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Bayesian estimation of
orientation and direction tuning
captures parameter uncertainty

Zongting Wu1 and Stephen D. Van Hooser2*

1Department of Biochemistry, Brandeis University, Waltham, MA, United States, 2Department of

Biology, Brandeis University, Waltham, MA, United States

This study explores the e�cacy of Bayesian estimation in modeling the

orientation and direction selectivity of neurons in the primary visual cortex

(V1). Unlike traditional methods such as least squares, Bayesian estimation

adeptly handles the probabilistic nature of neuronal responses, o�ering robust

analysis even with limited data and weak selectivity. Through the analysis of

both simulated and experimental data, we demonstrate that Bayesian estimation

not only accurately fits the neuronal tuning curves but also e�ectively captures

parameter certainty or uncertainty of both strongly and weakly selective

neurons. Our results a�rm the complex interdependencies among response

parameters and highlight the variability in neuronal behavior under varied

stimulus conditions. Our findings provide guidance as to how many response

samples are necessary for Bayesian parameter estimation to achieve reliable

fitting, making it particularly suitable for studies with constraints on data

availability.
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1 Introduction

Neurons in the visual system of all examined mammals, as well as neurons in other

systems such as head-direction cells and place cells in the hippocampus, often exhibit

tuning for the orientation or direction of a stimulus (Hubel andWiesel, 1959, 1962; Wilson

et al., 2018; Hubel and Wiesel, 1968; Henry et al., 1974; Ohki et al., 2005) or of the

movement of an animal in a coordinate system (Taube et al., 1990; McNaughton et al.,

1983). When selectivity is strong, there are many methods for quantifying the orientation

and direction angle preference, the degree of tuning relative to an orthogonal angle, or the

sensitivity of the tuning as the stimulus changes from the preferred angle (Carandini and

Ferster, 2000; Ringach et al., 2002; Swindale, 1998; Mazurek et al., 2014).

Today, many optophysiology and multi-channel recording studies with massive

electrode channel counts often characterize the response properties of dozens or hundreds

of neurons simultaneously (Stringer et al., 2019; de Vries et al., 2019; Siegle et al., 2021),

some of which may have high selectivity and some of which may not. Some methods of

quantifying the degree of orientation and direction tuning are robust regardless of whether

tuning is strong or weak. However, reliably estimating tuning parameters such as angle

preference and tuning width is not possible with least squares methods when tuning is

weak (Mazurek et al., 2014). In a prior methods paper, our group recommended simply not

trying to quantify parameters other than the degree or amount (or magnitude) of tuning

if a statistical test (such as Hoteling’s T2 test or an ANOVA across stimuli) did not show

evidence of some significant tuning (Mazurek et al., 2014).
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Nevertheless, there are times when one may want to quantify

properties such as preference angle or tuning width even for cells

that exhibit weak tuning. For example, one may want to make a

statement about how tuning has changed when following a cell

over the course of development, before and after an experimental

manipulation, or as another parameter (say, stimulus spatial

frequency, or temporal frequency) is varied (Li et al., 2008; Moore

et al., 2005). If a cell is initially poorly tuned, such that we have no

certainty about its angle preference, but later exhibits strong tuning

for upward motion, we may want to contrast this situation with

another cell that exhibits strong tuning for downward motion but

later exhibits strong tuning for upward motion. If we throw up our

hands when tuning is weak, we lose the ability to make quantitative

statements about these situations.

Bayesian estimation methods allow quantification of a full joint

distribution of the parameters of a tuning model, so that any

uncertainty or certainty of a given parameter is estimated (Bishop,

2006). Full Bayesian estimation requires much more computation

than least squares fitting or maximum likelihood estimation

(Cronin et al., 2010), but advances in computing power and GPU

methods now allow these methods to be applied routinely and at

speeds that are similar to least squares approaches. We describe a

Bayesian estimation approach for orientation and direction tuning

curves that can be widely applied to other sensory tuning curves.

We provide enough detail that an analyst who is unfamiliar with

Bayesian estimation can apply the method to a new problem.

We provide comparisons to the bootstrap technique (Efron and

Tibshirani, 1993; Press and Flannery, 1992), which also allows one

to describe the certainty or uncertainty of tuning parameters.

2 Materials and methods

Neurons or other systems can exhibit responses that vary with

stimulus direction and/or orientation. These responses can be

spikes or voltage deflections, modulation of activity at a stimulus

frequency, or responses obtained from an indicator such as a

calcium indictor. There are two major classes of methods for

analyzing orientation and direction tuning curves: vector methods

(Batschelet, 1981; Swindale, 1998; Mazurek et al., 2014) and

fit methods (Carandini and Ferster, 2000; Ringach et al., 2002;

Swindale, 1998; Mazurek et al., 2014). Vector methods, such as the

calculation of circular variance (Ringach et al., 2002) are excellent

for quantifying the degree or strength of orientation or direction

tuning for weakly and strongly tuned cells (Mazurek et al., 2014),

but in this paper we will focus on an equation model of orientation

and direction tuning based on a wrapped Gaussian (Swindale, 1998;

Batschelet, 1981; Carandini and Ferster, 2000), see Swindale (1998)

for other equation choices:

R(θ;C,Rp,Rn, θpref , σ ) = C + Rp ∗ e−
(angdiff(θ−θpref ))

2

2σ2

+Rn ∗ e−
(angdiff(θ−θnull))

2

2σ2 . (1)

Five parameters are included in the equation, which are C, Rp,

Rn, θpref and σ . The offset, C, is the portion of the response that

is constant and does not vary with orientation or direction. Rp is

the response above offset for the preferred direction and Rn is the

response above offset for the null direction, that is, the direction

that is opposite of the preferred direction. θpref is the preferred

direction. In direction space, the range of θ is [0, 360◦), and θnull =
θpref + 180◦. The function angdiff(θ) = min(θ , θ − 360, θ + 360)

computes the absolute angular difference around the circle. We also

sometimes refer to the response in the preferred direction and the

null direction, respectively, as

Rpref = R(θpref ) (2)

and

Rnull = R(θnull). (3)

Various different groups use different definitions of θ , with

some using Cartesian coordinates where 0◦ refers to vertical bars

moving to the right, and increasing θ implies a counter-clockwise

change in angle, and other groups such as own using compass

coordinates, where 0◦ refers to horizontal bars moving upwards

and increasing θ implies a clockwise change in angle.

