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Like other brain circuits, the brainstem respiratory network is continually modulated 
by neurotransmitters that activate slow metabotropic receptors. In many cases, 
activation of these receptors only subtly modulates the respiratory motor pattern. 
However, activation of some receptor types evokes the arrest of the respiratory motor 
pattern as can occur following the activation of μ-opioid receptors. We propose 
that the varied effects of neuromodulation on the respiratory motor pattern depend 
on the pattern of neuromodulator receptor expression and their influence on the 
excitability of their post-synaptic targets. Because a comprehensive characterization 
of these cellular properties across the respiratory network remains challenging, 
we test our hypothesis by combining computational modeling with ensemble 
electrophysiologic recording in the pre-Bötzinger complex (pre-BötC) using high-
density multi-electrode arrays (MEA). Our computational model encapsulates 
the hypothesis that neuromodulatory transmission is organized asymmetrically 
across the respiratory network to promote rhythm and pattern generation. To 
test this hypothesis, we increased the strength of subsets of neuromodulatory 
connections in the model and used selective agonists in situ while monitoring 
pre-BötC ensemble activities. The in silico simulations of increasing slow inhibition 
were consistent with experiments examining the effect of systemic administration of 
the 5HT1aR agonist 8-OH-DPAT. Similarly, the effects of increasing slow excitation 
in the model were experimentally confirmed in pre-BötC ensemble activities 
before and after systemic administration of the μ-opioid receptor agonist fentanyl. 
We conclude that asymmetric neuromodulation can contribute to respiratory 
rhythm and pattern generation and accounts for its varied effects on breathing.
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Introduction

Neuromodulation is essential for adaptive function in brain circuits (Dayan, 2012; Marder, 
2012; Nadim and Bucher, 2014; Nusbaum et al., 2017). Neuromodulatory transmitters act via 
metabotropic receptors coupled to intracellular signaling cascades to slowly modify synaptic 
and membrane properties thereby altering circuit computations mediated by fast synaptic 

OPEN ACCESS

EDITED BY

Rune W. Berg,  
University of Copenhagen, Denmark

REVIEWED BY

Kimberly Iceman,  
University of Missouri, United States
Nicholas Bush,  
Seattle Children’s Research Institute, 
United States

*CORRESPONDENCE

Rishi R. Dhingra  
 rishi.dhingra@case.edu  

Mathias Dutschmann  
 mathias.dutschmann@case.edu

†These authors share senior authorship

RECEIVED 21 November 2024
ACCEPTED 16 June 2025
PUBLISHED 

CITATION

Dhingra RR, MacFarlane PM, Thomas PJ, 
Paton JFR and Dutschmann M (2025) 
Asymmetric neuromodulation in the 
respiratory network contributes to rhythm 
and pattern generation.
Front. Neural Circuits 19:1532401.
doi: 10.3389/fncir.2025.1532401

COPYRIGHT

© 2025 Dhingra, MacFarlane, Thomas, Paton 
and Dutschmann. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 
DOI 10.3389/fncir.2025.1532401

08 July 2025

08 July 2025

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2025.1532401&domain=pdf&date_stamp=2025-07-08
https://www.frontiersin.org/articles/10.3389/fncir.2025.1532401/full
https://www.frontiersin.org/articles/10.3389/fncir.2025.1532401/full
https://www.frontiersin.org/articles/10.3389/fncir.2025.1532401/full
https://www.frontiersin.org/articles/10.3389/fncir.2025.1532401/full
mailto:rishi.dhingra@case.edu
mailto:mathias.dutschmann@case.edu
https://doi.org/10.3389/fncir.2025.1532401
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2025.1532401


Dhingra et al. 10.3389/fncir.2025.1532401

Frontiers in Neural Circuits 02 frontiersin.org

neurotransmission (Brezina, 2010). For example, phasically active 
midbrain dopaminergic neurons encode a reward prediction error 
signal that modulates excitability, and hence, activity-dependent 
plasticity in their target populations (Dayan, 2012).

Given the coordination of breathing with other orofacial behaviors 
including swallowing, vocalization and autonomic regulation, it is not 
surprising that many neuromodulators influence the breathing motor 
pattern through their actions on the brainstem respiratory network 
including, but not limited to serotonin, dopamine, acetylcholine, 
opioids, histamine, substance P and somatostatin (Doi and Ramirez, 
2008; Lalley, 2008; Richter et al., 2003; Ashhad et al., 2022). Neurons 
which express pre- and post-synaptic receptors for neuromodulatory 
neurotransmission are highly distributed across the respiratory 
network. However, the effects of neuromodulation on breathing are 
commonly investigated at either a coarse scale by examining their 
effects on the frequency and amplitude of respiratory motor nerve 
activities after systemic drug application or at a finer scale via drug 
micro-injection within a particular compartment of the respiratory 
network. Consequently, the mechanisms of respiratory 
neuromodulation identified by these experimental approaches have 
highlighted the role of neuromodulation within single network 
compartments, especially the pre-Bötzinger complex (Doi and 
Ramirez, 2008; Ashhad et  al., 2022), as the primary targets of 
neuromodulators. However, these studies do not consider the pattern 
of neuromodulatory neurotransmission across the entire network, 
which was a major aim of the present study.

The conundrum of neuromodulation is highlighted by research 
concerned with opioid-induced respiratory depression (ORID) 
evoked by overdose of opioid-based analgesics or drugs of abuse that 
predominantly bind to the μ-opioid receptor (μ-OR) (Lalley et al., 
2014; Montandon and Horner, 2014; Ramirez et  al., 2021). 
Mechanistically, μ-OR agonists have been shown to act on the 
medullary pre-BötC (Bachmutsky et  al., 2020; Gray et  al., 1999; 
Janczewski et al., 2002), ventral respiratory group (Ballanyi, 2004; Haji 
et al., 2003; Lalley, 2003; Rondouin, 1981; Takeda et al., 2001), and 
pontine parabrachial and Kölliker-Fuse nuclei (Eguchi et al., 1987; 
Hurlé et al., 1985; Mustapic et al., 2010; Prkic et al., 2012; Saunders 
et  al., 2022; Varga et  al., 2020). In addition to these functionally 
identified areas, a recent anatomical study of Oprm1 expression in the 
respiratory network has identified μ-OR+ neurons in the nucleus 
tractus solitarii, Bötzinger complex, intermediate reticular nucleus/
post-inspiratory complex, parafacial area, locus coeruleus and raphé 
nuclei (Furdui et  al., 2024) suggesting that opioids may act 
simultaneously at many diverse sites across the brainstem respiratory 
network. Despite the widespread expression of μ-ORs, several studies 
have proposed that OIRD depends solely on the activation of μ-ORs 
in the pre-BötC to suppress inspiratory rhythm generation 
(Montandon and Horner, 2014; Bachmutsky et al., 2020; Montandon 
et  al., 2011). Other studies have taken a more holistic view 
acknowledging the role of a distributed network mechanism for 
OIRD, but highlight the Kölliker-Fuse nuclei as a primary therapeutic 
target for OIRD (Lalley et al., 2014; Mustapic et al., 2010; Prkic et al., 
2012; Varga et al., 2020).

