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The cerebellar deep nuclei: a
patch for rate codes?
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Neural firing rates are thought to represent values which code information.

There are drawbacks with using biophysical events to represent numbers. (1)

Rate code (like any sequence) is inherently slow to read. (2) At short intervals,

the code becomes unintelligible biophysical noise. (3) Transmission times. The

vital contribution of the cerebellum to skilled execution and coordination

of movements requires precision timing. We present a theory supported by

modeling that the output cell group of the cerebellar network is a practical

solution to timing problems. In this role, it converts irregularly-patterned firing

of Purkinje cells into an effectively instantaneous rate received by output

cells, transforms the rate into linear analog modulation of output cell firing,

synchronizes firing between output cells, and compensates for lag caused

by extracerebellar transmission times. The cerebellum is widely connected

to the midbrain and the cerebral cortex and involved in cognitive functions.

Modular network wiring suggests that the cerebellum may perform the same

computation on input from all sources regardless of where it is from. If so,

and the deep cerebellar nuclei make the same contribution to the role of the

cerebellum in other functions, an understanding of motor function would also

provide insight into the substrate of cognitive functions.
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1 Introduction

The cerebellum is made up of large, anatomically overlapping cell networks. Most
networks include a cell group in the deep cerebellar nuclei which includes excitatory
projection neurons which carry the main output of the cerebellum (DCN, for deep
cerebellar neuron). A deep nuclear group receives the output of a microzone, a functionally
defined strip of cells in the outer layer of the cerebellar cortex (Oscarsson, 1979; Ozden
et al., 2009; Ramirez and Stell, 2016), from Purkinje cells, which carry the sole output of the
cerebellar cortex. Around 400 Purkinje cells converge onto perhaps 50 DCNs [it is likely
that population sizes vary but the cell ratio is consistent with reported convergence and
divergence ratios (Person and Raman, 2012b)].

DCNs fire spontaneously (Mercer et al., 2016; Raman and Bean, 1999) at robust rates,
averaging about 90 Hz in vitro with synaptic inputs removed or blocked [interpositus in
mice: 70 Hz in males, 110 Hz in females, hence the average (Mercer et al., 2016; Person
and Raman, 2012a)]. A single DCN normally receives continuous torrential inhibition
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from 30 to 50 Purkinje cells (Person and Raman, 2012b). DCN
firing rates nonetheless remain bi-directionally sensitive to a
coordinated change in afferent Purkinje cell rates (Pedroarena and
Schwarz, 2003). Discharge of a single Purkinje cell is irregularly-
patterned (Sauerbrei et al., 2015)—the timing of single spikes is
unpredictable and spike rasters have a stuttering appearance. This
is true even when they are responding to perfectly sinusoidal head
rotation in a vestibulo-ocular reflex paradigm (Guo et al., 2014).

The cerebellum is critical for skilled execution and fine
coordination of movements, requiring precise timing. Neuron
firing rates are thought to code values that are processed in
neural network computations. There are drawbacks with using
biophysical events to represent numbers. (1) Rate code (like any
sequence) is inherently slow to read. (2) At short intervals, the
code becomes unreadable biophysical noise. (3) Neuronal and
synaptic transmission times cause lag between the time of events
that generate input to the cerebellum and the time that motor
outputs are received in response. Both send and read times
impose significant delays, on the face of it too long for cerebellar
coordination of motor control at behavioral speeds.

We propose that the cerebellum solves the slow read time
problems (1 and 2) by coding information at the scale of
cell groups which communicate at that level, group to group.
From that premise, we can explain a range of evidence that
has previously been hard to account for (or thought of as
marginal to analysis), including anatomical architecture, cell
morphologies, firing properties (different for different cell types)
and specializations of synaptic contact. There is, we propose,
a passive but fundamentally important computational effect of
anatomy. This is the result of a combination of elements. The main
elements are:

(a) Strong convergence of Purkinje cells onto DCNs (because
Purkinje cells outnumber DCNs and also make divergent
contact, increasing the convergence ratio), so that a single
DCN receives a very high combined rate of spike input
even at low individual afferent rates.

(b) Contact by a single afferent cell via multiple boutons
which are scattered across the DCN soma surface and
intermingled seemingly at random with the boutons of
other afferent cells, so that charge transfer into the
postsynaptic cell is directly into the DCN soma, at all
locations of the soma surface, at a rate which is the
same everywhere.

(c) Each afferent spike causes a standard unit of inhibitory
charge entry notwithstanding the normally expected
mutual effect of membrane voltage and current. As a result,
the sum of charge inflow/time linearly reflects the mean of
afferent rates in very short time intervals—effectively, an
instantaneous rate.

Anatomy also coordinates network output. Contact on a single
DCN is made by a—seemingly, and we suggest—random sample
of Purkinje cells afferent to the DCN group. Effectively, DCNs
randomly sample Purkinje cell rates. As a result, DCNs individually
receive, at any instant in time, a mean rate of input which is
close to the mean for the sampled population (the population of
Purkinje cells). Accordingly, they receive close to the same mean

rate as each other, so that firing of DCN rates in an output group
is synchronized.