2.1 Bayesian formulation

Bayes’ theorem is stated mathematically as the following

equation:

P(A|B) = P(B|A)P(A)
P(B)

. (4)

We constructed a Bayesian model of Equation 1. We employed

a change-of-variable by letting Rn = αRp with 0 ≤ α ≤ 1, so that

we can always be sure that Rn ≤ Rp as we compute the likelihood

of the model. Our new equation is as follows:

P(C,Rp,α, θpref , σ |D) =
P(D|C,Rp,α, θpref , σ )P(C,Rp,α, θpref , σ )

P(D)
.

(5)

In words, the equation says that the probability of the

parameters (C,Rp,α, θpref , σ ) given the data D we observed is

equal to the probability of seeing the data given the parameters,

multiplied by the prior probability of the parameters and divided

by the prior probability of the data (Bishop, 2006).

The left side of Equation 5 describes what we are seeking: how

likely is it that each parameter (say, C), takes any of a set of values

(say, {C1,C2,C3, . . .}). In order to calculate this probability, we

need to be able to calculate the probability of the data given the

parameters (called the likelihood function) and the prior probability

of the parameters.

In our case, the data D is the set of empirical mean responses

across trials to the particular angles we examined. We indicate each

of i angles tested by θi and the mean response to that angle as rθ i.

We need to calculate the probability, according to our model, that

we observed rθ i given the parameters. Equation 1 tells us that the

expected response r̂θ i for parameters (C,Rp,α, θpref , σ ) is

r̂θ i = R(θi;C,Rp,α, θpref , σ ). (6)
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Next, we need to take this expected response and calculate

the likelihood of the actual response rθ i in units of probability.

Many studies of the variability of neural firing rates have found

that the variance (and standard deviation) of spike responses is

linearly related to the mean response rate on a log-log plot (Softky

and Koch, 1993; Shadlen and Newsome, 1998). We therefore

assumed that the model responses would be drawn from a normal

distribution with mean r̂θ i and a standard deviation σnoise that was

a function of the mean response. To estimate σnoise(m) for our data,

we started by examining the log of the standard deviation of each

response σnoise,i of each cell as a function of the log of the mean

responsemi:

log(σnoise,i) = a+ b ∗ log(mi).

If one were to obtain the best-fit values of a and b then one

could express the expected variability as a function of the mean

response as

σnoise(m) = 10a ∗mb.

We modified this classic function (Softky and Koch, 1993;

Shadlen and Newsome, 1998) slightly so that the noise is not

identically 0 at 0 mean rate, which leads to strange parameter

estimations, and to achieve better fits of the noise at the lowestmean

rates, arriving at a final noise equation with three fitted constants C,

K, and S:

σnoise(m) = Cn + K ∗mS. (7)

For each set of recordings, we pooled our observations of all

σnoise,i and mi over all responses and all cells and derived a single

set of Cn, K, and S that was applied to all cells. For example, when

dealing with calcium imaging data from ferret visual cortex (Li

et al., 2008), we used all cells and all responses to calculate the

constants we used for the noise model for those cells. We did not

derive these constants for each cell individually (as the limited

data for a single cell would produce a poor fit), or apply Cn, K

and S across situations (for example, between recordings of spiking

neurons and recordings using calcium indicators).

Analysts are encouraged to examine the fit of the noise on a

log-log plot for each new application. While our data were well

fit, and previous studies have found this function describes the

relationship between mean spike rates and variability for data in

cortex (Softky and Koch, 1993; Shadlen and Newsome, 1998),

factors such as calcium indicator saturation (Nauhaus et al., 2012)

or different firing properties in different circuits might necessitate

using a modified noise function.

In our experiments, we usually record responses over several

trials T rather than recording a single trial, and report the mean

response averaged over trials rθ i. Because we average over trials, we

expect the response we measure to be less noisy than the results of

a single trial. According to the central limit theorem, the variability

decreases by a factor of 1/
√
(T). Therefore, the probability that a

response at a single stimulus angle was generated by a particular set

of model parameters is

P(rθ i|C,Rp,α, θpref , σ ) = N(rθ i; r̂θ i, σnoise(r̂θ i)/
√

(T)) (8)

where N(x;µ, σnormal) is the probability density function of the

normal distribution with mean µ and standard deviation σnormal.

We assume that the response measurements are independent, so

that the probability of seeing the set of responses {rθ1, rθ2, . . . , rθn}
for each cell is

P(D|C,Rp,α, θpref , σ ) =
i=n
∏

i=1

N(rθ i; r̂θ i, σnoise(r̂θ i)/
√

(T)). (9)

Note that the expected response in the noise equation is

based on the model response. In this report, we did not make

any assumptions about the a priori likelihood of the different

values of the parameters (C,Rp,α, θpref , σ ). We estimated our

distributions for discrete sets of values of each parameter (for

example, C could take {C1,C2,C3, . . . ,CCM}, Rp could take

{Rp1,Rp2,Rp3, . . . ,RpRPM}, etc), and we assumed each value was

equally likely so that

P(C,Rp,α, θpref , σ ) =
1

(CM)(RPM)(αM)(θM)(σM)
, (10)

where CM, RPM, αM , θM , and σM are the number of values of each

parameter used to estimate the distribution. Perhaps in the future,

by examining many populations, the expected prior distributions

could be estimated differently from a uniform distribution, but we

did not want to impose any biases at this time.

