons (NE = 10, 000)

and parvalbumin-positive (PV) interneurons (NI = 2, 000). This model takes into account the long-tailed distribution of excitatory postsynaptic

potentials (EPSPs) for the synaptic weights from Pyr to Pyr neurons (see Figure 2). Periodic input (fs = 40, 80 [Hz]) is provided to the SNN. In addition,

the external input spikes according to the Poisson process with a spiking rate of 2.5 [Hz] were regularly given to all the neurons in the SNN to

maintain the homeostatic firing activity. We define this sustaining activity as a spontaneous activity. To evaluate inhibitory maturation, we

manipulated the synaptic weights from PV to Pyr neurons (GIE
k ), which is regarded as gamma-aminobutyric acid (GABA) release onto Pyr neurons.

Similarly, the synaptic weights from Pyr to PV neurons (GEI
k ) were manipulated, regarded as glutamatergic release onto PV interneurons. In this model,

the firing rate was used for evaluations, i.e., rE(t) (excitatory Pyr neural population) and rI(t) (PV neural population).

FIGURE 2

Long-tailed distribution of excitatory postsynaptic potentials (EPSPs). EPSPs are approximated as a lognormal distribution given by Equation 4. To

examine the dominance of spontaneous activity, we manipulated the EPSP threshold 2EPSP from 5 [mV] to 10 [mV]. The inset shows the same

distribution with the horizontal axis in a linear scale, rather than in a logarithmic scale.

For the other parameters, we applied the original settings

(Teramae et al., 2012). The synaptic weights were set to GII

k
=

0.0025 (PV-to-PV), and GEE

k
was followed by the distribution of

EPSPs, as described above. The connection probabilities and values

of the synaptic delays were set to fixed values based on previous

studies (Teramae et al., 2012). The connection probabilities were

set to 0.1 (Pyr-to-PV) and 0.5 (PV-to-Pyr and PV-to-PV). We

randomly set the values of the synaptic delays within the ranges of

1–3 [ms] (Pyr-to-Pyr) and 0–2 [ms] (others) (Teramae et al., 2012;

Nobukawa et al., 2019).We adjusted the probability of transmission

failure between the Pyr neurons (Pyr-to-Pyr) as follows: pE =
a/(a + VEPSP), where a = 0.1 [mV] (Lefort et al., 2009; Teramae

et al., 2012; Nobukawa et al., 2019). The parameters of the proposed

model are listed in Table 1.

2.3 Evaluation methods

2.3.1 Recording neuronal activity
We evaluated the neural responses of stimulus-evoked and

spontaneous activities in neuronal populations in our SNN. We

established a Pyr neural population consisting of 10, 000 Pyr

neurons and a PV neural population consisting of 2, 000 PV
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TABLE 1 Parameters for our spiking neural network.

Parameters Descriptions Values References for parameter values

VL Reversal potential of leak –70 [mV] Teramae et al., 2012

Vthr Threshold potential –50 [mV] Teramae et al., 2012

Vr Reset potential –60 [mV] Teramae et al., 2012

τm Decay constant of the membrane for Pyr

neuron

10.5 [ms] Wagatsuma et al., 2023

Decay constant of the membrane for PV

interneuron

3.1 [ms] Wagatsuma et al., 2023

VE Reversal potential of synaptic current for Pyr

neuron

0 [mV] Teramae et al., 2012

VI Reversal potential of synaptic current for PV

interneuron

–80 [mV] Teramae et al., 2012

W in
j,i Synaptic weight after spiking from input

neuron

0.5 [mV]