We propose that the cerebellum solves problem 3 by
exploiting short-term plasticity at the Purkinje cell-DCN synapse.
Firing of Purkinje cells is ceaseless but at a time-varying rate.
Synaptic transmission is simultaneously depressed (Pedroarena
and Schwarz, 2003; Telgkamp and Raman, 2002) and enhanced
(Turecek et al., 2016, 2017) by independent synaptic mechanisms
with a mutually antagonistic effect. On the face of it, this is a
puzzle. At a constant afferent Purkinje cell firing rate, the effects
net off. However, during behavior, when the Purkinje cell rate is
changing, the net effect—we propose—depends on the direction
and rate of change of the Purkinje cell rate. The result is that
in a locomotor cycle, the modulation of DCN firing rates in
response to Purkinje cell control is phase shifted to an earlier time,
potentially compensating for lag caused by signal transmission
times, including extracerebellar times. The amount of time—the
absolute shift—is adjusted for wavelength, so that compensation is
by a fixed adjustment regardless of wavelength.

It will be assumed that the time-varying probability of a
Purkinje cell action potential is synchronized between Purkinje
cells in a microzone. It has been proposed previously how this may
be coordinated (Gilbert and Rasmussen, 2025). For the argument
we make in this paper, it is unnecessary that Purkinje cell firing
is coordinated in the manner proposed previously, only that it is
coordinated.

The deep cerebellar nuclei have other outputs (Kebschull et al.,
2024). For example, there are projections to the inferior olive
and back to the cerebellar cortex. Our focus is the conversion
of Purkinje cell firing into control of DCNs. Boxes are used for
presentation of related ideas that accompany the main narrative.
References to Purkinje cell spikes are to simple spikes.

2 Purkinje cell rate information is
collectively coded in a time-varying
probability of simple spike discharge

Irregular spike timing is a common phenomenon in the brain,
even under tight experimental control (de Ruyter, van Steveninck
et al., 1997; Mainen and Sejnowski, 1995; Schreiber et al., 2004).
Purkinje cell somata form a thin single-cell layer, the Purkinje cell
layer, which lies between the outer and inner layers of the cerebellar
cortex and parallel to the cerebellar surface. Irregular firing of
Purkinje cells appears to be caused at least partly by stellate cells,
interneurons in the outer layer of the cerebellar cortex which inhibit
Purkinje cells. Oscillations of field potential in the Purkinje cell
layer can cause spike timing to become synchronized (Han et al.,
2018). Irregular Purkinje cell spike timing may be actively induced
to prevent firing from falling into an oscillating pattern (Box 1).

We hypothesized that Purkinje cell rate information is coded
in the moment-to-moment probability of simple spike discharge.
At any moment, in any cell, the outcome is binary (spike or no
spike), and independent of other cells. However, the probability is
synchronized between Purkinje cells in a microzone.

This proposition is consistent with the appearance of spike
rasters in behaving animals. In free-to-move rats, the spiking
pattern of a single cell is unpredictably variable but gives a smooth
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BOX 1 Irregular spike timing of Purkinje cells is induced so that control of DCNs is by rate information only, without interference from spike timing (we submit).

Stellate cells form planar networks (Palay and Chan-Palay, 1974; Sultan and Bower, 1998), making and receiving synaptic contact at the soma
(Lemkey-Johnston and Larramendi, 1968). Stellate cells themselves fire irregularly in vitro (Carter and Regehr, 2002; Häusser and Clark, 1997;
Ruigrok et al., 2011) and in vivo (Barmack and Yakhnitsa, 2008; Jörntell and Ekerot, 2002), probably the result of inhibiting each other, as they fall
into a regular firing pattern when inhibition is blocked (Häusser and Clark, 1997). Inhibition of Purkinje cells by stellate cells causes regular intrinsic
firing of Purkinje cells to become irregular (Häusser and Clark, 1997; Jelitai et al., 2016), and selective silencing of molecular layer (the outer layer of
the cerebellar cortex) interneurons causes Purkinje cell firing to fall back into a more regular pattern, and leads to motor deficits (Jelitai et al., 2016;
Wulff et al., 2009). Even a single stellate cell spike can potently inhibit a Purkinje cell (Arlt and Häusser, 2020).
Purkinje cells generate ephaptically coupled field potentials in the Purkinje cell layer which promote spike synchrony (Han et al., 2018) in
experimental conditions. As a result, left to themselves, neighboring Purkinje cells fall into an oscillating firing pattern. Purkinje cell-mediated
inhibitory postsynaptic currents decay quickly with a constant of ∼2.5 ms (Mercer et al., 2016; Person and Raman, 2012a). Even brief gaps between
IPSCs make inhibition-reduced windows in which DCN spiking is more likely (Wu and Raman, 2017). This is seen in the first couple of rounds of
spikes after stimulation of the mouse whisker pad, when spikes are briefly synchronized (Brown and Raman, 2018).
Such an effect of oscillations on DCN firing is an effect of spike timing. If this were to occur in natural conditions, it would interfere with control
exclusively by afferent rates. Interference would be noise if—as we propose—information is coded only in rates and not in spike timing. Irregularizing
Purkinje cell firing may be a strategy to disrupt ephaptic coupling, with the function of noise reduction by eliminating an influence on DCN firing of
oscillating field potentials. Purkinje cell recurrent collaterals (Witter et al., 2016) may share this function with stellate cells.

curve when spikes are counted in phase-locked bins across multiple
step cycles (Sauerbrei et al., 2015). Extracellular recordings from
Purkinje cells show a phase-dependent increase and decrease in
their firing rate during locomotion (in cats: Armstrong and Edgley,
1984, 1988; Edgley and Lidierth, 1988).