This on-going debate has motivated the need to develop an 
understanding of the network mechanism of OIRD (Ramirez et al., 
2021), and of respiratory network neuromodulation, in general. 
However, understanding the network mechanisms for 
neuromodulation in a distributed brain circuit would require defining 

not only the complete connectome of the circuit, but also the pattern 
of neuromodulatory co-transmitters and receptors expression across 
that connectome (Marder, 2012; Brezina, 2010). Here, to overcome 
this challenge, we combine computational modeling with ensemble 
electrophysiology to test the hypothesis that neuromodulatory systems 
in the respiratory network are organized to contribute to the 
maintenance of the breathing rhythm and pattern. To encapsulate this 
hypothesis, we  follow the approach of Kleinfeld and Sompolinsky 
(1988) who developed a pair of Hebbian learning rules for the fast- 
and slow-synapses of a Hopfield network that produce the periodic 
sequential activities observed in central pattern generating networks. 
By training such a model to produce the respiratory firing patterns 
observed in the pre-Bötzinger complex (pre-BötC), an essential node 
of the respiratory network that expresses a representative set of firing 
patterns associated with all three phases of the breathing pattern 
under intact network conditions in  vivo (Connelly et  al., 1992; 
Schwarzacher et al., 1995; Sun et al., 1998) and in situ (St-John et al., 
2009), we develop a model of the respiratory network in which the 
asymmetric pattern of slow-/neuromodulatory-connectivity drives 
the respiratory rhythm and pattern. To test our hypothesis, 
we compare the in silico simulations of increasing the strength of 
subsets of neuromodulatory connections based on the net effect on 
their post-synaptic targets with electrophysiologic experiments in situ 
in which we used a high-density multi-electrode array to monitor the 
ensemble activities of pre-BötC neurons before and after systemic 
administration of either the Gi/o-coupled μ-OR agonist fentanyl or the 
Gi/o-coupled 5HT1A receptor agonist 8-OH DPAT. In either case, 
we observed qualitatively similar responses of network activity to the 
perturbations in both simulations and experiments. Interestingly, the 
model also suggested the existence of a population code in which 
network activity is maximal at the transitions between the three 
phases of the breathing pattern, which we also observed experimentally 
in the ensemble activity of the pre-BötC. Taken together, we propose 
that neuromodulatory systems of the respiratory network are 
organized asymmetrically to contribute to the maintenance of the 
breathing rhythm and pattern. Furthermore, we  conclude that 
activation of μ-ORs disrupts a network mechanism of respiratory 
rhythm and pattern generation.

Materials and methods

Experimental protocols were approved by and conducted with 
strict adherence to the guidelines established by the Animal Ethics 
Committee of the Florey Department of Neuroscience and Mental 
Health, University of Melbourne, Melbourne, Australia (AEC No.: 
17-075-FINMH). For breeding, adult male and female Sprague–
Dawley rats (Animal Resources Centre, Canning Vale, Australia) and 
their offspring were housed under a 14:10 light/dark cycle with ad 
libitum access to standard laboratory chow and water.

In situ arterially-perfused brainstem 
preparation

Experiments were performed in juvenile (17–26 days post-natal) 
Sprague–Dawley rats of either sex using the in situ arterially-perfused 
brainstem preparation as described previously (Paton, 1996; Paton 
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et al., 2022). Briefly, rats were anesthetized by inhalation of isoflurane 
(2–5%) until they reached a surgical plane of anesthesia. Next, rats 
were transected sub-diaphragmatically and immediately transferred 
to an ice-cold bath of artificial cerebrospinal fluid (aCSF; in mM: 
[NaCl] 125, [KCl] 3, [KH2PO4] 1.25, [MgSO4] 1.25, [NaHCO3] 24, 
[CaCl2] 2.5 and [D-glucose] 10) for decerebration. Next, the heart and 
lungs were removed. The phrenic nerve was isolated for recording, 
and the descending aorta was isolated for cannulation. Next, the 
cerebellum was removed. Finally, the vagus and hypoglossal nerves 
were isolated for recording.

The preparation was then transferred to a recording chamber. The 
aorta was quickly cannulated with a double-lumen catheter. The 
preparation was then re-perfused with carbogenated (95%/5% pO2/
pCO2), heated (31°C) aCSF (200 mL) using a peristaltic pump 
(Watson-Marlow).

Phrenic, vagal and hypoglossal nerves were mounted on suction 
electrodes to record the fictive respiratory motor pattern. Motor nerve 
potentials were amplified (400×), filtered (1–7,500 Hz), digitized 
(30 kHz) via a 16-channel differential headstage (Intan RHD2216), 
and stored on an acquisition computer using an Open-Ephys 
acquisition system [Rev. 2, (Siegle et  al., 2017)]. Within minutes, 
apneustic respiratory contractions resumed.

The perfusion flow rate was adjusted to fine tune the preparation 
to generate a stable rhythm with augmenting inspiratory phrenic 
discharge and bi-phasic inspiratory and post-inspiratory activity on 
the vagus nerve. Finally, a single bolus of vecuronium bromide 
(0.3 mL, 0.1 mg/mL w/v vecuronium bromide: saline) was delivered 
to the perfusate to paralyze the preparation to avoid 
movement artifacts.

Ensemble recording of pre-Bötzinger 
complex

In one series of experiments (n = 11), we measured single unit 
activities across ensembles of pre-BötC neurons using a 4-shank, 
64-channel high-density silicon MEA (Neuronexus, A4x16) while 
simultaneously recording the three-phase respiratory motor pattern 
on phrenic, vagal and hypoglossal nerves. The MEA electrode sites 
spanned 345 μm in the dorso-ventral axis, and 600 μm in the rostro-
caudal axis.

Using a micro-manipulator (Narishige MMN-33), we  slowly 
inserted the MEA into the brainstem until we observed an ensemble 
of neuronal activities with respiratory-related firing patterns. The 
coordinates of the recording sites were measured from the caudal-
most shank relative to those of calamus scriptoriius and were: 
1.6–2.3 mm rostral to calamus scriptoriius, 1.4–1.8 mm lateral to the 
midline and 1.6–2.2 mm below the brainstem surface. Once 
positioned within the pre-BötC, we recorded the spontaneous activity 
of the pre-BötC ensemble for 10 min. Neuronal activities from the 
MEA were amplified (400×), filtered (0.001–7.5 kHz) and digitized via 
a 64-channel mono-polar headstage (Intan RHD2164) and stored on 
an acquisition computer using an Open-Ephys acquisition system.

In a subset of these experiments, to enable mapping the location 
of pre-BötC neurons to the 7 T MRI Waxholm atlas of the Sprague–
Dawley rat brain (Papp et  al., 2014) by determining the rigid 
transformation necessary to register the positioner coordinate-system 
with those of the Waxholm atlas, we measured the coordinates of 5 

surface landmarks that were easily identifiable both on the brainstem 
surface of the preparation and within the atlas (Supplementary Figure 1; 
Figures 1A,F). There was a maximal variation in the estimated rostro-
caudal locations of the recorded neurons of 944 μm. Therefore, while 
we are confident that some MEA shanks in each experiment were 
positioned within the pre-BötC, it is likely that some of the recorded 
neurons were located in the adjacent rostral ventral respiratory group 
or BötC.

Pharmacologic experiments

In subsequent experiments, to assess the effects of increasing 
neuromodulatory tone, after positioning the MEA within the 
pre-BötC and recording the stationary baseline pattern of pre-BötC 
ensemble activity, we administered either the 5HT1aR agonist 8-OH 
DPAT (1 μM, n = 4) or the μ-opioid receptor agonist fentanyl (15 nM, 
n = 8) to the perfusate and recorded the ensemble activity of the 
pre-BötC for an additional 10 min once the preparation expressed a 
new stationary breathing pattern (≤5 min).

Data analysis

Phrenic, vagal and hypoglossal nerve activities (PNA, VNA and 
HNA, respectively) were first high-pass filtered with a zero-phase 3rd 
order Butterworth filter (FC = 300 Hz) to remove any DC artifacts 
before rectification and integration with a moving average filter in 
forward-backward mode to prevent any phase distortion (τ = 100 ms). 
The Kilosort algorithm was used for semi-automated spike sorting of 
single unit activities recorded on the MEA (Pachitariu et al., 2016). 
After spike sorting, we manually inspected and adjusted the cluster 
assignments. The most frequent modification made to cluster 
assignments was to remove low-amplitude clusters that were 
associated with noise or multi-unit activity.