τs Decay constant of the synaptic current for

Pyr neuron

2 [ms] Teramae et al., 2012

Decay constant of the synaptic current for PV

interneuron

4 [ms] Wagatsuma et al., 2023

GEE
k Synaptic weight of Pyr-to-Pyr neurons ∗ Teramae et al., 2012

GEI
k Synaptic weight of Pyr-to-PV neurons ∗∗ Teramae et al., 2012

GIE
k Synaptic weight of PV-to-Pyr neurons ∗∗∗ Teramae et al., 2012

GII
k Synaptic weight of PV-to-PV neurons 0.0025 Teramae et al., 2012

∗GEE

k
follows the long-tailed distribution. ∗∗GEI

k
is changed from 0.013 to 0.018. ∗∗∗GIE

k
is change from 0.0017 to 0.0045.

interneurons in the SNN. To measure the firing activity, we

determined the firing rates of each neuronal population rE(t) [Hz]

(Pyr) and rI(t) [Hz] (PV) as follows:

rX(t) = 103
SX(t)

1t
, X = E, I, (5)

where SX denotes the number of spikes in a time bin of 1t = 0.1

[ms] in each neural population. Subsequently, rX(t) was smoothed

using a window of 1 [ms] with a Gaussian filter. In addition, we used

different random seeds for connectivity between neurons during

each simulation.

2.3.2 Inter-trial phase coherence
ITPC was calculated for the firing rates (rE(t) and rI(t)) of the

neuronal populations induced by periodic stimuli (fs = 40, 80 [Hz])

to measure stimulus-induced responses. ITPC measures the event-

related phase coherence for a given frequency band across trials

(Cavanagh et al., 2009; Legget et al., 2017). In this analysis, ITPC

values varied from 0 to 1, where 0 indicated no phase coherence

across trials, and 1 indicated perfect phase coherence across trials.

In other words, a higher ITPC value corresponds to a better phase

coherence of neuronal activity with external signals. The ITPC

across T trials was defined as

ITPC (T, f ) =

∣

∣

∣

∣

∣

∣

1

T

T
∑

j=1

Fj(f )

|Fj(f )|

∣

∣

∣

∣

∣

∣

, (6)

where T is the number of trials and f is the Fourier frequency. Fj(f )

is the Fourier component at frequency f in the jth trial of rE(t) and

rI(t) (Li et al., 2023). In this study, the number of trials was set

to T = 100. The reason for this parameter value is described in

Supplementary material.

2.3.3 Power spectrum analysis
The power spectrum of the firing rate rE(t) for both

spontaneous neural activity and stimulus-evoked neural activity

was computed to quantify neuronal oscillations. Power spectrum

analysis was conducted across 10 trials. We calculated the average

and standard deviation for each frequency, and compared the

different synaptic weights from PV-to-Pyr neurons GIE

k
.

3 Results

3.1 Measuring neural activity
responsiveness by maturation of inhibition

Figure 3A shows the stimulus-evoked spiking activity at 40 [Hz]

and 80 [Hz] for Pyr and PV neuronal populations. The ITPC values

were calculated for the firing-rate time series of these neuronal

populations (rE(t) and rI(t)). Figure 3B shows the ITPC profiles

at 40 [Hz] and 80 [Hz] for different levels of inhibition (GIE

k
=

0.0017, 0.0020, 0.0027, 0.0045). Remarkably, the ITPC value near

the input frequency (fs ± 2 [Hz]) of 80 [Hz] at GIE

k
= 0.0027

was significantly higher than at other inhibition levels (GIE

k
=

0.0017, 0.0045). In contrast, the ITPC value was not significantly

influenced by the inhibition levels for an input frequency of

40 [Hz]. To quantify this characteristic of the ITPC profile, the
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mean ITPC values were calculated. The mean ITPC value was

calculated by averaging the ITPC over the range of fs ± 2 [Hz] to

quantify the neuronal coherence evoked by the stimuli. Figure 3C

shows the mean ITPC values across inhibition levels for each

frequency. The characteristic ITPC profile (GIE

k
= 0.0027) at 80

[Hz] (see Figure 3B) showed significantly higher coherence (mean

ITPC > 0.8) than the other inhibition levels. Consequently, the

mean ITPC values exhibited an inverted U-shape as inhibition

increased. In contrast to the mean ITPC value at 80 [Hz], no

inverted U-shape was observed at 40 [Hz]. In addition, the power

of the stimulus-evoked neural activity at each input frequency (40

[Hz] and 80 [Hz]) was not influenced by inhibition levels (see

Supplementary Figure S4).