We reasoned that if Purkinje cells afferent to a DCN group
spike with a synchronized time-varying probability, the combined
input spike rate to a DCN in a single cycle should have the
same appearance as reported recordings from a single Purkinje
cell across multiple cycles. To replicate the physiological spiking
pattern of Purkinje cells, we represented Purkinje cells as random
spike generators that discharge with a changing probability
that oscillates sinusoidally between minimum and maximum
instantaneous firing rates of 50 Hz–200 Hz, mimicking the rat
(Sauerbrei et al., 2015). DCNs were represented by counting
spikes in millisecond bins for 200 ms, with Purkinje cell-to-DCN
convergence of 5:1, 10:1, 20:1 and 40:1 (40:1 is the physiological
mean), taking a rolling mean of consecutive counts as a proxy
for postsynaptic integration. We found (Figure 1) that the
integrated combined rate of spike input to a DCN reliably reflects
the underlying sinusoidal probability function: a synchronized
probability of Purkinje cell spike discharge is plausibly able to
code rate information (with 40:1 convergence). Noise reduction
and sensitivity are enhanced by increasing the convergence ratio
(Figures 1B, C). The rate of increase of noise reduction diminishes
as the convergence ratio increases (Figure 1D). The effect on
noise reduction of an increase in convergence that exceeds the
physiological ratio is relatively modest. There is little gain in
reproducibility by increasing convergence above the physiological
range (Figure 1E).

3 A single spike drives inflow to the
DCN soma of a standard unit of
inhibitory charge per spike per
bouton

Purkinje cells make contact on DCNs at the soma, via boutons
(de Zeeuw and Berrebi, 1996; Uusisaari and De Schutter, 2011).
A bouton encloses the space that GABA is released into. A DCN
receives 24–36 boutons from each Purkinje cell (Person and

Raman, 2012b; Telgkamp et al., 2004). A single DCN receives
significant contact from 30 to 50 Purkinje cells, so that the DCN
soma surface is engulfed in Purkinje cell boutons. The modulation
of inhibitory postsynaptic current is bidirectional, sensitive and fast
(Pugh and Raman, 2005; Telgkamp et al., 2004).

It forms part of our proposal that each input spike to a
single bouton causes a standard unit of charge transfer across the
postsynaptic membrane (“charge” in this paper refers to inhibitory
charge unless qualified). This provides the core element of a linear
relationship of Purkinje cell discharge probability and the rate of
charge movement across the postsynaptic membrane. Perineuronal
nets—an extracellular matrix that surrounds the DCN soma—
may assist the fidelity of this relationship, as they reduce paired-
pulse depression and spontaneous inhibitory postsynaptic currents
(Hirono et al., 2018). As in this proposal charge inflow per spike is
invariant, charge/time is a linear function of total spikes/time.

A linear relationship feels counterintuitive because it does not
allow for the expected mutual effect of transmembrane voltage and
current. However:

(i) A linear relationship has been reported—the charge
transfer rate is linearly related to a constant Purkinje cell
firing rate (Turecek et al., 2016, 2017). In mouse slices,
it has been reported that “the Purkinje cell-DCN synapse
differs from many other synapses in that frequency-
independent transmission leads to linear charge transfer
[at a constant Purkinje cell firing rate], which could encode
the absolute rate of Purkinje cell firing more efficiently
than a typical depressing synapse” (Turecek et al., 2016,
2017); and

(ii) Purkinje cell boutons are adapted to isolate the
relationship by controlling for other variables (Box 2).

We simulated spike input to the DCN soma to test if charge
transfer is proportional to the probability of Purkinje cell spike
discharge (Figure 2). We found that fidelity of the relationship
depends on the decay constant of postsynaptic current.

We represented Purkinje cells as random spike generators
that discharge with a probability derived from firing rates in
the rat physiological range during locomotion, as before. Each
spike initiates an episode of charge entry to the postsynaptic
soma (Figure 2A) with a fast rise time and a decay constant
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FIGURE 1

Spike input to a single DCN. Simulations were run in Matlab. (A) Spike input to a single DCN from 5, 10, 20, and 40 afferent Purkinje cells, each
millisecond, for 200 ms, representing a step cycle (of a rat: Sauerbrei et al., 2015). Spikes are generated with a sinusoidally varying probability
representing an instantaneous firing rate oscillating between 50 Hz and 250 Hz, and counted in millisecond bins. At each timestep, the probability is
the same for all Purkinje cells, but the outcome (1 or 0 spikes) is independent. The stepped red line is the expected firing rate at each probability.
Convergence ratios are shown above each column. (B) We took a rolling mean of consecutive counts as a proxy of postsynaptic integration. The
combined spike input rate to a DCN is well predicted by the probability function. (C) The same as (A) but y axes are scaled to the data to illustrate
noise reduction relative to the data range. The coefficient of variation is inversely related to the convergence ratio. (D) The relationship of relative
precision and the convergence ratio. Jitter is defined as the difference in the spike count between consecutive 1 ms bins, normalized for the
convergence ratio (by dividing by the number of afferent Purkinje cells), averaged across a 200 ms step cycle. Plotted data are mean jitter (+/– 1 SD)
across 20 cycles with integration (red data) and without (blue), expressed as a percentage of the number of afferent Purkinje cells. (E) The mean
correlation coefficient (+/– 1 SD) of all possible pairs in 20 simulated datasets of a 200 ms step cycle, plotted for each convergence ratio in the
range x = 5:1 to 80:1. Most of the increase in reliability is in the lower end of the range, with diminishing returns at higher ratios.