Finally, we did not explicitly compute P(D), but we assumed

that our calculation of P(C,Rp,α, θpref , σ |D) would estimate the real

probability distribution, and reported the estimated distribution

normalized to 1. We end up with a matrix of likelihoods

L(c, r,αj, t, s) with one entry for each combination of parameters

examined.

2.2 Practical computation and storage of
Bayesian results

We calculated our Bayesian distributions using ranges of

parameters that varied slightly depending upon the units of the

data. In our case, we used mean spike rates and fractional change

in calcium indicators from baseline. The ranges we used are shown

in Table 1.

To perform Bayesian estimation for a single cell, one must

perform calculations for all combinations of the 5 parameter

ranges, and Table 1 indicates that billions of calculations are

required for each cell. This creates burdens for computation and

for storage of the results. Fortunately, modern GPUs are well-

suited to performing these calculations quickly. We wrote GPU

code using Matlab (MathWorks, Natick, MA) that performs these

calculations in less than a minute per cell on an ordinary laptop

with a GPU, so the computation is not problematic for today’s

computing environments.

Storing the results requires careful decisions, however. Each

probability for every parameter combination is a floating point

number; if stored on disk with double precision, then the results

for a single cell would require on the order of 10 GB of storage. For
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TABLE 1 Parameter space sampled for Bayesian parameter estimation, for

spiking neurons (left column) and calcium imaging (right column).

Parameter Spiking neurons Calcium imaging

min(C) 0.1 −MX

max(C) 10 +MX

CM 60 60

min(Rpref ) 0.1 0.001

max(Rpref ) 20 +3 ∗MX

RprefM 60 60

min(α) 0 0

max(α) 1 1

αM 15 21

min(θpref ) 0 0

max(θpref ) 359 359

θprefM 72 72

min(σ ) 1 1

max(σ ) 60 60

σM 60 60

Number of calculations Number of calculations

2.3 ∗ 108 3.3 ∗ 108

Parameters were varied from a minimum value to a maximum value using the number of

steps indicated for each parameter with anM. For example, CM is the number of parameters

evaluated for parameter C. For calcium imaging,MX indicates the empirical maximummean

response for each cell. The total number of calculations necessary for each cell is shown

at the bottom. The offset C is allowed to vary between −MX and MX because cells may

exhibit stimulus responses that are increased or decreased relative to the nearest blank/control

stimulus.

this reason, we did not store all of the results but instead stored a

much briefer summary of key statistics.

First, we stored the marginal likelihood of each parameter

individually by summing over all other parameters and normalizing

the distribution to 1. For example, the marginal likelihood L̂c(c) of

parameter C is computed as

Lc(c) =
r=RPM
∑

r=1

αj=αM
∑

αj=1

t=θM
∑

t=1

s=σM
∑

s=1

L(c, r,αj, t, s)

L̂c(c) = Lc(c)
∑c=CM

c=1 Lc(c)
. (11)

While we lose information about the joint distributions of these

parameters, the summary provides considerable savings, needing

only (CM) + (RPM) + (αM) + (θM) + (σM) entries for storage

instead of (CM)(RPM)(αM)(θM)(σM) entries (the sum instead

of the product), which with our parameters means a difference

between kilobytes and gigabytes per cell. Themarginal distributions

say a lot about the response properties of the cell, and, if we really

need the joint distribution, we can recompute it.

Second, we performed estimates of the likelihoods of index

values of interest while we had the full matrix of parameter

estimations in memory, and stored histograms of these values.

OI (Orientation Index) and DI (Direction Index) are two indexes

of neuronal direction/orientation selectivity. Their magnitudes are

used to characterize the sensitivity of neurons to stimuli motion in

different directions/orientations in space. In this paper, we define

these values as follows:

OI = (Rpref + Rnull − (Rorth+ + Rorth−))/(Rpref + Rnull) (12)

and

DI = (Rpref − Rnull)/Rpref . (13)

For summary statistics, we computed histograms of the

likelihood that OI and DI took values between 0 and 1 in bins

of size 0.05. By using the full likelihood matrix to calculate these

histograms but only storing the histogram results, we obtained a

good picture of our certainty or uncertainty about the value of each

index that uses the full joint information, while storing only 20

values (1/0.05) per index.

Third, we also stored the most likely value of the full joint

parameters also known as themaximum likelihood estimate (MLE).

These parameters are a single set of values of C,Rp,α, θpref , σ that

provided the largest joint likelihood, but by themselves do not

account for our uncertainty or certainty of their values.

2.3 von Mises test

To test the framework’s ability to characterize the activity of

tuning curves that are generated by similar but not exact matches

for the model, we generated some simulated orientation tuning

curves using the von Mises function (Batschelet, 1981; Swindale,

1998):

Rv−m(θ) = Aexp(k[cos2(θ − ϕ)− 1]). (14)

2.4 Relative error in parameter estimation

In order to quantify the performance of the Bayesian parameter

estimation, we devised a relative error measurement. Given the true

value xt of a given parameter, we defined the expected squared error

(ESE) of the Bayesian parameter estimation as:

ESE =
∫ b

a
(L̂c(x) ∗ (x− xt)

2 dx, (15)

and the expected squared error for a uniform distribution as

ESEu =
∫ b

a
(x− xt)

2 dx. (16)

Finally, we defined the relative error of our approach compared

to an uninformed (uniform) estimate as ESE/ESEu.
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2.5 Source code and data sources

Code in MATLAB that performs the Bayesian parameter

estimation in a manner callable from other projects is provided

at https://github.com/VH-Lab/vhlab-bayesoridir-matlab. The

repository also includes all code that was used to generate the

figures in the paper.