To reveal the causes of ITPC dependency on the maturation

of inhibition, we compared the spontaneous activity with the

corresponding parameters of GIE

k
used in the ITPC analysis (GIE

k
=

0.0017, 0.0027, 0.0045). Figure 4A shows the power spectra of

spontaneous activity in the case of GIE

k
= 0.0017, 0.0027, 0.0045,

which correspond to the excitatory-dominant (the low mean ITPC

values < 0.5), balanced (the high mean ITPC > 0.8), inhibitory-

dominant (the low mean ITPC values < 0.5), respectively in the

Figure 3C. As shown in Figure 4A, the power of the spontaneous

activity decreased monotonically with the maturation of inhibition.

Compared with the results at the peak of the ITPC, we found that

the optimal power level of spontaneous activity contributed to the

enhancement of the stimulus-evoked neuronal activity response

at 80 [Hz]. Under the conditions of predominant inhibition

(e.g., GIE

k
= 0.0045), the spontaneous activity showed decreased

power. Subsequently, this condition demonstrated low coherence

(mean ITPC < 0.5) (see Figure 5C). These results suggest that the

moderate suppression of stimulus-irrelevant spontaneous activity

due to the maturation of inhibition contributes to higher coherence

in the SNN at 80 [Hz]. In contrast, the same effect was not observed

at 40 [Hz]. Thus, this evaluation revealed that frequency selectivity

was exhibited in our SNN, depending on the inhibition levels.

As demonstrated in this evaluation, our results showed an

optimized E/I balance that maximized the neuronal response

coherence by manipulating the synaptic weights from PV-to-Pyr

(GIE

k
), specifically at 80 [Hz]. Therefore, we demonstrated the results

of ITPC values at 80 [Hz] in the following sections.

3.2 Disruption of consistency induced by
E/I imbalance due to reduced Pyr-to-PV
synaptic weights

To investigate the effect of the reduction in the glutamatergic

synaptic strength in PV interneurons during post-CP on the

neuronal response, as demonstrated by Faini et al. (2018), we

analyzed the ITPC at 80 [Hz]. Specifically, we reduced the Pyr-

to-PV synaptic weights from an original value of GEI

k
= 0.018

to 0.013. Figure 5A shows the stimulus-evoked spiking activity

at 80 [Hz] for Pyr and PV neuronal populations. In our SNN

model, reducing GEI

k
led to increased spiking activity. Figure 5B

shows the ITPC profiles for representative parameter values (GEI

k
=

0.013, 0.016, 0.018). As the Pyr-to-PV synaptic weights decreased,

the neuronal coherence within the input frequency range (80 ±

2 Hz) was reduced monotonically, with the mean ITPC values

decreasing from 0.8 to 0.3, as shown in Figure 5C. This analysis

indicates that the reduction in glutamatergic synaptic strength in

PV interneurons within the network decreases coherence with

external inputs in our model. This finding reveals that the internal

E/I ratio within neural circuits modulates neuronal responsiveness

to external stimuli. A decrease in responsiveness indicates that

consistent responses to input are limited, which in turn suggests

that plastic changes may also be suppressed during post-CP.