After spike sorting, we  sought to assess the distribution of 
pre-BötC neuronal firing patterns by clustering their respiratory cycle-
triggered histograms. We  first determined the event times of the 
inspiratory-to-post-inspiratory (I-PI) phase transition for all breaths 
via PNA. Depending on the signal-noise ratio of the PNA time series, 
we  used either fixed threshold or the difference between a fast- 
(τ = 33.3 ms) and slow- (τ = 100 ms) moving averages to detect the 
I-PI transition events. After measuring the average respiratory period, 
we computed the cycle-triggered average of the respiratory motor 
pattern and the cycle-triggered histogram of each neurons spiking 
pattern over one respiratory cycle using the I-PI transition events as 
the trigger for averaging.

To cluster these cycle-triggered histograms of pre-BötC neuronal 
firing patterns for the group, we combined dimensionality reduction 
with principal component analysis (PCA) and k-means clustering. The 
cycle-triggered histograms were scaled to the [0, 1] interval to remove 
the influence of the peak firing frequencies. Then, we reduced the 
dimensionality of the scaled group dataset using PCA keeping the top 
principal components which accounted for >90% of the variance of 
the original dataset. The inverse transform of these top principal 
components further illustrated that no meaningful information was 
lost by discarding the remaining principal components 
(Supplementary Figure 2). Then, we determined the optimal number 
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of clusters using the “elbow method”. To visualize the efficacy of the 
clustering, we examined scaled firing patterns sorted by the k-means 
cluster labels and used a t-Stochastic Neighbor Embedding to project 
the dimensionally reduced dataset (and k-means labels) into a 
2-dimensional sub-space. Finally, to visualize the firing patterns of 
each cluster in the respiratory phase domain, we applied the inverse 
transform of the PCA to each k-means cluster center.

Population coding and cross-correlation 
analyses

We first computed the firing rate histogram of each unit in a pre-BötC 
ensemble recording using a fixed bin width of 50 ms. The population rate 
time histogram was determined for each ensemble by taking the sum of 
the spike counts of all neurons in an ensemble for all bins (bin width: 
50 ms) before converting the population spike counts into spike 
frequency. Both the individual pre-BötC firing rate histograms and the 
population rate were then smoothed with a 2nd order Savitsky-Golay 
filter with a window length of 5 bins. We measured the Pearson cross-
correlation coefficient between VNA and the population firing rate. 
We chose VNA as an index of the three-phase respiratory motor pattern 

because its pattern reflects all three phases of the respiratory cycle. To 
assess the significance of this cross-correlation, we generated a bootstrap 
dataset (n = 500) in which we shuffled the inter-spike intervals of each 
unit before computing the population firing rate of the shuffled ensemble 
and measuring its correlation with VNA (see Supplementary Figure 11). 
To further characterize the relative timing between population firing rate 
peaks and the respiratory motor pattern, we measured the relative time 
difference between the I-PI transition and the nearest population firing 
rate peak. Finally, we examined the cycle-triggered averaged respiratory 
LFP in relation to the respiratory motor pattern and population firing rate.

Pharmacologic experiments

In all pharmacologic experiments, we  spike sorted 10 min of 
pre-BötC ensemble activity before and after drug administration. In 
experiments with 8-OH DPAT, neuronal activity was aligned according 
to the spike templates identified by the Kilosort algorithm. The 
significance of the increase in respiratory rate was determined using a 
one-way ANOVA. To assess the effect of 8-OH DPAT on the distribution 
of pre-BötC firing patterns, the cycle-triggered histograms of all neurons 
both at baseline and after drug administration were clustered as 

FIGURE 1

Identifying the pre-BötC neuronal firing patterns that underlie the three-phase respiratory motor pattern. (A) Reconstruction of an MEA positioned in 
the pre-BötC in situ in a representative experiment. (B) A representative recording of the three-phase respiratory motor pattern on hypoglossal (HNA), 
phrenic (PNA) and vagal (VNA) nerves in concert with an ensemble of pre-BötC neurons. (C) Cycle-triggered histograms of the pre-BötC neurons 
shown in panel (A) include neurons that spike in late-expiration (E2), inspiration (I) and post-inspiration (PI). ϕ: phase; rad: radians. (D) Cycle-triggered 
histograms of all recorded pre-BötC neurons before clustering. (E) K-means clustering identifies 14 classes of pre-BötC firing patterns that underlie the 
three-phase respiratory motor pattern. (F) Reconstructed locations of a subset of neurons suggest that pre-BötC neuronal types are spatially mixed. 
The rostral direction is to the right of the plot. μm: micrometers.
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described above. The distributions of pre-BötC firing patterns were then 
compared using Fisher’s exact test. Because fentanyl evoked opioid-
induced persistent apnea during which PNA was silent, we did not have 
any events to compute respiratory cycle-triggered averages, and hence 
could not apply dimensionality reduction and k-means clustering to 
characterize the distribution of neuronal firing patterns after fentanyl 
exposure. Thus, in fentanyl experiments, after spike sorting, we used the 
logISI method to identify bursts and burst-related spikes (Pasquale et al., 
2010). To permit a better comparison with the simulations, we further 
sub-divided bursting neurons after fentanyl exposure into fast- and slow-
bursting populations according to the median of their inter-burst 
interval. Once identified, we compared the inter-burst intervals and 
spikes/burst of baseline bursting, fentanyl-evoked fast- and slow-bursting 
populations using a one-way ANOVA.

A Hopfield network model of respiratory 
pattern generation

We modeled the respiratory pattern generator as a Hopfield 
network that included fast- and slow-synapses. An all-to-all connected 
network of N = 70 discrete Hopfield neurons was trained via Hebbian 
learning rules for fast- and slow-synapses to generate a sequential, 
cyclical pattern of spiking in which various populations were active or 
silent (Kleinfeld and Sompolinsky, 1988; Hopfield, 1982; Kleinfeld and 
Sompolinsky, 1989).

Network dynamics

Following (Kleinfeld and Sompolinsky, 1988; Kleinfeld and 
Sompolinsky, 1989), the output of the ith neuron, ( )iV t  is related to 
its net synaptic input ( )iu t  by a gain function g[x]:

 
( ) ( )i i iV t g u t θ = −   (1)

We modeled the neuronal dynamics in the high-gain limit where 
g[x] is just the Heaviside step function such that:

 
( ) ( )

( )i
1,

V t
0,

i i

i i

u t
u t

θ
θ

 >= 
≤  

(2)

The Hopfield neurons in the model included both fast- and slow-
synaptic inputs, F

ih  and S
ih  respectively. The net synaptic input to the 

ith neuron, ( )iu t , is:

 

( ) ( ) ( ) ( )

( ) ( )N F S
ij j ij jj 1
V t V t

i F S
F i i i
du t

u t h t h t
dt

w w

τ

=

+ = +

 = + ∑
 

(3)

where Fτ  is the time-constant of the fast synapses, F
ijw  and S

ijw  are 
the synaptic weights of the fast and slow synapses, respectively, and 
( )jV t  is the time-averaged output of the neuron, i.e.:

 ( ) ( ) ( )∞
′ ′ ′= −∫0j jV t V t t w t dt

 
(4)

The synaptic response function w(t) for the slow weights, S
ijw , is a 

non-negative function normalized to unity and characterized by a 
mean time constant τ s satisfying.

 
( )0 Stw t dt τ

∞
=∫  

(5)

The ratio between Fτ  and Sτ  determines the time spent in each 
state before a transition occurs (Kleinfeld and Sompolinsky, 1988; 
Kleinfeld and Sompolinsky, 1989). The effects of changing this ratio 
are shown in Supplementary Figures 4, 5. In our model, Fτ  and Sτ  
were 5 and 10 timesteps, respectively.