Some data for the figure on noise were obtained from

the Allen Brain Observatory (de Vries et al., 2020) using the

Brain-Observatory-Toolbox in Matlab (https://github.com/

MATLABCommunity-Toolboxes-at-INCF/Brain-Observatory-

Toolbox).

3 Results

To illustrate the approach and to explore how the Bayesian

estimation tracks a tuning curve’s parameters under a ground

truth situation, we generated simulated data for analysis. In

Figure 1, we show two example tuning curves: one is well-tuned

for orientation and direction (Figure 1A) while the other is poorly

tuned (Figure 1B). The output of Bayesian estimation is not a single

value of each parameter but instead is a probability distribution

over the parameters. The marginal likelihood for θpref and Rpref
is plotted for each cell, along with histograms of the estimated

orientation index (OI) and direction index (DI). For example, in

Figure 1C, we do not obtain a single “best fit” or “most likely”

value for θpref but a likelihood distribution, where the estimated

probability that θpref takes any value in the range. The entire shape

of the curve, not just the peak, is important to the interpretation.

When the tuning is strong, there is great certainty about the

parameters and the values of the index values. When the tuning

is weak, there is much more uncertainty. In particular, in the

weakly-tuned case, there is great uncertainty about whether the

orientation and direction index values are near 0 or might be

moderate. Least-squares methods would give us a single value of

all of these parameters, and our uncertainty about the orientation

and direction index values would not be described.

One may ask, why bother to study the tuning properties

of weakly-tuned cells? To demonstrate such a case, we imagine

measuring the direction tuning of a single cell while another

visual stimulus parameter (temporal frequency) is changed. For low

temporal frequency, the cell exhibits high direction selectivity; for

a moderate temporal frequency, the cell exhibits orientation tuning

but not direction tuning; for a further temporal frequency, the cell

is weakly responsive.

To evaluate the predictive accuracy and sensitivity of the

Bayesian estimation model, we simulated response curves for two

different types of cells and performed parameter estimation. All

error bars in the text are represented using standard errors of the

mean (SEM).

3.1 Bayesian estimation for simulated
strong and weak spatial selectivity

As shown in Figure 1, multiple graphs illustrate the response

characteristics of simulated neurons. The left column, labeled

as “Well-tuned,” features graphs that exhibit neuronal responses

with higher peak firing rates and marked preferences for specific

directions and orientations of stimuli. These responses are

quantified in terms of frequency (Hz) and marginal likelihood

across different orientations and directions, denoted by directional

and orientation indexes. The right column, labeled as “Poorly-

tuned,” displays neurons with significantly lower response

amplitudes, less distinct tuning curves, indicating a reduced

selectivity for stimulus features. As shown in Figures 1A, B, the

black curves represent the ideal response curve of simulated data

without any noise. To approximate real data more closely, we used

simulated sampling points with an added 50% Gaussian noise for

fitting. Each data point is based on five samples, covering a total

of 36 angles. These sampling points are represented as blue dots

in the figure. The noisy data, alongside results from a linear noise

model, serve as inputs for Bayesian estimation, which are then

interpolated based on given parameter ranges to produce the fits

displayed as red curves. The parameter settings for the well-tuned

simulated cells are (C = 1, Rpref = 10, Rnull = 5, θpref = 90◦,
and σ = 30◦), while those for the poorly-tuned cells are (C = 1,

Rpref = 1, Rnull = 0, θpref = 90◦, and σ = 30◦).
The Bayesian MLE fit for both types of simulated cells closely

align with the ideal curves, particularly for the well-tuned cell in

terms of the preferred angle and tuning width values. Figures 1C–

F describe the marginal probability distributions for θpref and Rp.

The probability peaks accurately estimate the “true values” of θpref

and Rpref for the well-tuned cell. The certainty or uncertainty of the

parameters is indicated by the probability distribution peaks and

widths. Due to the poorly-tuned cell exhibiting weak selectivity for

direction, the estimated probability for θpref is dispersed across a

broader range of angles compared to the well-tuned cell. The likely

values of Rpref are considerably smaller for the cell with poorer

tuning, showing its reduced response.

Figures 1G–J illustrates the probability distributions for the

selectivity indexesDI andOI. It can be observed that the well-tuned

cell displays distinct, singular probability peaks for DI and OI,

accurately estimating the “real” values (OI = 0.86, DI = 0.45). In

contrast, for the poorly-tuned cell, the likelihood estimates of both

are broader, although a close estimation to the “real” value (OI =
0.33, DI = 0.5) is also observed in the probability distribution

(OI = 0.3, DI = 0.38).

3.2 Storing marginal likelihoods as a
summary

Storing the full joint likelihood distribution

P(C,Rp,α, θpref , σ |D) requires gigabytes of storage. For many

purposes, viewing or storing only the marginal likelilood of each

parameter, as we have plotted in Figure 1 is sufficient. Of course,

there is some information in the full joint likelihood function that

might be needed for certain applications.

We illustrate 2-dimensional views of the joint likelihood

for pairs of parameters (marginalized over other parameter) in

Figure 2. The relationships between some parameters are quite

independent. For example, the joint likelihood of θpref and either

Rp (Figure 2A) or C (Figure 2B) show little interaction among the
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FIGURE 1

Bayesian estimation for two types of simulated cells with di�erent levels of tuning. (A, B) Simulated response curve, data collection points with +50%

Gaussian noise, and Bayesian estimation results. The thick black line indicates the “true” response of the neuron with no noise added, and the blue

datapoints indicate simulated responses with noise added. The red line reflects the most likely parameters from the Bayesian parameter estimation. P

values indicate the result of an ANOVA test across stimuli; the well-tuned cell is highly significant while the poorly-tuned cell is not. (C–F) The

marginal likelihoods of θpref and Rpref in the model. (G–J) The probability distribution of OI and DI for spatial selectivity under Bayesian estimation.
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FIGURE 2

Views of joint likelihood across parameters for the strongly tuned cell in Figure 1. (A) Joint likelihood density plot of θpref and Rp, marginalized over all

other parameters. The lack of a slant indicates that these likelihoods are independent and that the individual marginal likelihoods are a good

summary of the whole. Scale bar indicates probability in density plot. (B) Joint likelihood of θpref and C. (C) Joint likelihood of Rp and α. Slant indicates

some joint dependence of these parameters. The information in the slant is lost when summarizing only the marginal likelihoods of each parameter,

and might need to be stored for some applications. (D) Joint likelihood of Rp and σ .

two parameters. For some parameters, such as between Rp and α

(Figure 2C) or σ (Figure 2D), there is evidence of some correlation.