Furthermore, to investigate the influence of the reduced

strength of glutamatergic thalamic input on PV interneurons, as

reported by Faini et al., we also decreased the synaptic weight

Win
j,i , which represents the strength between input neurons and PV

interneurons, from 0.5 [mV] to 0.1 [mV]. Figure 6 shows the mean

ITPC values for Pyr and PV neuronal populations under different

parameter settings. The results indicate that reducing the strength

of external inputs to PV interneurons causes a decrease in the

mean ITPC values for both Pyr and PV populations. Furthermore, a

more pronounced reduction in ITPC values is observed whenGEI

k
is

decreased from 0.018 to 0.013, compared with the condition where

it remains at 0.018. This analysis indicates that the reduction in the

strength of external input on PV interneurons decreases neuronal

coherence. Similar to the decrease in neuronal responsiveness

caused by changes in the internal E/I ratio, it is suggested that

neuronal responsiveness may also be influenced by changes in

the strength of external inputs. This finding may support the

study by Faini et al. (2018), which reported that the reduction of

plasticity of thalamic synapses onto PV interneurons occurs during

age-related development.

3.3 Disruption of consistent responses to
input stimuli by predominant spontaneous
neural activity

We further investigated the effects of strong EPSPs on ITPC

values. As mentioned previously, the distribution of EPSPs was

long-tailed (see Figure 2), and it induced spontaneous activity due

to the coexistence of a few large and many small EPSPs (Teramae

et al., 2012). In particular, the existence of a few large EPSPs boosted

neuronal firing, possibly resulting in impaired cognitive function

(Obi-Nagata et al., 2023). As shown in Figure 4B, such strong EPSPs

had larger power spectra across all frequencies.

To determine whether excessively enhanced spontaneous

activity reduces neuronal activity responsiveness, we calculated

the ITPC values at different EPSP thresholds. Specifically, we

changed the EPSPs threshold 2EPSP from 5 to 10 [mV] within

a biologically plausible range (Lefort et al., 2009). Figure 7A

shows the stimulus-evoked spiking activity at 80 [Hz] for

Pyr and PV neuronal populations at different EPSP thresholds

(2EPSP = 5, 6, 10 [mV]). Figure 7B shows the ITPC profiles

for different EPSP threshold values. The ITPC value near the

input frequency (80 ± 2 [Hz]) decreased significantly at the

EPSPs threshold of 2EPSP = 6, 10 [mV]. As illustrated in

Figure 7C, the mean ITPC values also significantly decreased

(< 0.5) when the EPSPs threshold was 2EPSP ≥ 6 [mV],

compared to the enhanced consistency of neuronal responsiveness
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FIGURE 3

Inter-trial phase coherence (ITPC) of the firing-rate time series of excitatory pyramidal (Pyr) neuron and parvalbumin-positive (PV) interneuron

populations and raster plots showing spike trains of Pyr and PV neurons in di�erent inhibition levels 0.0017 ≤ GIE
k ≤ 0.0045 (2EPSP = 5 [mV]). (A) The

raster plots show spike trains of Pyr (red, index from 0 to 9,999) and PV (blue, index from 10,000 to 11,999) neurons. The upper row shows the raster

plots at 40 [Hz] and the lower row shows the raster plots at 80 [Hz] in di�erent inhibition levels GIE
k = 0.0017, 0.0020, 0.0027, 0.0045. (B) The

representative ITPC profiles of di�erent inhibition levels GIE
k . The upper two rows show the ITPC profile of 40 [Hz] for Pyr (red) and PV (blue) neuronal

populations. The lower two rows show the ITPC profile of 80 [Hz] for Pyr (red) and PV (blue) neuronal populations. (C) The mean ITPC value in the

(Continued)
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FIGURE 3 (Continued)

Pyr neuronal population (yellow for 40 [Hz] and orange for 80 [Hz]) and PV neuronal population (light blue for 40 [Hz] and blue for 80 [Hz]) around

the input frequency fs at gamma-band input frequencies {fs = 40 (cross markers) and 80 (triangle markers) [Hz]} averaged fs ± 2 [Hz]. Note that we

did not plot the mean ITPC at 40 [Hz] for GIE
k = 0.0017, 0.0018, and 0.0019 because the neural activity exhibited unrealistically high firing rates. The

markers and error bars show the mean and standard deviation across 10 evaluations.