Hebbian learning of respiratory spiking 
patterns

The network was trained via Hebbian learning rules to oscillate 
through a set of states, { }

1

r
Sµ

µ=
, that are each defined by the activity 

(high-frequency spiking or silent/low-frequency spiking) of all N 
neurons, and that cyclically progress through their defined sequence

 −→ →…→ → →1 2 r 1 r 1S SS S S  (6)

The pre-BötC respiratory firing patterns were not orthogonal (see 
Figure 2B for states sequence), and therefore, we followed the method 
proposed by Kleinfeld and Sompolinsky (1989) to encode these 
non-orthogonal states in the network. We first define the correlation 
matrix of states as:

 
1

, 1 1
1 , 1, ,N

i ii
C S S r

N
µ µ

µ µ µ+
+ =
= ∀ = …∑

 
(7)

Then, orthogonal states can be constructed from linear 
combinations of the µ

sS

 
11

, 11
r

i iO C Sµ µ
µ µµ

+−
+=

=∑
 

(8)

where 1
, 1Cµ µ

−
+  is the pseudo-inverse of the correlation matrix 

of states.
Finally, the network is trained using the following equations to 

determine the weights of the fast- and slow-synapses, respectively.

 
0

1
,rF

ij i j
Jw S O i j
N

µ µ
µ=
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(9)
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1 10
ì 1

,rS
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Jw S O i j
N

µ µλ − +
=

= ∀ ≠∑
 

(10)

where 0 /J N  sets the scale of the average synaptic strength 
(Supplementary Figures 6, 7) and λ is a parameter that determines the 
transition strength between successive states. For all models shown, 
0J  was 3, N was 70 (i.e., 5 neurons/class) and λ was 10.

Simulations of increasing slow 
neurotransmission

To simulate the effects of application of a neuromodulatory 
receptor agonist, we modeled the effects of increasing either slow-
inhibition or -excitation in the model by increasing the weights of 
these synapses by 1.5× their original magnitude. Because endogenous 
neuromodulators have been shown to continually influence 
respiratory network activity (Doi and Ramirez, 2008; Shao and 

Feldman, 2005), we  considered that perturbations (increasing or 
decreasing) of the weights of slow synapses in the model in a narrow 
range around its original value would be  comparable to the 
experimental perturbation of systemically applying neuromodulatory 
receptor agonists or antagonists.

Unless stated otherwise, measurements are reported as means ± 
standard deviation.

Results

Training a Hopfield network to generate 
the breathing pattern

Recurrent Hopfield networks that generate periodic activities can 
be  trained via Hebbian learning rules given the rhythmic firing 
patterns of the network (Kleinfeld and Sompolinsky, 1988; Kleinfeld 
and Sompolinsky, 1989). Therefore, we first needed to estimate the set 
of respiratory neuron firing patterns in the intact network of the in situ 

FIGURE 2

Training a Hopfield model to encode the firing patterns of pre-BötC neuronal clusters. (A) The centroids of pre-BötC neuronal clusters were used as a 
basis to determine the sequential firing patterns to be encoded in the model. The respiratory cycle was discretized into eight sequential states to 
account for the brief firing patterns of the Pre-I, Post-I B and I-D populations. I: inspiratory; E: expiratory. (B) Each pre-BötC cluster was represented by 
5 neurons in the model. Their training vectors were taken as +1 when the cluster fired at a high-frequency or −1 when the cluster was silent or firing at 
a low-frequency. (C,D) The resultant fast- (C) and slow- (D) synaptic connectivity of the Hopfield network after training to encode the sequential state 
vectors using Hebbian learning rules. wFast : fast synaptic weight; wSlow : slow synaptic weight. (E) As expected, the model generated the learned 
sequential firing patterns that underlie the three-phase respiratory motor pattern in the pre-BötC. Black: tonic or respiratory-modulated; Purple: 
inspiratory; Red: post-inspiratory; Orange: late-expiratory; Neuron No.: Neuron number; t.s.: timesteps.
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perfused preparation and chose to do so in the pre-BötC since it 
contains neurons from all three phases of the breathing pattern in vivo 
(Connelly et al., 1992; Schwarzacher et al., 1995; Sun et al., 1998).

To accomplish this, we  used a high-density silicon MEA to 
monitor ensemble single-unit activities of the pre-BötC in concert 
with the respiratory motor pattern on phrenic (PNA), vagal (VNA) 
and hypoglossal (HNA) motor nerves in the in situ perfused brainstem 
preparation (Figures  1A,B). We  clustered the cycle-triggered 
histograms of their activity using the transition from inspiration to 
post-inspiration (I-PI transition) as the trigger for averaging across 
one respiratory cycle (Figures 1C–E). Cycle-triggered histograms were 
determined for 113 neurons from 11 in situ preparations (Figure 1D). 
To optimize the sensitivity of the clustering to the firing patterns of 
pre-BötC neurons, the dataset was further pre-processed by scaling to 
the [0, 1] interval to eliminate the influence of firing rate variability, 
and by using a principal component analysis (PCA) for dimensionality 
reduction. After pre-processing, the dataset was clustered using the 
K-means algorithm (Figure 1E). The optimal number of pre-BötC 
neuronal types (k* = 14) was determined using the ‘elbow method’ 
after repeating the K-means clustering for many values of k.

The pre-BötC of rats in situ displayed a mixture of inspiratory, 
post-inspiratory, late-expiratory and phase-spanning firing patterns 
(Figure 1E). As the purpose of our clustering analysis was to develop 
a consistent, un-biased assessment of the diversity of pre-BötC 
neuronal types, we  avoid introducing a new nomenclature, and 
instead label the clusters according to a phenotypic division of the 
classical respiratory neuron types that are often used in central pattern 
generator models of respiratory pattern generation: pre-inspiratory, 
inspiratory, post-inspiratory, augmenting-expiratory or tonic-
respiratory-modulated. The clustering analysis revealed that of these 
principal pre-BötC neuronal classes, inspiratory, post-inspiratory and 
tonic pre-BötC neurons had distinct sub-classes (Figure  1E). For 
instance, the clustering analysis revealed that post-inspiratory 
pre-BötC neurons were further sub-divided into 4 sub-classes (see 
clusters Post-I A-D, Figure 1E) that differed in their burst durations 
and the relative timing of their peak intra-burst frequencies. Finally, 
consistent with previous results (Connelly et al., 1992; Schwarzacher 
et al., 1995; Sun et al., 1998), we observed that the anatomic locations 
of pre-BötC neuronal types with distinct activity patterns across the 
respiratory cycle were spatially mixed (Figure 1F).

To construct the sequential states needed to train the model (see 
Materials and Methods: Hebbian learning of respiratory spiking 
patterns), we discretized the firing patterns of each pre-BötC neuronal 
type (Figure 2). The cluster centroids of each pre-BötC cluster were 
taken as the putative firing patterns of each neuronal type (Figure 2A). 
The model consists of a network of 70 Hopfield units with fast- and 
slow-synapses. Based on previous studies (Alheid and McCrimmon, 
2008; Bush and Ramirez, 2024), we  assumed that the measured 
distribution of respiratory firing patterns may have been biased by the 
locations of the recording site. Therefore, we  represented each 
pre-BötC neuronal class by 5 model units. The respiratory cycle was 
sub-divided into 8 sequential states of π/4 radians to enable the 
approximation of the activity of very transiently active neuron 
populations like the Post-I B and I D clusters. For each cluster and for 
each fraction of the respiratory cycle, the state was taken as 1 when the 
cluster fired at a high frequency and −1 when the population was less 
active or silent (Figure  2B). Using these sequential state vectors, 
we  trained the network to encode these sequential firing patterns 

using Hebbian learning rules. The resultant network weights are 
shown in Figures 2C,D. The fast-synapses had a symmetric structure 
consistent with their role in encoding the fixed points associated with 
each network state (Figure 2C), whereas the slow-synapses had an 
asymmetric structure consistent with their role in destabilizing any 
given fixed point in the direction of the next sequential fixed point 
(Figure  2D). As expected, the trained model generated these 
sequential firing patterns associated with the three-phase respiratory 
motor pattern in the absence of external input (Figure 2E), thereby 
fulfilling the definition of a central pattern generator network. Thus, 
we generated an associative memory network model of breathing 
pattern generation that was constrained by the representation of the 
three-phase respiratory motor pattern within the pre-BötC. We next 
validated the rhythmogenic role of the slow, neuromodulatory 
synapses with additional simulations and experiments.