which we varied. A single unit of current is taken as peak
amplitude of charge entry caused by a single input spike.
Temporally overlapping episodes summate. Current was summed

in intervals of 0.05 ms. Summation of current is linear—
the quantum and dynamics of a unit of charge entry are
inviolable.
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BOX 2 Physiological adaptations of the Purkinje cell bouton reduce noise.

Variables that affect transmission but code nothing are noise. Purkinje cell-DCN contact is adapted to isolate the relationship of Purkinje cell
discharge probability and charge transfer by controlling for other variables, we submit. There are presynaptic and postsynaptic adaptations.
Presynaptic: Presynaptically, boutons contain a large number of neurotransmitter release sites. Individually low vesicular release probability by a large
number of presynaptic vesicles (Pugh and Raman, 2009) reduces spike-to-spike variability of release. Reuptake by astrocytic transporters is confined
to the bouton perimeter so that rapid GABA diffusion inside a bouton ensures that postsynaptic densities are activated as a single functional unit.
Intrabouton summation of consecutive releases is absent provided the interspike interval at physiological Purkinje cell rates is not shorter than the
time needed for intrabouton GABA concentration to be restored to baseline. At 200 Hz, the time available is ∼5 ms. For comparison, the decay
constant of inhibitory postsynaptic current is ∼2.5 ms (Mercer et al., 2016; Person and Raman, 2012a).
Cross-integration between boutons is absent because boutons are physically bounded. Otherwise, the surface of the DCN soma would be bathed in
a GABA cloud.
Postsynaptic: Charge entry to the DCN soma evoked by a single afferent Purkinje cell—indeed a single spike—is delivered at multiple boutons
[24–36 in mice (Person and Raman, 2012b)] that are dispersed across the soma surface. These are intermingled with boutons of other Purkinje cells.
As far as we know, boutons are randomly sited. Some 1,200 boutons, provided by an average of 40 Purkinje cells, cover the somatic surface. The
combined input spike rate (from ∼40 Purkinje cells, each firing continuously at typically robust rates) is therefore very high. The functional effect is
of convergence onto a point, i.e., while present, spatial and temporal integration are not variables. So, noisy variables associated with discrete
signals, and variables associated with receiving signals dendritically, are absent.

In all tested conditions—i.e., regardless of the duration of the
decay constant—the mean of current data taken over 200 ms
precisely encodes Purkinje cell discharge probability. However,
individual current data vary around the mean at shorter time
intervals. Unexpectedly, variation is not reduced by increasing
the length of the decay constant. Rather, while data vary more
smoothly, they vary in a larger range, further from the mean.
A short decay constant is more precise (current data are more
tightly grouped) but also more jittery (inside that range, current
fluctuates randomly at high frequency).

4 A sub-millisecond rolling mean
dampens jitter of current data

We reasoned that fast but not instantaneous voltage-
proportional charge expulsion from the DCN soma may mimic
a rolling mean with a short decay constant. Our reasoning is
that over an unknown minimum time interval, the amount of
charge that crosses the DCN somatic membrane in both directions
nets off. Otherwise, there would be a progressive accumulation
or depletion of negative charge inside the postsynaptic cell. We
envisage that removal of negative charge is fast, at a rate which
varies proportionally with negative membrane potential, but not
instantaneous. Because there must be at least some lag, the rate
of removal cannot precisely keep pace with the rate of entry, so
there must be (short-term) dampening of the rate of change of
membrane potential, to preserve net-off. We mimicked that by
averaging current in short time intervals.

Taking a rolling mean of postsynaptic current data even in
a very short rolling time interval profoundly dampens jitter.
With a short (but not a long) decay constant, dampening causes
current data to converge strongly toward a straight line at
a constant afferent Purkinje cell firing “rate” (i.e., unchanging
spike probability).

We took a rolling mean with different decay constants
(Figures 2C, D). We saw previously that a short decay constant
causes inward current to fluctuate at high frequency and low
amplitude. In those conditions, a rolling mean, even taken at very
short time intervals (sub-millisecond), causes the data to converge
strongly toward the 200 ms mean at a constant Purkinje cell
discharge probability. That is, smoothing the data has the result

of also increasing precision. This effect diminishes strongly with a
longer decay constant (smoothing does not increase precision, or
does so less).

We used a very short rolling interval to reflect a prediction that
charge expulsion from the soma is fast. Functionally, fast expulsion
means that somatic charge closely reflects the very recent rate of
charge entry, and therefore recent information.

We next tested whether regional differences of input to different
sites of the DCN somatic surface make a difference to the effect
received by the postsynaptic cell. We simulated the division of the
DCN somatic surface into 40 subregions (Figure 3). The linear
relationship of Purkinje cell discharge probability and the 200 ms
mean of inward current is unaffected. There is a slight contraction
of the range of current data but not enough to infer physiological
significance from in silico results.