Some scientists might be interested in this fine structure for some

applications, and might need to store more information or to

recompute it as needed.

3.3 Bayesian estimation for simulated
temporal frequency

Many studies of orientation or direction selectivity in the visual

cortex employ drifting sinusoidal gratings (with a particular spatial

frequency and temporal frequency) as stimuli (e.g., Movshon et al.,

1978). Some tuning properties, such as orientation tuning, are not

very sensitive to spatial or temporal frequency, but others, such as

direction selectivity, can change with stimulus parameters (Moore

et al., 2005). For example, Moore et al. (2005) found that many cells

in ferret visual cortex altered their direction preference angle or the

amount of direction selectivity as temporal frequency was changed.

Direction selectivity was often higher at low temporal frequencies

than at higher temporal frequencies. If one wanted to study, say,

how direction preference changed with temporal frequency, one

would be out of luck with least squares approaches if selectivity

became low. Here we will illustrate that the Bayesian approach

allows one to study these properties quantitatively.

In Figure 3, we simulated changes in direction selectivity of

a single neuron under three different temporal frequencies: low,

medium, and high. In our simulations, we hypothesized that

the direction selectivity is strongest at low temporal frequency

(C = 1, Rpref = 7, Rnull = 1, θpref = 45◦, and σ =
30◦). The maximum response amplitude is slightly smaller at the

medium temporal frequency (C = 1, Rpref = 5, Rnull = 5,

θpref = 45◦, and σ = 30◦), and the direction selectivity is very

low. At the highest temporal frequency (C = 1, Rpref = 0,

Rnull = 0, θpref = 45◦, and σ = 30◦), responses are very

weak and there is an absence of direction selectivity. As shown in

Figures 3A–C, red represents the simulated sampled data points,

the blue curve represents the simulated ideal curve for low temporal

frequency, and yellow for medium temporal frequency, and green

for high temporal frequency. To more closely replicate the actual

fitting process, the number of sampling angles was reduced from

32 in Figure 1 to 16. Figures 4D–F shows the changes in the

probability distributions of θpref , Rpref , and DI across the three

different temporal frequencies, with the colors corresponding to

the three temporal frequencies mentioned above. In Figure 3D,

Bayesian estimation accurately identifies the preferred angle at low

temporal frequency. At the medium temporal frequency, since the

response rates at Rpref and Rnull are close, the model indicates two

probability peaks at θpref and θnull. For the high temporal frequency,

the probability distribution lacks distinct peaks. This is further

supported in Figures 3E, F, where the probability peak of Rpref
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FIGURE 3

Neuronal responses and Bayesian estimation to stimuli at di�erent temporal frequencies in simulated cell. (A–C) Simulated “real” response curves

and sampling points with 50% added Gaussian noise in di�erent temporal frequencies. (D–F) The probability distribution of θpref , Rpref , and DI fitted

for di�erent temporal frequencies. The changes in the likelihood of θpref and DI track the increased uncertainty of θpref with increasing temporal

frequency and the decreasing DI with temporal frequency.

and DI at high temporal frequency predominantly cluster near or

at zero, indicating minimal direction selectivity. For the medium

temporal frequency, the obvious peak around 6 for Rpref and the

peak near zero for DI suggest that the ’real’ response curve has

significant orientation selectivity with similar values of Rpref and

Rnull. The parameters and direction index for all three temporal

frequencies successfully approximate the ’true values’.

3.4 Bayesian estimation fitting for
simulated data with variable orientation
index and direction index values

To better test the universality and accuracy of Bayesian

estimation, we simulated two groups of neurons, each consisting of

five cells with gradually increasing OI or direction index DI values,

ranging from 0 to 1.

In Figure 4 we simulated cells with increasing orientation

selectivity index values; in Figure 5, we simulated cells with

increasing direction selectivity index values. In Figure 4F, the

likelihood of the underlying OI value tracks the true value, and θpref

(Figure 5I) becomes more certain as the underlying orientation

index increases. Similarly, in Figure 4F, the likelihood of the

underlying direction index tracks the true value, and again θpref is

more certain as the direction selectivity increases.

The relative error between the distribution found by the

Bayesian estimation procedure and the true value of the parameters

that were used in the simulation is shown in Figures 4K–O, 5K–O.

As expected, parameters Rp and C can be well estimated regardless

of the orientation index, but the tuning width σ , angle preference

θpref , and α are very uncertain when the orientation index is

low. Similarly, when orientation selectivity is high and direction

selectivity varies, most parameters can be well estimated except that

the preferred angle θpref becomes highly uncertain when direction

selectivity is very low.

Another way to quantify Bayesian parameter estimation is to

ask how often the true value of the parameter distribution sits

within the central x% of posterior distribution. One would expect

that this would be true approximately x% of the time; in other

words, that 50% of the time, the true value would lie within the

central 50% of the posterior. In Supplementary Figures 1, 2, we

show how often the true parameter values in these simulations fall

within the central 25th, 50th, and 75th percentiles of the posterior

distributions. When the parameter can be well estimated (high

orientation or direction selectivity), this is true, and performance

falls slightly when the parameter cannot be well estimated.