The role of neuromodulation in respiratory 
rhythm generation

The model encapsulates our hypothesis that the asymmetric 
connectivity of slow-, neuromodulatory-synapses contributes to 
respiratory rhythm generation. Because the model contains slow-
synapses that are described by their net excitatory or inhibitory effect 
on the post-synaptic target, we simulated the effects of uniformly 
increasing the weights of either slow-inhibitory or -excitatory synapses 
in silico (Figure 3). We chose to increase these slow synaptic weights 
to enable comparison with the experimental perturbation of systemic 
administration of neuromodulatory receptor agonists. Increasing the 
weights of slow-inhibitory synapses in the model evoked only minor 
effects on network activity (Figure 3B). Specifically, the sequential 
firing patterns of the network remained unchanged. However, the 
frequency of the network’s rhythm increased by 12%. The alternative 
perturbation, increasing the weights of slow-excitatory synapses, 
evoked a collapse of the respiratory rhythm (Figure 3C). With the 
increase in slow excitatory neuromodulation in the model, the 
majority of neurons (~64%) fell silent. The remaining active neurons 
expressed either tonic or bursting activities. The remaining bursting 
pattern of activity was characterized by shorter burst durations and 
inter-burst intervals than any bursting activity observed at baseline 
(compare Figures  3A,C). To validate these in silico observations 
experimentally, we analyzed the effect of systemic administration of 
either the 5HT1aR agonist 8-OH DPAT (Figure 4) or the μ-opioid 
receptor agonist fentanyl (Figure 5) on pre-BötC ensemble activity 
in situ.

Systemic application of 8-OH DPAT evoked effects on pre-BötC 
ensemble activity that were qualitatively similar to the effects of 
increasing slow inhibition in the model. 8-OH DPAT increased the 
frequency of the respiratory rhythm (Figures 4A,B). This increase in 
respiratory rate was accompanied by a reconfiguration of pre-BötC 
ensemble activity wherein some units became silent, previously silent 
units became active and some units maintained their baseline firing 
patterns, and a smaller subset of units changed their firing patterns 
(Figure  4A). To compare the experimental results with the 
corresponding simulation of increasing slow-inhibition, we assessed 
whether the distribution of respiratory neuron firing patterns was 
different from that under baseline conditions. To do so, we clustered 
the cycle-triggered histograms of all units before and after systemic 
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8-OH DPAT (Figure 4C). All firing pattern clusters contained units 
from both baseline and 8-OH DPAT groups (Figure 4D). Importantly, 
the distribution of pre-BötC firing patterns after systemic 8-OH DPAT 
was not significantly different from that at baseline 
(Supplementary Figure 9, p = 0.232) suggesting that despite the more 
complex reconfigurations that occurred in single trials, the overall 
distribution of pre-BötC firing patterns remained the same. Taken 
together, these results suggest that exogenous enhancement of 
5HT1aR transmission evokes qualitatively similar effects as those 
evoked by an increase of slow inhibition in the model.

The experimentally observed effects of fentanyl on pre-BötC 
ensemble activity were qualitatively similar to of the effects of 
increasing slow excitation in the model. Systemic administration of 
15 nM fentanyl evoked a collapse of the respiratory motor pattern 
on phrenic, vagal and hypoglossal nerves (Figure 5A). Consistent 
with the model, ensemble activity in the pre-BötC was largely 
suppressed with the number of active neurons from 7.8 ± 1.2 to 

2.6 ± 0.5 neurons (Figures  5B,C, p  < 0.001). Further, pre-BötC 
neuronal activity after systemic fentanyl administration consisted of 
neurons with either tonic or bursting activities. However, unlike the 
model, we observed that the distribution of the mean inter-burst 
intervals of bursting neurons post-fentanyl administration appeared 
bimodal (Supplementary Figure 10), with either fast-bursting and 
slow-bursting phenotypes, which were defined using a median 
threshold. Consistent with the model, both classes of bursting 
neurons had shorter burst durations than at baseline, firing 
significantly fewer spikes per burst (Figure  5E, Fast-Bursting: 
p  < 0.05, Slow-Bursting: p  < 0.01). Further, like the model 
simulations, the fast-bursting class also had significantly shorter 
inter-burst intervals than bursting pre-BötC neurons at baseline 
(Figure  5D, p  < 0.05). However, the slow-bursting class had 
significantly longer inter-burst intervals than bursting pre-BötC 
neurons at baseline (Figure 5D, p < 0.01). Taken together, the effects 
of perturbing neuromodulatory transmission in the model were 

FIGURE 3

Neuromodulation of the respiratory rhythm in silico. (A) The sequential firing pattern produced by the network at baseline. T: period; t.s.: timesteps. 
(B) Increasing slow synaptic inhibition in the model evokes an increase in the frequency of the respiratory rhythm without any change in the sequential 
firing pattern of the network. T: period; t.s.: timesteps. (C) Increasing slow excitation in the model evokes a collapse of the respiratory rhythm 
characterized by a reduction in the number of active units whose remaining activity was either tonic or fast bursting. t.s.: timesteps.
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consistent with experimental results suggesting that 
neuromodulation may contribute to respiratory rhythm generation.

Population activity encodes respiratory 
phase transitions

Another feature of the model was the existence of a population 
code of the respiratory motor pattern (Figure  6). In the model, 
transitions between successive states occur because of the slow-
synaptic neurotransmission that changes the energy landscape of the 
network. During any given state, the network lies at a global energy 
minimum leading to the repetitive firing of neurons associated with 
that fixed point. Because of the asymmetric connectivity of the slow 
synapses in the network, each fixed point is progressively destabilized 

until the fixed point associated with the next sequential state becomes 
the new global minimum. When this critical point is reached, the 
network rapidly transitions to the new fixed point thereby recalling 
the activity pattern of the next sequential state. These transitions are 
not instantaneous. Each state transition involves a short overlap of the 
activity patterns associated with the two successive states during this 
pattern recall process causing peaks in the population firing rate. 
We observed that the population activity of the network resembled the 
bi-phasic waveform expressed in vagal nerve activity, and that three 
of the eight state transitions—from I to PI, from PI to E2 and from E2 
to I—were associated with brief peaks in population activity 
(Figure 6A, top green trace) when the distance between successive state 
vectors was maximal.

To test whether the intact respiratory network in situ also 
generates a population code of respiratory phase transitions, 

FIGURE 4

The 5HT1aR agonist 8-OH DPAT increases the frequency of the respiratory rhythm without changing the firing pattern of pre-BötC ensembles. 
(A) Systemic administration of 8-OH DPAT evoked an increase in the frequency of the respiratory rhythm as observed in PNA and VNA that was 
associated with a reconfiguration of pre-BötC ensemble activity. In this representative experiment six pre-BötC neurons maintained their original firing 
patterns, but at a higher frequency. In addition, five pre-BötC neurons became silent, and six pre-BötC neurons were activated. Left panel: baseline; 
right panel: after systemic 1 μM DPAT. (B) The frequency of the respiratory rhythm was significantly increased after systemic application of 8-OH DPAT. 
* p < 0.05. F: frequency; bpm: breaths per minute. (C) K-means clustering of all recorded pre-BötC neurons at baseline and after systemic 8-OH DPAT 
identified many of the pre-BötC neuronal types previously observed. ϕ: phase; rad: radians. (D) All clusters except the Aug-E population were present 
at similar ratios at baseline (circles) and after systemic 8-OH DPAT (crosses) suggesting that despite the reconfiguration of pre-BötC ensemble activity, 
the distribution of neuronal firing patterns that composed the respiratory pattern generator remained the same. Fisher’s exact test: p = 0.232. tSNE: 
t-Stochastic Neighbor Embedding.
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FIGURE 5