FIGURE 4

Power spectra of the firing-rate time series of the excitatory pyramidal (Pyr) neural population (rE(t)) in the absence of periodic input. (A) Di�erent

inhibition levels (GIE
k = 0.0017, 0.0027, 0.0045) with the upper threshold for EPSPs distribution set at 5 [mV] (2EPSP = 5 [mV]). (B) Di�erent EPSPs

thresholds (2EPSP = 5, 6, 10 [mV]) with the synaptic weights GIE
k = 0.0027. The lines and shaded areas represent the mean and standard deviation over

10 trials.

shown in Figure 3C (GIE

k
= 0.0027 at 80 [Hz]). This suggests

that a few large EPSPs induce excessively enhanced spontaneous

activity, resulting in the disruption of the neuronal response to

input stimuli.

4 Discussion

In this study, we validated the hypothesis that the neural

population becomes more responsive and exhibits consistent

responses to external stimuli at gamma-band frequencies due to the

maturation of the GABAergic system, which underlies the onset of

CP plasticity (Hensch, 2004, 2005; Toyoizumi et al., 2013; Takesian

and Hensch, 2013; Wong-Riley, 2021). This hypothesis arises

from the theory that mature inhibition increasingly suppresses

stimulus-irrelevant spontaneous activity, which enhances stimulus-

evoked responses (Toyoizumi et al., 2013). To quantify the neural

network response, we measured the ITPC values, which represent

the consistency of the phase of neural activity over trials. We

showed that the coherence of stimulus-evoked neuronal activity

at 80 [Hz] was significantly enhanced as the inhibition matured.

The profile of the mean ITPC values showed an inverted U-

shape relative to the developmental increase in inhibition, with

the peak of this profile showing higher coherence (mean ITPC

≥ 0.8). This result suggests the existence of an optimized E/I

balance that maximizes the consistency of the neural responses

in our SNN. Additionally, our results indicated that moderate

spontaneous activity contributes to the enhancement of stimulus-

evoked neuronal responses with increased inhibition, while also

suggesting frequency selectivity.

4.1 The contribution of E/I balance and
maturational process of inhibition to the
higher coherence of neuronal response at
gamma-band frequency

First, we discuss how the maturation of inhibition enhances

the coherence of gamma-band neuronal population responses to

stimuli and how this underlies synaptic plasticity. Our modeling

study showed that the ITPC values in response to gamma-

band periodic inputs were strengthened by the suppression of

spontaneous activity due to the maturation of inhibition. Our

findings are consistent with previous research by Toyoizumi

et al. (2013) with respect to the neuronal response becoming

more externally driven because of the suppression of spontaneous

activity caused by the maturation of inhibition. This effect is also

supported by in vivo experiments by Fang et al. (2021) where an

enhanced signal-to-noise ratio in visual responses was observed.

In addition to the transition of neuronal responses depending

on inhibition levels, a relationship between enhanced externally

driven neuronal responses and plasticity mechanisms has been

demonstrated (Toyoizumi et al., 2013). Specifically, the maturation

of inhibition facilitates Hebbian plasticity in a single pyramidal

neuron model, contributing to higher responsiveness to external

input. The fundamental principle of Hebbian plasticity, a major

form of synaptic plasticity, is that the correlated activities of

pre-synaptic and postsynaptic neurons drive the strengthening of

specific synapses (Turrigiano, 2008; Toyoizumi et al., 2014). In

other words, consistent neuronal activity in response to external

stimuli reflects enhanced synaptic strength. In our study, the

response of the neuronal population to external stimuli was
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FIGURE 5

Inter-trial phase coherence (ITPC) of the firing-rate time series of excitatory pyramidal (Pyr) neuron and parvalbumin-positive (PV) interneuron

populations and raster plots showing spike trains of Pyr and PV neurons within 0.013 ≤ GEI
k ≤ 0.018 and GIE

k = 0.0027 (2EPSP = 5 [mV]). (A) The raster

plots show spike trains of Pyr (red, index from 0 to 9,999) and PV (blue, index from 10,000 to 11,999) neurons in di�erent synaptic weights from