3.5 Impact of sampling angle quantity on
Bayesian estimation fitting results

Experimental time is extremely valuable, and it is important

to know how many angle steps might be necessary to estimate

the parameters to a desired precision. Each color in the Figure 6

corresponds to a different number of sampling angles, with the

legend indicating the number of angles used for each Bayesian
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FIGURE 4

Bayesian estimation results for simulated cells with gradually increasing orientation index values. (A–E) Simulated response curve, sampling points

with +50% Gaussian noise and fitting results. (F–J) The marginal likelihoods distribution of OI, Rpref , σ , θpref and C. As direction selectivity progresses

from high to low to non-existence, θpref , Rp, and DI track accordingly. (K–O). Relative error in parameter estimation compared to assuming a uniform

distribution for each parameter. When orientation selectivity is high (red), we have certainty about the values, but when orientation selectivity is low,

our certainty comes close to a uniform distribution (relative error of 1). 500 simulations of 5, 10, or 15 trials.

estimation fitting. The parameters of the simulated tuning curve

are set as (C = 2.5, Rpref = 7.5, Rnull = 3.75, θpref = 45◦, and
σ = 30◦).

From the likelihood distribution of OI in Figure 6F, it can

be observed that four sampling angles produce a poor parameter

estimation. There is also a significant likelihood of obtaining a fit

with low orientation selectivity due to the accidental collection of

angles where the response frequency in the “real” tuning curve is

lower. Starting from eight sampling angles, a likelihood peak can

be seen around 0.6, although it is somewhat broad. Similarly, in

Figures 6G, J, higher sampling angles concentrate the probability

peaks at specific values, and the fitting curves align well with the

“real” tuning curve. This indicates that eight or more sampling

angles meet a minimum requirement for Bayesian estimation.

However, under this parameter set, the probability distribution

for σ remains broad, with an indistinct peak in the range

from 20 to 30.

3.6 Bayesian estimation fitting results for
neuronal response curves in the ferret
primary visual cortex

Up to now, we have only examined simulated data for

illustration. Next, we analyzed response tuning curves of primary

visual cortex neurons from juvenile ferrets using calcium imaging

from a prior study (Li et al., 2008). Five example neurons are
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FIGURE 5

Bayesian estimation results for simulated cells with gradually increasing direction index values. (A–E) Simulated response curve, sampling points with

+50% Gaussian noise and fitting results. (F–J) The marginal likelihoods distribution of DI, Rpref , σ , θpref and C. (K–O) Relative error in parameter

estimation compared to assuming a uniform distribution for each parameter. Because orientation selectivity is high in all cases, we have certainty

about the values except for θpref . When direction selectivity approaches 0, then we have uncertainty as to the true angle preference θpref .

shown in Figures 7A–E. In Figure 7G, the likelihood distribution

of Rpref lies between 0 to 0.2, with the green cell and purple

cell showing smaller Rpref values. Nevertheless, all cells exhibit

orientation selectivity with high confidence (Figures 7F, H–J), and

have narrow ranges of preferred directions, with some cells showing

a possibility of preferring the opposite direction (Figure 7I).

3.7 Bayesian parameter estimation
compared to the bootstrap

Quantifying uncertainty in model parameters when the model

is not a member of a well-known class, such as a mean or a

generalized linear model, has been challenging. One common

method is the bootstrap (Efron and Tibshirani, 1993; Press and

Flannery, 1992). Under this procedure, one generates hundreds

or thousands of simulated surrogate datasets for each cell by

drawing from the original data with replacement. For example,

to simulate a surrogate dataset for a cell that was examined

with N stimulus repetitions of S stimuli, one would, for each

stimulus s, draw N response values from the N actual response

values with replacement, so that some trials are drawn more

than once and others drawn not at all. By performing a model

fit, such as a least-squares fit, of the hundreds or thousands of

surrogate datasets, one can build up a probability distribution

of parameter values that reflect the certainty or uncertainty of

that parameter.

At first glance, using Bayesian parameter estimation or using

the bootstrap for least-squares fits might seem equally appropriate,

and that the chief difference might be whether one wanted to
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FIGURE 6

Impact of varying sampling angle quantities on Bayesian estimation results. (A–E) Simulated response curve, sampling points with +50% Gaussian

noise and fitting results. (F–J) The marginal likelihoods distribution of OI, Rpref , σ , θpref and C. In order to estimate the tuning parameters well, one

should sample at least 8 directions with visual stimulation.

FIGURE 7

Bayesian parameter estimation of orientation and direction tuning for example cells recorded in ferret visual cortex. (A–E) The response of 5 example

neurons from the juvenile ferret visual cortex to stimuli moving in di�erent directions and Bayesian parameter estimation results. (F–J) The marginal

likelihoods distribution of OI, Rpref , σ , θpref and C.

perform billions of forward calculations (where the calculations

are not iterative and amendable to GPU methods) or thousands

of least-squares fits (which are iterative and are less amendable

to GPU methods). But we will argue that Bayesian parameter

estimation is preferred because of the practical problems with least-

squares fitting, including local minima and a frequent need to place

constraints on parameters to aid with convergence (Mazurek et al.,

2014).

We reanalyzed data from Li et al. (2008). In that work, the

authors examined direction tuning in neurons of young ferrets

before and after 3-6 hours of exposure to moving stimuli. In the

naive state, cells generally exhibited relatively weak tuning for

direction, whereas, after motion exposure, cells exhibited stronger

tuning. One question raised in that study was whether or not

individual cells were likely to have had an eventual direction

preference that (a) emerged from an unselective state, (b) was

solidified from an initial bias toward that direction preference, or

(c) was the result of a reversal of an initial preferred direction

preference.