The reconfiguration of pre-BötC ensemble activity after opioid-induced respiratory depression is consistent with model simulations after increasing 
slow-excitation. (A) Systemic fentanyl administration evokes a collapse of the respiratory rhythm on phrenic (PNA), hypoglossal (HNA) and vagal (VNA) 
nerves. (B) Consistent with the model simulations of uniformly increasing slow excitation, systemic fentanyl administration was associated with a 
reduction in the size of pre-BötC ensembles and spared tonic (gray), fast- (purple) and slow- (green) bursting firing patterns. Please note that these 
raster plots reflect neuronal ensembles compiled from all experiments to better visualize the firing patterns expressed after fentanyl-evoked opioid-
induced persistent apnea. As such, the ordering of units post-fentanyl exposure (right panel) do not have a one-to-one correspondance with the 
neuronal rasters at baseline. Further, to aid in the visualization of baseline firing patterns, we have plotted pink bars to indicate the inspiratory period for 
each pre-BötC ensemble. (C) Systemic fentanyl administration significantly reduced the number of active neurons in pre-BötC ensembles. 
***p < 0.001. (D) Consistent with the model, fast-bursting pre-BötC neurons had significantly shorter inter-burst intervals (IBI in seconds) than bursting 
pre-BötC neurons at baseline. However, we also observed a slow-bursting pre-BötC population after systemic fentanyl administration that had 
significantly longer IBIs than bursting pre-BötC neurons at baseline. B: bursting; T: tonic; FB: fast-bursting; SB: slow-bursting *p < 0.05; **p < 0.01. 
(E) Consistent with the model, both fast- and slow-bursting pre-BötC neurons fired fewer spikes per burst than bursting pre-BötC neurons at baseline. 
*p < 0.05; **p < 0.01.
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we measured the population firing rate of pre-BötC ensembles in situ. 
Like the model, the population activity of the pre-BötC ensembles was 
characterized by a basal level of activity interspersed with brief peaks 
of fast spiking (Figure 6B). Consistent with the model, the peaks in 
population activity occurred at or near the three transitions between 
respiratory phases. To assess this feature experimentally, we measured 
the cross-correlation between the population activity and the vagal 
motor pattern, which carries information about all three phases of the 
respiratory motor pattern (Figure  6C). This cross-correlation was 
always greater than the 99.9th percentile of a bootstrap distribution 
generated by shuffling the inter-spike intervals of each unit before 
computing the shuffled ensemble’s population firing rate and its 
correlation with VNA.

To further investigate whether the timing of pre-BötC 
population activity was specifically associated with the transitions 
between respiratory phases, we  focused on the relative timing 
between ensemble population activity peaks that occurred nearest 
to the transition between I and PI (Figure 6D). On average, the 
ensemble population activity peak occurred 0.0024 ± 0.206 s 

before the decline in inspiratory PNA amplitude reflecting the fact 
that individual ensembles differed greatly with respect to the 
precision of and relative timing of their encoding the I-PI 
transition (Figure 6D). We hypothesized that this variability may 
be due to the limited number of pre-BötC neurons that we were 
able to simultaneously monitor using silicon MEAs. Therefore, 
we  further addressed this question by measuring the cycle-
triggered averages of respiratory local field potentials (LFPs) on 
each of the four MEA shanks and ensemble population activity in 
a representative experiment since LFPs reflect the synaptic activity 
of many more neurons (Figure  6E). Respiratory LFPs in the 
pre-BötC occurred specifically at the E2-I and I-PI transitions, 
whereas the ventral-most site of the fourth shank identified 
respiratory LFPs occurring specifically at the I-PI and PI-E2 
transitions. Taken together, these data are consistent with the 
model in that population activity within the respiratory network 
peaks at the transitions between respiratory phases, a feature that 
is not present in the population activity of CPG models of 
respiratory pattern generation (Supplementary Figure 3).

FIGURE 6

Population coding of the transitions between respiratory phases in the model and in the pre-BötC in situ. (A) Because the recall of the next sequential 
state involves a slight overlap of sequential assemblies, the model generates brief peaks in the population firing rate at each of the three transitions 
between respiratory phases when the adjacent state vectors are most distant. Black: tonic or respiratory-modulated; Purple: inspiratory; Red: post-
inspiratory; Orange: late-expiratory; Pop. Rate: population firing rate in spikes/timestep. (B) Consistent with the model, pre-BötC ensemble activity is 
associated with a population firing rate (Pop. Rate, green trace) that also peaks at or near the transitions between respiratory phases. (C) There was a 
significant cross-correlation between the population firing rate and the three-phase respiratory pattern of vagal nerve activity (VNA). This cross-
correlation was considered significant if it was greater than the 99.9%-ile of a bootstrap distribution in which the inter-spike intervals for each unit were 
shuffled before computing the shuffled ensemble’s population firing rate and its correlation with VNA. White bar: original cross-correlation between 
population firing rate and VNA; Black bar: upper bound of the 99.9%-ile of the bootstrap distribution. (D) Individual pre-BötC ensembles varied with 
respect to the precision with which their population firing rate encoded the I-PI transition. Please note that each color represents a different ensemble 
recorded in different preparations. .TPop RatePeak : time of the peak in population rate in seconds; −TI PI : time of the transition from inspiration to 
post-inspiration, i.e., the time of the inspiratory off-switch, in seconds. (E) Cycle-triggered averages of pre-BötC local field potentials (LFPs) more 
reliably encoded the transitions between respiratory phases. Pop. Rate: Population firing rate.
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Discussion

In this study, we have developed a Hopfield network model of 
respiratory rhythm and pattern generation that encapsulates the 
hypothesis that slow-, neuromodulatory-connectivity in the 
respiratory network is organized asymmetrically to generate the 
respiratory rhythm. We tested this model assumption by comparing 
simulations of uniformly increasing slow-inhibitory or -excitatory 
weights with in situ experiments in which we  recorded ensemble 
activity of the pre-BötC before and after systemic administration of 
5HT1aR or μ-OR agonists. Increasing slow-inhibitory weights in the 
model or activating 5HT1aRs systemically with 8-OH DPAT increased 
the frequency of the respiratory rhythm without changing the firing 
patterns of respiratory neurons. Increasing slow-excitatory weights in 
the model or activating μ-ORs systemically with fentanyl arrested the 
respiratory rhythm sparing neurons with tonic- and short bursting-
firing patterns. The similarity between model simulations and 
experiments supports the hypothesis that neuromodulatory 
connectivity in the respiratory network is organized asymmetrically 
to promote rhythmogenesis. The model also suggested the existence 
of a population code of respiratory phase transitions which 
we confirmed in the population activity of pre-BötC ensembles and 
respiratory LFPs in the pre-BötC.

Network models of respiratory rhythm and 
pattern generation

Computational models of respiratory rhythm and pattern 
generation have been developed to explain experimental observations 
at both cellular and network scales. The discovery of spontaneously 
bursting pre-inspiratory neurons of the pre-BötC led to the 
development of cellular models that describe how persistent sodium 
currents could underlie spontaneous inspiratory bursting in single 
neurons (Butera et al., 1999). Recent work on the bursting mechanisms 
of the isolated pre-BötC has highlighted that its small-world 
connectivity, rather than its intrinsic conductances, underlies the 
capacity to generate inspiratory bursting activity (Kam et al., 2013a,b). 
This conceptual model has been incorporated into network models 
that consist of excitatory neurons containing a subset of spontaneously 
bursting units connected in a small-world pattern, which is now 
considered to explain the inspiratory bursting of the isolated pre-BötC 
(Shao et  al., 2006; Ashhad et  al., 2023). Beyond the pre-BötC 
inspiratory activity, several network models have been developed to 
formalize the long-standing conceptual view of the respiratory 
network as a central pattern generator (Ogilvie et al., 1992; Rybak 
et al., 1997; Rybak et al., 2007; Rubin et al., 2009; Gottschalk et al., 
1994; Wyman, 1977). These central pattern generator models consist 
of neurons with mutual inhibitory interactions that sculpt respiratory 
neuronal activities from several sources of excitatory drive. 
Importantly, they have shown that reciprocal inhibition can account 
for a variety of experimental observations including the generation of 
the three-phase respiratory motor pattern of inspiration, post-
inspiration and late-expiration. However, a limitation of previous 
models is that the respiratory network is not composed of strictly 
inhibitory or excitatory neurons. For the case of central pattern 
generator models, this property is highlighted by studies which show 
that blockade of synaptic inhibition in key inspiratory or expiratory 

compartments of the respiratory network is not sufficient to ablate the 
respiratory pattern in  vivo (Ashhad et  al., 2022; Janczewski et  al., 
2013). Thus, there remains a need for computational models of 
respiratory rhythm and pattern formation that have greater 
face validity.