Pyr-to-PV GEI
k = 0.013, 0.016, 0.018. (B) The representative ITPC profiles of GEI

k = 0.013, 0.016, 0.018. The two rows show the ITPC profile of 80 [Hz]

for Pyr (red, upper) and PV (blue, lower) neuronal populations. (C) Mean ITPC values in the Pyr (red, triangle markers) and PV (blue, circle markers)

neuronal populations around the input frequency fs = 80 [Hz] averaged fs ± 2 [Hz]. The red arrow indicates the case where the mean ITPC value is

maximized at GEI
k = 0.018 in Figure 3C. The markers and error bars show the mean and standard deviation across 10 evaluations.

investigated using ITPC analysis. This analysis revealed that the

higher ITPC values (see Figure 3C), which indicated consistent

neuronal activity across trials, suggest heightened plasticity at the

neuronal population level.

Next, we discuss the reasons for the remarkable frequency

selectivity of the inhibition levels observed during our evaluation.

Our results demonstrate that the ITPC value at 80 [Hz] was

significantly enhanced due to the maturation of inhibition, whereas

a similar ITPC profile was not observed at 40 [Hz]. This frequency

selectivity was demonstrated in neurophysiological studies using

electroencephalography (EEG) (Tsuchimoto et al., 2011; Tada

et al., 2021). For example, a study on abnormalities in the neural

circuitry in patients with schizophrenia revealed that the ASSR-

PLF (phase-locking factor), which measures phase-locked activity

similar to the ITPC values of stimulus-evoked neural activity,

showed significant changes at frequencies of 40 [Hz] and 80 [Hz],

while similar characteristics were not observed for other frequency

bands (Tsuchimoto et al., 2011). Similarly, a study that elucidated

the frequency-specific characteristics of the oscillatory activity

demonstrated that the ITPC at 40 [Hz] was prominent across a wide

range of stimulus frequencies (20, 30, 40, 60, 80, 120, and160 [Hz])

(Tada et al., 2021). Moreover, the ITPC at specific frequencies in

patients with psychiatric disorders was lower than that in healthy

controls, reflecting abnormal evoked oscillatory activity (Grent

et al., 2023;Wolff andNorthoff, 2024). This disruption of consistent

responses to external stimuli suggests an E/I imbalance due to the

excessive excitability of pyramidal neurons and weakened cortical

inhibition (Tatti et al., 2017; Grent et al., 2023). In addition, the
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FIGURE 6

Mean inter-trial phase coherence (ITPC) values for excitatory

pyramidal (Pyr) neurons (red) and parvalbumin-positive (PV)

interneurons (blue) populations under di�erent synaptic weight

settings. (A) The setting corresponds to the condition before the

modulation of synaptic weights, where ITPC exhibited a peak in

Figure 3C. (B) The setting where the strength of external inputs to

PV interneurons, Win
j,i , was decreased from 0.5 [mV] to 0.1 [mV]. (C)

The setting where both the synaptic weights of the external inputs

to PV interneurons, Win
j,i , and the synaptic weights from Pyr to PV

neurons, GEI
k , were decreased. Both reductions resulted in a more

pronounced decrease in the mean ITPC values for 80 [Hz] input. The

bars and error bars represent the mean and standard deviation

across 10 evaluations.

frequency selectivity of neural activity depends on the resonance

frequency of the neural circuit (Galambos et al., 1981; Pastor

et al., 2002). Therefore, our results show that a difference in

neuronal responses to 40 [Hz] and 80 [Hz] inputs (see Figure 3)

is consistent with the experimental findings. However, a more

detailed theoretical analysis, such as examining the time constants

at the population level in the SNN, is necessary to elucidate the

frequency selectivity in our model (Teramae and Fukai, 2007).