Figures 8A–F displays the Bayesian likelihood distributions

of θpref for three sample cells before motion exposure and after

motion exposure, illustrating changes in tuning properties. In

Figures 8A, B, the preferred direction angle shifts 180 degrees,

indicating a major and significant reorganization for that cell.

Figures 8C, D shows an enhanced response strength at the original

preferred angle, suggesting reinforcement of the cell’s existing
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tuning properties. Finally, Figures 8E, F reveals an emergence of

a single direction preference, where previously the cell exhibited

similar response frequencies in two opposite directions. These

findings highlight the effectiveness of Bayesian estimation in

capturing nuanced changes in neuronal tuning, similar to bootstrap

analysis (Figure 8D).

The advantages of Bayesian parameter estimation become

more apparent if we compare bootstrap and Bayesian parameter

estimation across the population of 262 cells. Parameter Rp shows

a monotonic relationship, indicating that both procedures do a

similar job of identifying that parameter, and θpref is the same or,

in a few cells that are presumably not very direction-selective, 180◦

apart. But, in order to converge to a meaningful fit, parameter σ

was set at a floor of 22.5◦ because the angle step in this experiment

was 45◦. In many bootstrap least-squared fits (Figure 8J), this floor

value was the best-fit value. However, in the Bayesian approach, we

find that the MLE parameter value spans a broader range. Further,

the bootstrap approach often returned the constrained minimal

value for Rn, which was 0, in the bootstrap approach, whereas

the MLE for the Bayesian parameter estimation spanned a wider

range(Figure 8K).

Therefore, the Bayesian parameter estimation approach, which

dutifully examines the likelihood of different combinations of

parameters over many ranges, is immune from the local minima

and constraint problems that can plague least-squares fitting. In

Bayesian fitting, one has the burden of choosing an appropriate

discretization of the parameter space and providing computational

resources to carry out the computation, but with modern GPU

methods these are not burdensome for relatively simple models.

3.8 Test of correctness on a di�erent
orientation model

Up to now, we have demonstrated our approach on tuning

curves generated from the same function as the response model

we are fitting. One may ask if it also does a good job on data

that might be generated by similar but not identical processes. To

examine the Bayesian parameter estimation performance under

these conditions, we generated tuning curves from a von Mises

process (Equation 14) while varying the preferred response from

0 to 10 spikes/sec and using a constant amount of noise of 2

spikes/sec across the tuning curve. Results are shown in Figure 9.

When A is high, θpref and Rp are well estimated by the approach.

As Rp drops to 0, the estimate of θpref deteriorates as expected,

indicating our uncertainty in determining the true θpref from the

data.

3.9 Noise model

The Bayesian approach requires that one specify the amount

of trial-to-trial noise that is expected in the model. As described

in the methods, we started from the prior observations that in

cortical neurons the variance or standard deviation of the response

across trials is proportional to the mean of the response across trials

Softky and Koch (1993) and Shadlen and Newsome (1998) on a

log-log plot. We extended this slightly to include a constant term:

σnoise(m) = Cn + K ∗mS.

We found that this function characterized the relationship

between mean response and noise for a wide range of recordings,

including 2-photon calcium imaging using Oregon Green BAPTA-

1 AM from the previous section (Li et al., 2008), shown in

Figure 10A and extracellular records from ferret (Van Hooser,

unpublished observations) (Figure 10B). To further explore how

this noise model might suite different applications, we examined

several cells from the Allen Brain Observatory’s 2-photon

dataset (de Vries et al., 2020), where somatostatin-positive

(SST) interneurons (Figure 10C), vasoactive intestinal peptide-

positive (VIP) interneurons (Figure 10E), parvalbumin-positive

(PV) interneurons (Figure 10D), and pan-excitatory cells (Ex)

(Figure 10F) were studied in different gCamp6 mouse lines. All

cell types were well described by the equation (Figures 8C–F), but,

interestingly, VIP interneurons exhibited noise that was largely

independent of the mean response rate such that the K and S

parameters were unnecessary. Nevertheless, the strategy of fitting

Equation 7 to obtain noise parameters would succeed for all of these

cell types.

4 Discussion

We derived a Bayesian estimation approach for orientation

and direction tuning for neurons or other processes. Least-squares

fitting and vector approaches do a good job of identifying model

parameters when there is some substantial selectivity, but do not

readily produce a measure of certainty or uncertainty when tuning

is poor (Mazurek et al., 2014). Bayesian parameter estimation

explicitly calculates the likelihood of different parameter values.

Until recently, the billions of calculations needed to estimate these

parameter distributions were an impediment to the broad use of

Bayesian methods, but the new availability of fast GPUs that can

perform trillions of floating-point calculations per second makes

this feasible even for large populations of neurons.

4.1 Modifications of least-squares models

In order to apply Bayesian methods to tuning curves, it may

be necessary to modify the original least-squares tuning model,

as we did here. The traditional form of the double Gaussian

equation (Mazurek et al., 2014) uses independent parameters for

the preferred and null responses, and, for least-squares fitting, one

can just take the larger of the two to be the preferred response

parameter and the smaller to be the null parameter. However, in

the Bayesian approach, it is necessary to specify the preferred angle,

and we modified the null parameter to be an α times the preferred.