5 DCNs in a nuclear group fire at a
synchronized rate

There is no reported internal organization of the pathway from
a microzone to a DCN group (Apps et al., 2018 p. 663), or of the
way that Purkinje cells terminate. On the face of it, and we propose,
a single DCN receives contact from a random sample of Purkinje
cells afferent to a DCN group. Anatomy simulates sampling with
“replacement”—there is no influence of the make-up of the sample
received by a DCN on the make-up of the sample received by any
other DCN. Accordingly, DCNs independently randomly sample
Purkinje cell firing rates. This is functional. The sum (or mean) of
independent random samples has a frequency distribution with a
narrower range than the sampled distribution, so random sampling
causes the postsynaptic effect to contract toward synchronized
modulation of DCN somatic charge (Figure 4).

Physiological performance is unlikely to produce exact co-
modulation of DCN firing. Decay constant durations are not
exactly equal, boutons are not exactly standard, and the number
of Purkinje cells afferent to a DCN, and boutons received from
each Purkinje cell, are random variables. We explore in Box 3 a
mechanism which may tighten synchrony. Note: In physiological
conditions, inhibition of DCNs receives modulation by short-
term plasticity, discussed in section “6 Short-term plasticity may
compensate for lag caused by transmission times.” Figure 4 is
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FIGURE 2

Charge entry to the DCN soma. (A) Simulation of inhibitory charge entry to the DCN soma driven by a single Purkinje cell firing at an instantaneous
rate of 20 Hz (top panel), 50 Hz (middle panel) and 200 Hz (bottom panel), for 200 ms. A Purkinje cell is represented as a random spike generator.
Spikes are generated with a probability of N/20,000, in each timestep (of 0.05 ms), with a refractory period of 1 ms, where N is the instantaneous
rate. Each spike triggers a standard quantum of simulated charge entry to the postsynaptic cell. The quantum depends on the decay constant of
inhibitory current. Current has a decay constant of 1.25 ms (blue), 2.5 ms (yellow), 5 ms (pink) and 7.5 ms (gray). All signatures have the same rise
time and peak amplitude. Peak amplitude of a unit of charge entry is take as a unit of current equal to 1. Where quanta of the same color overlap in
time, current sums linearly. Even at 200 Hz summation is intermittent. It is sparse with a short decay constant. (B) Left: the same as (A) but input is
from 40 Purkinje cells, firing at an instantaneous rate of 50 Hz. Current summates reliably but not smoothly. Middle and right: we ran the simulation
200 times, increasing the Purkinje cell discharge probability by the equivalent of 1 Hz each time, from 50 Hz to 200 Hz, and each time calculated the
mean of current data and coefficient of variation (CV) in each condition (i.e., for each decay constant). There is a linear relationship between Purkinje
cell discharge probability and the mean rate of charge entry to the DCN soma in all conditions. (C,D) We took a moving average of current data in a
rolling time interval of 0.5 ms (C) and 1 ms (D). In conditions that in (B) cause random fluctuation of current data at high frequency and low
amplitude (i.e., with a short decay constant), data converge toward the 200 ms mean, so that they approach a linear relationship with Purkinje cell
discharge probability. That is, smoothing the data also increases precision. With a long decay constant, data converge weakly toward the mean (data
are smoothed but there is little increase of precision).

a hypothetical case—the simulation does not include short-term
plasticity—to illustrate that biological exploitation of statistics has
reliable computational output.

6 Short-term plasticity may
compensate for lag caused by
transmission times

The cerebellum is reciprocally connected with the cerebral
cortex (Strick et al., 2009), and is involved in sensory-motor

loops. This section argues that Purkinje cell-DCN short-term
synaptic plasticity may provide a mechanism that compensates for
extracerebellar transmission times.

Purkinje cell to DCN transmission simultaneously receives
opposing effects of short-term changes which both depress
(Pedroarena and Schwarz, 2003; Telgkamp and Raman, 2002) and
facilitate (Turecek et al., 2016) inhibition of the postsynaptic cell.
In a steady state—i.e., when Purkinje cells maintain a constant
firing rate—there is a linear relationship of Purkinje cell firing
and charge transfer, so that inhibition scales with the absolute
rate (Turecek et al., 2016, 2017). However, depression is slower to
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FIGURE 3

Random sampling of Purkinje cells by different somatic sites. (A) We simulated the division of the DCN somatic surface into 40 subregions, each
receiving contact from a random sample of 30 out of 60 Purkinje cells afferent to the cell. That generated 40 data sets of 4,000 values each,
representing the rate of charge entry to each site each ms/20 for 200 ms. We took the mean of data at each time point to represent the rate of
charge entry to the cell. The results are shown for each decay constant using the same color code as earlier Figures. Sampling is out of 60 because
the total number of Purkinje cells afferent to a DCN is higher than the estimate for “significant” contact. Thin lines are the rate of inhibitory charge
entry to 10 out of 40 sites (selected at random; only 10 are shown to thin the data for presentation). Bold lines are the rate of charge entry averaged
across all locations. (B–D) We took a 0.1 ms (B), 0.5 ms (C) and 1 ms (D) rolling average of data generated in this way, for Purkinje cell discharge
probabilities equating to firing rates in the range 50 Hz–200 Hz, and calculated the mean and coefficient of variation (CV) in each condition (i.e.,
each permutation of rolling interval, decay constant and discharge probability). The linear relationship of Purkinje cell discharge probability and the
200 ms mean of current data is unaffected. There is a slight reduction of the range of oscillation around the mean but the effect is modest.