In the present study, we developed a network model of respiratory 
rhythmogenesis that incorporated excitatory, inhibitory and 
neuromodulatory connections. Using previously proposed 
connectivity patterns (Kleinfeld and Sompolinsky, 1988; Kleinfeld and 
Sompolinsky, 1989), we were able to generate a network model of 
respiratory rhythm and pattern generation based on the assumed set 
of respiratory firing patterns which we  measured from ensemble 
recordings of the pre-BötC in situ. This model encapsulated our 
hypothesis that asymmetric neuromodulatory connections can 
promote the generation of the respiratory rhythm. In testing this core 
assumption, we found that perturbations of the model connectivity 
weights were consistent with experimental perturbations of 
serotonergic or opioidergic neurotransmission. However, the model 
is not without limitation.

One critical issue is the mapping between slow synaptic effects in 
the model and neuromodulatory signaling in situ. While 
neuromodulatory transmitters act via metabotropic receptors to 
slowly modulate membrane potential, they are not the only biophysical 
process that can produce slow rhythmic fluctuations in membrane 
potential. For instance, in forebrain networks, ion concentrations 
modulated by intrinsic membrane pumps and glial activities have 
been proposed to cause the slow, resting-state fluctuations in 
membrane potentials (Krishnan et  al., 2018). In the respiratory 
network, subsets of spontaneously bursting pre-BotC neurons express 
persistent sodium channels that mediate the slow depolarization of 
their membrane potential (Butera et al., 1999; Rybak et al., 2007). 
These observations raise the possibility that the slow synapses in the 
model may not map to neuromodulation. However, in our in situ 
experiments, we explicitly perturbed neuromodulatory signaling with 
μ-OR and 5HT1a agonists and observed responses consistent with 
corresponding in silico simulations. Therefore, it is likely that the slow 
synaptic weights in the model map to neuromodulatory synapses in 
the biologic respiratory network.

This raises an additional question of how generalizable these 
pharmacologic perturbations are: do all neuromodulatory receptor 
agonists lead to an effect that resembles that of increasing the weights 
of slow-inhibition or excitation in the model? For the case of 
increasing slow-inhibition, similar subtle increases in respiratory 
frequency have been widely observed in pharmacologic, optogenetic 
or chemogenetic experiments both in reduced slice preparations 
in vitro and in the intact network in situ for many neuromodulatory 
systems (Doi and Ramirez, 2008) including, for example, serotonin 
(Richter et  al., 2003; DePuy et  al., 2011; Manzke et  al., 2003), 
acetylcholine (Shao and Feldman, 2005; Shao and Feldman, 2000), 
norepinephrine (Viemari and Ramirez, 2006; Viemari and Tryba, 
2009), dopamine (Fujii et al., 2004), ATP (Sheikhbahaei et al., 2018; 
Gourine et al., 2010; Gourine et al., 2005) and histamine (Dutschmann 
et al., 2003). Another related question is whether similar changes in 
respiratory dynamics would occur using a pharmacologic approach 
that aimed to block endogenous neuromodulatory transmission 
rather than the agonist experiments described here which evoke 
exogenous neuromodulatory transmission. In the case of 
neuromodulation by acetylcholine, a previous study has demonstrated 
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that blockade of muscarinic receptors increased respiratory frequency 
in the in  vitro slice preparation, an effect that was subsequently 
reversed by bath application of atropine (Shao and Feldman, 2000). 
However, whether similar effects on respiratory network activity 
would be  observed in the intact network, like that of the in situ 
arterially-perfused brainstem-spinal cord preparation, remains an 
important question for future investigation.

Other limitations of the model include its lack of spontaneous 
bursting neurons, the simplified dynamics of Hopfield units and its 
violation of Dale’s law. While the model does not include spontaneous 
bursting neurons, spontaneous bursting neurons have been shown to 
be dispensable in central pattern generator models of the respiratory 
rhythm (Rubin and Smith, 2019). Second, the Hopfield units of our 
model are binary and thus cannot generate the spiking or bursting 
dynamics associated with more detailed neuron models. Further, 
Hopfield units cannot describe biologic neurons that can fire at vastly 
different firing rates. However, it was demonstrated that the network 
connectivity patterns of Hopfield networks can be  translated into 
those for spiking networks to yield networks with similar behavior 
(Maass and Natschläger, 1997). Finally, the present model also does 
not follow Dale’s law since the Hopfield units can have both excitatory 
and inhibitory neurons. Nonetheless, given such significant 
simplifications compared to the biological system, it is notable that the 
model was able to explain both the collapse of network activity 
following fentanyl administration and the frequency increase evoked 
by 5HT1a-mediated neuromodulation.

Population coding of respiratory phase 
transitions

The findings of the present study also extend previous observations 
of a population code of respiratory phase transitions. In an earlier 
study, we reported that respiratory LFPs, which reflect the synaptic 
activities of local populations, peaked specifically at the transitions 
between the three phases of the respiratory cycle throughout the 
ponto-medullary respiratory network (Dhingra et al., 2020). In the 
present study, this feature was observed both in the model in the 
ensemble activity of the pre-BotC in situ. In the model, transitions 
between states are evoked by slow neuromodulatory transmission that 
acts to change the ‘energy’ landscape of the network such that the fixed 
point associated with a given state is destabilized in the direction of 
the fixed point associated with the next state (Kleinfeld and 
Sompolinsky, 1989). At the transition, a partial cue of the next state’s 
memory is established allowing the network to recall the activity 
pattern of the next state. These transitions involve a brief overlap of 
the activities of adjacent Hebbian assemblies as the memory of the 
next fixed point is recalled and stabilized. Interestingly, peaks in the 
network’s population activity appeared at only three of eight 
transitions, which corresponded to those between inspiration, post-
inspiration and late-expiration. We observed a qualitatively similar 
pattern of population activity in pre-BötC ensembles in situ. 
Importantly, this property of population activity cannot be accounted 
for in half-center oscillator CPG models of respiratory pattern 
generation (Supplementary Figure 3) since transitions in such models 
occur via an escape or release mechanism in which the population 
activity at a transition is either balanced or shifts to a new plateau 
depending on the number of units active before and after the 

transition (Rubin et  al., 2009). Thus, the proposed model of 
asymmetric neuromodulation better accounts for the population 
activity of the respiratory network in situ.

In addition, we observed, both in the model and in experiments, 
that the cycle-triggered average of the population activity in the 
network or in the pre-BötC, respectively, resembled the bi-phasic 
discharge of the vagal motor pattern, which regulates upper-airway 
patency. This observation is consistent with the recent characterization 
of a role for the pre-BötC in regulating, not just inspiratory discharge 
in the inspiratory motor nerves, but also in the inspiratory and post-
inspiratory activity in the vagus (Dhingra et al., 2024). In the model, 
this bi-phasic pattern of population activity reflects the distribution of 
firing patterns the network was trained to generate. We derived this 
distribution directly from the clustering of firing patterns present in 
ensemble recordings in situ. Consistent with previous observations in 
the intact brainstem, the distribution of pre-BötC firing patterns 
included neurons with bursting activity in the inspiratory, post-
inspiratory and late-expiratory phases as well as neurons with tonic or 
tonic respiratory modulated activities (Connelly et  al., 1992; 
Schwarzacher et  al., 1995; Sun et  al., 1998). The latter classes of 
respiratory neurons have been previously implicated in respiratory 
phase switching and the reflex and behavioral control of the 
respiratory pattern (Cohen et al., 1993; Cohen, 1973; Segers et al., 
2015; Orem, 1989). In contrast, in our model, these patterns of activity 
are merely a consequence of the overall network connectivity, with 
each population’s slow synapses playing significant roles in 
determining respiratory phase switching. Consistent with this 
experimental finding, we  observed a stronger cross-correlation 
between pre-BötC ensemble activity and the vagal motor pattern than 
the activity of any individual pre-BötC neuron suggesting that the 
population, rather than individual bursting neurons, is responsible for 
encoding the respiratory motor pattern in network activity. Together, 
these experimental data are consistent with the temporal structure of 
the model network’s population activity.