Furthermore, we discuss the disruption of neuronal response

coherence caused by E/I imbalance due to other excitable factors

in neural circuits instead of manipulating inhibition. As previously

discussed, our results showed that stimulus-evoked neuronal

coherence was enhanced at specific inhibition levels. This indicates

the presence of an optimal E/I balance necessary for achieving

stabilized neuronal coherence in response to external stimuli.

Moreover, we evaluated the influence of the E/I balance on

neuronal responses from a perspective distinct from the increase

in inhibition. Specifically, we increased the excitation levels of the

neural circuit by changing the threshold of EPSPs from 5 [mV] to 10

[mV]. Consequently, excessive excitatory neural activity due to the

increase of large EPSPs reduced neuronal coherence (see Figure 7).

This may be consistent with previous findings regarding the E/I

imbalance induced by hyperexcitability of neuronal circuits (Obi-

Nagata et al., 2023). It has been reported that overrepresentation

of strong EPSPs can lead to increased neuronal firing, resulting

in working memory impairment or hallucinations in patients with

schizophrenia (Obi-Nagata et al., 2023). This suggests that the

stability of neuronal activity is disrupted by an E/I imbalance due

to excessive excitatory neural activity. Taken together, the neuronal

population responses are influenced by the E/I balance, which is

determined not only by the level of inhibition of GIE

k
but also by the

excitation levels due to large EPSPs.

4.2 Modeling post-CP in neural networks:
manipulating glutamatergic
neurotransmission onto PV interneruons

The post-CP conditions of the neural network model were

considered. When the CP closes, PV interneurons become

especially encased in an extracellular matrix (ECM) known as

perineuronal nets (PNNs) (Fawcett et al., 2019; Reichelt et al.,

2019; Carceller et al., 2023; Hug and Mpai, 2024). PNNs limit

further increases in neuronal plasticity and trigger the closure of

the CP. Although accumulating evidence has demonstrated that

PNNs are hallmarks of the post-CP, their effects on synaptic and

circuit mechanisms remain unclear. It has been suggested that

the accumulation of PNNs around PV cells is associated with

reduced glutamatergic neurotransmissions in PV interneurons

(Faini et al., 2018). In other words, further changes in the E/I

ratio of PV cells trigger the closure of CP (Faini et al., 2018).

Based on these findings, we investigated the effect of reduced

synaptic weights from Pyr to PV neurons on neuronal coherence.

Specifically, we changed the E/I balance from the maximum

neuronal response setting. Our results indicate that the reduction

in glutamatergic neurotransmissions to PV interneurons disrupts

neuronal coherence due to an E/I imbalance and leads to neural

excitation (see Figure 5). In this study, we assumed that a more

consistent response to external inputs would indicate increased

neural plasticity; therefore, these results suggested diminished

synaptic plasticity. Furthermore, Faini et al. (2018) also suggested

that PNN accumulation during post-CP development reduced the

strength of glutamatergic thalamic input to PV interneurons. Our

results demonstrated that the reduction of the input strength causes

a decrease in the mean ITPC (see Figure 6). Namely, we found

that the accumulation of PNNs regulates neuronal responsiveness

through the modulation of the E/I ratio within the network and

the control of the strength of external stimuli in the SNN model.

The mechanisms and functions of PNN have been investigated

from various perspectives at the molecular and neural circuit levels

(Giamanco and Matthews, 2012; Devienne et al., 2021). Although

Our model does not capture the detailed and plausible biological

findings of PNNs, we assume that our proposed approach, which

focuses on glutamatergic neurotransmissions to PV interneurons,

can be utilized to model the post-CP condition in the SNN.