FIGURE 4

Communication by a microzone with a nuclear group. 1 ms rolling average of inhibitory current passing into the soma of a DCN each 1/20 of a ms
for 400 ms. The color code is the same as earlier figures. Input to a cell is from 40 out of 400 Purkinje cells afferent to the nuclear group (40:1 is the
mean physiological convergence ratio), each firing with a sinusoidally fluctuating probability of spike discharge mimicking firing across the rat step
cycle. The simulation generates 50 data sets per color, representing a nuclear group of 50 DCNs, of which a randomly selected 10 are displayed to
declutter presentation of the data. The bold line is the mean. Precision is inversely related to the duration of the decay constant, as it was at a
constant Purkinje cell “rate.” The reported decay constant for mice is between the yellow and pink data. These are hypothetical conditions—in
physiological conditions current receives an influence of short-term plasticity (Figure 6).

adapt to a change in the Purkinje cell rate. As a result, when the
rate changes, there is a delay (of around 100 ms: Telgkamp and
Raman, 2002) before the steady-state balance between depression
and facilitation is restored. This makes the nuclear response
sensitive to change of the afferent rate, rather than (only) the rate
itself.

During locomotion, Purkinje cell firing rates change ceaselessly,
passing through a repeating cycle; some cycles resemble a sine wave
(Edgley and Lidierth, 1988; Sauerbrei et al., 2015). Cycle duration is
sub-second—200–300 ms in the mouse (Sarnaik and Raman, 2018).
Accordingly, there is a dynamic state of imbalance of short-term
depression and facilitation. As a result, during behavior, the DCN
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BOX 3 DCN axon collaterals may tighten synchrony of DCN firing in a nuclear group.

DCN recurrent collaterals may increase disynaptic convergence of Purkinje cells onto DCNs, causing DCN firing rates to be more tightly grouped.
The deep cerebellar nuclei contain what were at one time presumed to be glutamatergic interneurons (Uusisaari and Knopfel, 2008) which are
intrinsically active but normally held under inhibitory restraint by Purkinje cells. Therefore, a fall in Purkinje cell rates, which disinhibits nuclear
projection neurons, also causes interneurons to excite them, and vice versa. More likely, presumed interneurons are in fact collateral axon branches
of DCNs (Kebschull et al., 2020). If axon collaterals terminate back in the same nuclear group, so that a group provides excitatory input to itself, it
would substantially increase functional divergence of Purkinje cells onto DCNs, i.e., direct contact plus disynaptic influence (Figure 5). Even a very
small fraction of Purkinje cells (2.5%) afferent to a nuclear group is sufficient to influence the whole or almost the whole of a DCN group
disynaptically. For the same reason, there is a high disynaptic convergence ratio—a large fraction of Purkinje cells afferent to a nuclear group have
either a direct or disynaptic influence on a single DCN.
Figure 5C shows the frequency distribution of the number of Purkinje cell spikes received by each DCN in a single timestep (1 ms bin) of the cycle in
Figure 1, with and without taking a rolling mean. Each DCN receives input from a random sample of 40 Purkinje cells (the physiological mean) out of
400 afferent to a simulated nuclear group of 50 cells. We then resampled the Figure 5C distribution (50 times, representing 50 DCNs), to simulate
innervation by DCN axon collaterals. We set the nucleo-nuclear divergence ratio at 1:5 (it is unknown). Therefore, sample size was five, the mean
convergence ratio. Randomly sampling a normal distribution gives another, narrower distribution, seen in Figure 5E. The result is a tightly-focused
distribution even at an extremely short time scale. Excitatory synaptic contact on DCNs is primarily (75%) dendritic (de Zeeuw and Berrebi, 1996),
plausibly providing tonic excitatory smoothing of the effect of direct inhibition.

FIGURE 5

An interneuronal effect of DCN collaterals. (A) The probability that a number of DCNs, x, all receive contact from 1 or more (pink), 2 or more (red), or
3 or more (dark red) out of a random sample of 10 Purkinje cells, which each make contact at random on 5 DCNs. The number of Purkinje cells is
chosen for illustration. The probability distribution was derived from the probability that a given DCN (out of a group of n = 50) receives contact
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( z
n