4.2 Selecting what to save

Another critical choice in full Bayes parameter estimation is

choosing what information to save. Saving the results of billions

of computations to disk is not feasible, but one can save smaller

descriptions. Here, we saved the most likely parameters and the
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FIGURE 8

Bayesian estimation and bootstrap fitting results before and after motion exposure. (A–F) Probability distribution fitting results for the parameter θpref

in three representative cells before and after motion exposure. Results from measurements made before motion exposure are shown in blue while

results from measurements made after motion exposure are shown in red. (G–K) Fitting results of individual parameters across 262 cells using

di�erent models. Each panel shows the relationship between the Bootstrap mean (x-axis) and the Bayesian maximum likelihood (ML) estimate

(y-axis) for various model parameters, including OI, Rpref , σ , θpref and C. In general, the results are proportional and the results for θpref are either

identical or are occasionally shifted by 180◦. However, results for parameter σ are greatly impacted by the floor of the fitting procedure employed

with the bootstrap (see Mazurek et al., 2014 for the necessity of this constraint), whereas the Bayesian parameter estimation has no such issue.
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Bayesian parameter estimation on von Mises tuning curves. (A–E) Simulated tuning curves from a von Mises function with maximum firing rate (A)

varied from 10 to 0 in steps of 2.5 sp/s. Data points are tuning curves disturbed by 50% noise and black lines are most-likely values of parameters

determined by Bayesian parameter estimation. (F) Orientation index (OI) estimations show high values until A = 0. G Likelihoods for Rp in the

Bayesian estimation closely match values of A. (H) σ . (I) θpref matches the orientation modulo 180◦. (J) Estimates for C.

marginal probabilities of each parameter, but also saved a histogram

of several index parameters that were calculated on the full

joint distribution. These included the orientation and direction

selectivity index values and the circular variance in both orientation

and direction space. If one needed the full joint distribution for any

reason, it can be recomputed quickly for a single tuning curve, while

the marginal probability and index histograms can be saved in a

database for aggregate analysis across cells.

4.3 Uncertainty and an alternative to the
bootstrap

When least-squares methods dominated computation, a

common technique to understand the uncertainty of each

parameter was the bootstrap (Press and Flannery, 1992). The

analyst would create hundreds or thousands of surrogate datasets

by drawing individual observations from the originals with

replacement, and perform the least-squares fitting on the surrogate

datasets. In this way, the analyst would have a distribution of

hundreds or thousands of potential values of the fit parameters,

and could analyze the uncertainty. Bayesian parameter estimation

performs a very similar function, in that one obtains a probability

distribution for all parameters, and one can assess uncertainty of all

parameters.

This raises the question as to which method might be

preferred, Bayesian parameter estimation or least-squares fitting

with bootstrap? The downside to Bayesian parameter estimation is

a need to specify the values over which to perform the estimation.

The resolution of the answer will be exactly that specified. With

least-squares fitting, the best-fitting parameters are found to high

resolution (often tomany significant digits). However, least-squares

fits often require constraints in order to make sure the results

have physical meaning. In the case of orientation/direction fitting,

we usually place a constraint on the tuning width: it can be no

less than 1/2 of the angle steps used for visual stimulation (e.g.,

if the visual stimulus was stepped in 30◦ steps, then σ must be

at least 15◦). The results of Figure 8 indicate that this is exactly

what happened in our prior analysis, and the Bayesian parameter

estimation approach would be preferred. Further, if there were

some stereotypy in the fitting procedure that favors some values

over others (one might imagine that certain θpref values might

emerge for noisy input more often than others if the code were

written in a certain way), then this stereotypy will skew the results

of the bootstrap approach when the input signal is weak or noisy.

Therefore, if the parameters can be specified at a suitable resolution

for the problem, we recommend the Bayesian parameter estimation

approach instead of the bootstrap.

4.4 When it’s not worth the e�ort

The approach we describe here allows one to characterize a

variety of properties of orientation and direction tuning, including

peak response, preferred angle, and the background activity. If one

only wants to assess the degree of orientation or direction tuning,

then vector methods such as the circular variance (Mazurek et al.,

2014; Ringach et al., 2002) are completely suitable [see simulations

in Mazurek et al. (2014)].

4.5 Comparison to Bayesian decoding

Bayesian parameter estimation and Bayesian decoding are

essentially the same approach that use the same mathematical

equations but with slightly different goals. In Bayesian parameter

estimation, one is applying Bayesian methods to learn the

parameters of a model. In Bayesian decoding, one is often using a
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FIGURE 10

Noise models for di�erent recordings. (A) Trial-by-trial response means and standard deviations for 739 ferret neurons labeled with Oregon Green

BAPTA-1 AM (Li et al., 2008). 8 responses from each neuron are plotted (di�erent stimulus directions). The best-fit model was

Cn = 0.011,K = 0.0715, S = 1.14. (B) Unpublished recordings from Van Hooser lab showing mean and standard deviations of responses to visual

stimuli for 471 neurons from ferret visual cortex. Cn = 1.24,K = 2.31, S = 0.492 (C–F) 2-photon calcium imaging responses from di�erent mouse

lines expressing gCamp6f and reported in the Allen Brain Observatory (de Vries et al., 2020). Cell numbers as indicated. For SST:

Cn = 0.00131,K = 1.26, S = 0.972. For PV: Cn = 1.9e− 8,K = 0.643, S = 0.481. For VIP: Cn = 0.0148,K = −5.61, S = 3.38. For EX:

Cn = 0.00364,K = 0.738, S = 0.901.
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model that has already been learned in order to make an inference

about some feature of a system, such as the position of an animal

given activity in its hippocampal place cells (Brown et al., 1998;

Zhang et al., 1998; Karlsson and Frank, 2009; Davidson et al.,

2009; Shin et al., 2019). Just as in Bayesian parameter estimation,

one can report the “most likely” outcome (for example, the most

likely position of an animal) or compute an entire distribution (for

example, a distribution of likelihoods that the animal is at any given

position in an environment).

4.6 Summary

We recommend the Bayesian parameter estimation approach

for sensory tuning curves or other response model when it is

important to understand the parameter values of the response

model and the certainty/uncertainty in these parameters. We

recommend this approach above least-squares for finding the

most-likely mean values of the parameters, and we recommend

this approach above the bootstrap for understanding parameter

uncertainty in most cases. We imagine that many studies that

seek to characterize the tuning of large numbers of neurons will

shortly transition away from least-squares approaches to Bayesian

parameter estimation. This article has described a recipe formaking

the switch.
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