Implications for opioid-induced respiratory 
depression (OIRD)

OIRD remains a significant health problem in the United States 
(Ramirez et al., 2021; Dahan et al., 2024). Recently, the risk posed by 
illicit synthetic μ-OR agonists has been further exacerbated by the 
presence of adulterants like xylazine that act on α2 adrenergic 
receptors and nitazenes which are μ-OR agonists that may not be fully 
counteracted by the μ-OR antagonist naloxone (Dahan et al., 2024). 
Thus, the incidence of OIRD due to synthetic opioids and 
combinations of opioid and non-opioid substances has motivated the 
need to discover new therapeutics to counteract OIRD. Our 
computational model and experimental results suggest that 
neuromodulatory connectivity within the respiratory network is 
organized asymmetrically to promote rhythmogenesis. We propose 
that the pattern of neuromodulation should be considered for the 
rational design of therapies to treat respiratory disorders like 
OIRD. Further, our results suggest that identification of alternative 
neuromodulatory targets to prevent or reverse OIRD will require the 
consideration of the pattern of neuromodulator receptor expression, 
its overlap with that of μ-OR expression and the firing pattern of the 
target respiratory neurons.
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One strategy to assess the pattern of neuromodulation would be to 
monitor respiratory network activity using MEAs in the in situ 
preparation, but with an experimental design to assess the dose 
response of the drug with respect to respiratory network activity. The 
dose response experimental strategy would enable one to identify 
experimentally which neuron types are impacted by fentanyl and to 
identify the relationship between the units that remain active during 
persistent apnea with their firing patterns during eupneic breathing. 
In contrast, in the present study, we  induced fentanyl-evoked 
persistent apnea with a single dose. While this perturbation was 
qualitatively similar to simulations of the model after increasing slow 
excitation, it also provides further experimental evidence that opioids 
do not simply inhibit all pre-BotC neurons to suppress breathing, but 
instead act through a network mechanism that, according to the 
model, may involve a net increase in slow excitation across 
the network.

Neuromodulatory signaling pathways have long been therapeutic 
targets for respiratory disorders. A remarkable example of this strategy 
occurred in the case of a patient who experienced severe apneustic 
respiratory disturbances after surgical resection of a tumor at the 
ponto-medullary junction (Wilken et al., 1997). In this case study, the 
apneustic respiratory motor pattern was corrected without side-effects 
using buspirone, a 5HT1aR agonist. The rationale behind the therapy 
arose from the perspective that neuromodulators act to influence 
intracellular second messenger cascades and that counteracting the 
influence of one pathway could be achieved by activating alternative 
second messenger systems with the right neuromodulatory agonist 
(Richter et al., 1997). However, the hypothesis regarding downstream 
effects on membrane excitability came from intracellular recordings 
of very few respiratory neurons before and after drug applications. 
This limited evidence also led to other cases in which neuromodulatory 
therapies were met with limited success. For instance, 5HT4aRs were 
identified as a therapeutic to better manage OIRD without the loss of 
analgesia that accompanies OIRD reversal with naloxone (Manzke 
et al., 2003). However, later clinical trials showed that the 5HT4R-
agonist mosapride was ineffective in recovering from morphine-
induced OIRD in humans (Lötsch et al., 2005). In the case of the 
irregular respiratory rhythms present in patients with Rett syndrome, 
pre-clinical studies in MeCP2-deficient mice developed strong 
evidence that drugs targeting serotonergic and dopaminergic 
receptors were effective to correct respiratory disturbances (Abdala 
et al., 2013; Abdala et al., 2010). However, clinical trials in Rett patients 
treated with saritozan, a 5HT1aR- and D2R-agonist, were unsuccessful 
(Evaluation of the Efficacy, Safety, and Tolerability of Sarizotan in Rett 
Syndrome with Respiratory Symptoms (STARS), 2021).

Despite the simplicity of this network model, increasing the 
weights of slow-excitatory neuromodulatory connections were 
consistent with the pattern of network activity that was experimentally 
observed following fentanyl-induced OIRD, specifically a reduction 
in the number of active neurons that spared populations with either 
tonic or short bursting activities. Importantly, we note that pre-BötC 
ensemble activity and its collapse post-fentanyl exposure was 
representative of the network as a whole is well supported by a recent 
study that observed similar patterns of neuronal activity (tonic and 
short-bursting populations) in the dorsolateral pons (Saunders et al., 
2022). Direct comparison of the findings of the present study with 
those of another recent study using multi-electrode arrays to monitor 
medullary respiratory network activity during ORID (Bush and 

Ramirez, 2024) is difficult because that study used a lower dose of 
morphine that was not sufficient to evoke the fully collapsed state of 
network activity that is present during opioid-induced persistent 
apnea. Nonetheless, their representative raster plots of respiratory 
network activity show evidence of partially collapsed states of network 
activity that may be  consistent with our model when we  only 
moderately increase slow-excitation (Supplementary Figures 8D,E). 
We note that unlike OIRD in vivo, a mild increase in slow inhibition 
did not appear to change the overall frequency of the model network’s 
periodic activities. However, we observed that mild increases in slow 
excitation in the model evoked an inhibition of subsets of respiratory 
neurons which was consistent with reported effects of OIRD in vivo 
(Haji et al., 2003; Takeda et al., 2001).

That a relatively simple model of respiratory pattern generation 
could explain the effects of neuromodulation highlights the need to 
consider the pattern of neuromodulation across the network for the 
rational design of neuromodulatory therapies. In other words, one 
should address the question of whether a proposed neuromodulatory 
therapeutic targets the opposing asymmetric respiratory neuronal 
populations to promote respiratory pattern formation? Nonetheless, 
these simulations and experiments support previous suggestions to 
develop combinatorial neuromodulatory therapies, particularly to 
protect against opioid-induced respiratory depression (Richter et al., 
2003; Manzke et al., 2003; Dutschmann et al., 2009).

The need to consider the network mechanism of respiratory 
neuromodulation is further highlighted by the fact that both 
neuromodulatory agonists used in the present study are coupled to 
Gi/o-dependent signaling cascades (Richter et al., 2003; Reeves et al., 
2022). In the case of the 5-HT1aRs, our findings were consistent 
with a predominant effect of slow-inhibition in the network. In the 
case of μ-ORs, our results which suggest a net effect of opioids to 
increase slow-excitation may appear counter-intuitive to the 
commonly held notion that activation of μ-ORs evokes inhibition of 
membrane excitability. Importantly, the action of a particular 
neuromodulatory receptor agonist on one cell-type does not 
necessarily generalize to its effect on any neuron. Instead, the effect 
of activating neuromodulatory receptors depends on the targets of 
the corresponding intracellular signaling cascades which vary across 
neuronal cell types. In the case of μ-ORs, it is well known that 
neurons can show either excitatory or inhibitory effects depending 
on the cell-type (Reeves et al., 2022). One simple explanation of our 
observations is that μ-ORs may have a greater effect on inhibitory 
neurons such that the net effect of opioids at the level of the 
respiratory network is that of a slow-disinhibition. Alternatively, it 
has also been shown that μ-ORs can directly excite their target 
neurons via the coupling of their Gβγ-subunits to PLC-dependent 
signaling cascades that increase intracellular calcium levels (Charles 
and Hales, 2004). In either case, our computational and experimental 
observations supporting an asymmetric pattern of neuromodulation 
in the network further highlight the need to consider the intracellular 
effects of a neuromodulatory pathway across the whole network, 
rather than in small subsets of respiratory neurons.
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