)y
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(B) The same as (A) but representing nucleo-nuclear contact made by recurrent axon collaterals of a subset of 33 DCNs—the average number that
receive contact from at least 1 Purkinje cell in (A)—again with divergence of 1:5 and assuming contact is at random within a nuclear group. Just 10
Purkinje cells—only 2.5% of the population afferent to a nuclear group—exert a secondary effect on all or almost all DCNs, and an average of 86%
DCNs receive convergent input i.e., excitation from 2 or more of their neighbors. (C) Frequency distribution representing one millisecond of a step
cycle showing the number of Purkinje cell spikes received by each DCN in a nuclear group, with (blue) and without (pink) taking a rolling mean, with
a Purkinje cell discharge probability equivalent to a firing rate of 147.5 Hz (the fifth timestep in the Figure 1 cycle, selected at random), assuming a
DCN population of 50 and Purkinje cell to DCN convergence of 40:1. (D) The frequency distribution in (C) reflects a probability distribution (same
color code). (E) DCNs give rise to axon collaterals which are believed to terminate back in the same group. If so, and collaterals terminate at random
inside a group, a DCN effectively randomly samples firing rates of its neighbors. The distribution in panel (C) was randomly sampled 50 times
(representing 50 DCNs), sample size 5 (reflecting an assumption that divergence is 1:5). Sample means were plotted as a frequency distribution.
Resampling narrows the distribution. The x-axis label alludes to the fact that the data are not a spike count per se. (F) Dots: we repeated (C) 50
times, calculating the coefficient of variation (using the same color code). Lines: the same but repeating (E). Focus is tightened by resampling.

Frontiers in Neural Circuits 08 frontiersin.org

https://doi.org/10.3389/fncir.2025.1548123
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-19-1548123 April 3, 2025 Time: 18:27 # 9

Gilbert and Rasmussen 10.3389/fncir.2025.1548123

firing rate receives an influence of the rate of change of the Purkinje
cell rate as well as the rate itself.

We hypothesized that the net effect depends on the direction
and speed of change of the Purkinje cell firing rate. When the
Purkinje cell firing rate falls, lag means that short-term depression
is stronger than it would be at the same firing rate if the rate was
constant. As a result, there is net short-term depression that is
proportional to the rate of fall, and therefore weaker inhibition
than steady-state inhibition at the same firing rate. When there
is a rising Purkinje cell firing rate, this is reversed, that is, there
is net facilitation (again proportional to the rate of increase), and
therefore stronger inhibition than steady-state inhibition at the
same firing rate. A faster rate of change in either direction causes
transiently greater inequality between depression and facilitation,
and therefore a larger effect.

At any given instant in time, the rate and direction of change
are given by the derivative of the Purkinje cell rate, i.e., the slope of
a tangent to the rate curve at that time, derived by differentiation.
The net effect of short-term plasticity accordingly has the same
sign and varies (we assume linearly) with the derivative. Therefore,
for example, it is momentarily nil when the direction of change
switches, because the tangent at that time is horizontal. With
a sinusoidal rate curve, it is nil twice a cycle, at the minimum
and maximum Purkinje cell firing rates. The derivative of a sine
function is another sine wave with the same frequency, 90 degrees
(i.e., a quarter cycle) out of phase with the first, shifted to the left
(Figure 6A).

It is not known whether the influence of rate dynamics fully
displaces control by absolute rates in the behaving animal, or (more
likely) net inhibition reflects the balance of their influence. The
balance—net inhibition—is a function of the sum of the absolute
rate and its derivative (itself representing net short-term plastic
change), which we take as the sum itself to illustrate the effect.
When sine waves with the same frequency are linearly combined,
the result is a sine wave with the same wavelength which peaks
somewhere in between (Figures 6B–D). The amount of the phase
shift depends on their relative amplitude. The smaller the relative
amplitude of the derivative curve (representing a modest effect of
short-term plasticity), the smaller the shift from the rate curve, and
vice versa. We illustrate the effect of adjusting relative amplitude of
the derivative curve in Figures 6B–D.

We contend that by this mechanism, short-term plasticity
causes DCN firing rates—cerebellar output—to be phase shifted to
the left during locomotion. The result is to compensate for delay
caused by extracerebellar transmission times, so that motor output
of the cerebellum is received in phase with movement, without lag.

Because transmission time is short compared to the duration
of a locomotion cycle, a modest phase shift may be sufficient
to compensate for transmission times. Accordingly, the primary
influence on DCN firing is provided by the absolute Purkinje cell
rate, with an adjustment to reflect rate dynamics, we submit.

The duration of a locomotive cycle—wavelength—varies
inversely in real time with the speed of the relative motion of body
parts. There is an automatic real-time adjustment of phase shift for
wavelength. Measured in degrees, shortening wavelength increases
the size of the phase shift, and vice versa. Measured in milliseconds,
however, the amount of the shift is virtually fixed (for wavelengths
longer than ∼200 ms: Figure 6E). That is, the variation measured

in degrees causes the shift in milliseconds to be independent of
wavelength, as expected, because transmission times are constant.

7 Discussion

Figure 7 is a schematic using text boxes to summarize the main
ideas put forward in this paper.

7.1 The deep nuclei solve timing
problems

“The naive concept of the cerebellar nuclei as a “simple” relay
station that (inversely) forward signals computed in the cerebellar
cortex. . .is now increasingly seen as lacking in depth” (Kebschull
et al., 2024). We propose a functional view of the anatomy of
communication between Purkinje cells and a deep nuclear cell
group. This is the result of an attempt to explain the evidence
and can be regarded as addressing two problems. First, coding
information in neuronal firing rates (or any sequence) is inherently
slow to read, too slow for behavioral speeds. Related to this, at
short time intervals a readout becomes unreadable noise. How
does the cerebellum decode inputs faster than it can read single
signals? Second, signal transmission times cause delay, so motor
commands lag events. How does the cerebellum compensate for
signal transmission times so that motor outputs are timely?