4.3 Limitations and future directions of this
study

Finally, we explore the limitations of the proposed model. In

the present study, we calculated the ITPC values in the SNN model

to investigate the consistency of neuronal responses to stimulus-

evoked activity with respect to the maturation of the inhibition
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FIGURE 7

Inter-trial phase coherence (ITPC) of the firing-rate time series of excitatory pyramidal (Pyr) neuron and parvalbumin-positive (PV) interneuron

populations and raster plots showing spike trains of Pyr and PV neurons in the di�erent EPSPs thresholds (5 ≤ 2EPSP ≤ 10 [mV]). (A) The raster plots

show spike trains of Pyr (red, index from 0 to 9,999) and PV (blue, index from 10,000 to 11,999) neurons. (B) The representative ITPC profiles of

di�erent EPSP thresholds 2EPSP = 5, 6, 10 [mV]. The two rows show the ITPC profile of 80 [Hz] for Pyr (red, upper) and PV (blue, lower) neuronal

populations. (C) Mean ITPC values in the Pyr (red, triangle markers) and PV (blue, circle markers) neuron populations around the input frequency

fs = 80 [Hz] averaged fs ± 2 [Hz]. The markers and error bars show the mean and standard deviation across 10 evaluations.

underlying CP plasticity. Our results suggest that the moderate

maturation of inhibition contributes to neural activity being

more responsive and consistent with external inputs, suggesting

heightened synaptic plasticity during CP. However, it is crucial

to elucidate how our findings-specifically, that neuronal activity

responses become more consistent with external inputs in the

SNN-actually contribute to plasticity mechanisms. To confirm

the relationship between synaptic plasticity and neuronal phase

coherence in a computational model, we should incorporate

synaptic plasticity, such as Hebbian and homeostatic plasticity

mechanisms, into our current model in future studies (Turrigiano,

2008; Toyoizumi et al., 2014). Notably, in our study, the maturation

of inhibition influenced the ITPC values but did not affect the

power. However, an increase in the gamma power induced by

stimuli during CP may be a signature of plasticity (Quast et al.,

2023). This discrepancy in previous research may be attributed

to the fact that our SNN model did not involve plasticity. In

addition, we used only PV interneurons as GABAergic neurons

in the present study. However, to better understand the roles of

inhibitory neurons, future models should incorporate other types

of inhibitory neurons, such as somatostatin-positive (SST) cells and

vasoactive intestinal polypeptide-positive (VIP) interneurons (van

Versendaal and Levelt, 2016; Lee and Mihalas, 2017). Additionally,

incorporating other types of neurons and interconnections among

brain regions and cortical columns generates other frequency band

oscillations (Kopell et al., 2000; Cohen, 2014). Such biologically

plausiblemodeling is also valuable for analyzing neuronal activity at

other frequencies (Başar et al., 2001; Colgin, 2013). Furthermore, as

discussed previously, we could not clarify the dynamic mechanism

of frequency selectivity at different inhibition levels. This issuemust

be revealed through theoretical analysis, such asmean-field analysis

(Teramae and Fukai, 2007; Yu and Taillefumier, 2022). Finally, in
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addition to focusing on glutamatergic neurotransmissions in PV

interneurons, we should develop a more plausible post-CP model

to understand the precise functions of PNNs.

5 Conclusion

To reveal how the maturational process of the GABAergic

system contributes to a consistent response of stimulus-evoked

neural activity at gamma-band frequencies, we calculated the

ITPC values for different synaptic weights of neurons at the

neuronal population level using the SNN model with long-

tailed EPSPs. The neuronal response coherence to the external

periodic input exhibited an inverted U-shape with respect to the

maturation of inhibition. Furthermore, the peak of this profile

was consistent with the moderate suppression of the gamma-

band spontaneous activity. Thus, our findings indicated that

the optimized E/I balance associated with heightened synaptic

plasticity is related to a consistent response to stimulus-evoked

neural activity. Consequently, this regulated neural network

contributes to neuronal activity and is externally driven to

adapt to the environment. Our study has several limitations,

but computational modeling can contribute to understanding the

underlying mechanisms that maximize synaptic plasticity at the

neuronal population level by investigating neuronal coherence in

response to external stimuli.
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