We propose that the solution to slow read times is a passive
computational effect of anatomy. Stated briefly, the combined input
spike rate to a DCN is the sum of spike input from a random
sample of Purkinje cells afferent to a nuclear group, so that DCNs
individually receive an extremely high rate which is (i) therefore
virtually instantaneously readable; and (ii) linearly related to the
mean of afferent Purkinje cell rates; and so also (iii) synchronized
in an output cell group.

The solution to transmission times, we argue, is short-term
plasticity at the Purkinje cell-DCN synapse, which we explain as a
mechanism which becomes active at a changing Purkinje cell firing
rate, when the net effect depends on the direction and speed that the
rate is changing. In a locomotor cycle, the result is to phase shift the
cycle of inhibition of a DCN group to the left, compensating for lag.

7.2 Regarding compensation for
transmission times

Compensation for transmission times depends on a dynamic
Purkinje cell spike “rate.” Cyclic patterns, some of which are
sinusoidal (some have more than one peak per cycle), have been
reported in walking cats and rats (Edgley and Lidierth, 1988;
Sauerbrei et al., 2015). Cerebellospinal neurons provide “a direct
link between the cerebellum and spinal substrates for motor
coordination” (Sathyamurthy et al., 2020). The output pathway
is reciprocated by spinocerebellar neurons, providing a substrate
for direct motor control. Neurons of the spinocerebellar tracts
are excited monosynaptically by group Ia and group Ib afferents
that originate in muscle spindles and tendon organs, respectively
(Sengul and Watson, 2015). Afferent nerves that innervate muscles
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FIGURE 6

Short-term plasticity may phase shift Purkinje cell inhibition of DCNs. (A) Solid gray line: y = sin(x); dotted gray line: dy
dx , the derivative; pink line: the

sum of the solid gray line and dotted gray line data—there is a 90-degree phase shift of the derivative and a 45-degree phase shift of the sum.
(B) Solid red line: y = a

(
sin

(
z x

π

))
+ b, where (for illustration) a = 50, the size of the range of the sinusoidally-varying Purkinje cell firing rate either

side of b, and b = 75. x represents time and z is used to adjust wavelength. The solid red line represents membrane voltage of the DCN soma across
a locomotion cycle under the sole influence of the Purkinje cell rate, without an adjustment by short-term plasticity. Dark blue dotted line: ∂f

∂x , the
derivative of the red function in respect of x keeping other variables constant. Blue amplitude represents the size of the effect of short-term
plasticity. Large amplitude represents more relative influence (in a balance with influence of the absolute Purkinje cell rate). Dotted red lines: the
sum at each time point of the solid red line and one of the dotted blue lines. Dark to light blue corresponds to dark to light red. For example, the
darkest red dotted line is the sum of the solid red line and the darkest blue dotted line. The result in all cases is a phase shift to the left. Increasing
blue amplitude increases the size of the phase shift. (C,D) Same as (B) but wavelength is halved in (C) and further reduced in (D) (by changing z).
Shortening red wavelength increases blue amplitude because blue amplitude varies with the rate of change of the Purkinje cell firing rate.
Accordingly, shortening red wavelength increases the size of the phase shift measured in degrees, i.e., relative to wavelength. (E) The size of the
phase shift measured in milliseconds plotted against wavelength. Dark to light blue corresponds to the amplitude of the derivative curve, as in (B–D).
A horizontal line indicates that phase shift is independent of wavelength, i.e., fixed measured in milliseconds. For either all (dark blue) or most (light
blue) of the λ range, data approach a flat line. For comparison, the duration of the mouse step cycle is 200–300 ms. (F) The size of the phase shift as
a percentage of wavelength. To maintain a constant absolute phase shift, the size of the percentage shift varies with wavelength.
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FIGURE 7

Summary of the main ideas presented in this paper. Text boxes headed ‘Problem’ state briefly a physiological design problem. Text boxes headed
‘Solution’ are the cerebellar solution.

signal muscle length and the rate of change of muscle length, so
nerve endings generate a cyclic rising and falling firing rate which
is received as input to the cerebellum.

Lag compensation does not discriminate between inputs to a
network, suggesting that travel times of inputs are not significantly

variable or mixed. Signals originating in afferent nerves that
excite the spinocerebellar tract, which enter the spinal cord in the
same segment or neighboring segments, travel the same distance
by the same pathway. Fast transmission reduces the effect of
variable distance on timing. Internally generated information about
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movement is relayed by “large diameter, myelinated, afferent nerve
fibers innervating specialized mechanoreceptors called muscle
spindles and Golgi tendon organs” (Loeb and Mileusnic, 2015).

In the opposite direction, descending outputs that innervate
a single motor neuron pool meet the same criteria. The number
of output cells of a single network is modest. Descending
motor signals are received by motor neuron pools, internally
undivided columnar spinal nuclei, which convert excitation into
proportionate recruitment and contraction of muscle fibers. In
a straightforward system, this would provide the substrate for a
cerebellar circuit to have a one-to-one relationship with a muscle,
since a motor neuron pool innervates a single muscle, and a
muscle receives innervation by a single motor neuron pool. In a
more sophisticated system and perhaps later development, a motor
neuron pool may receive input from more than one DCN group,
but a DCN group has output to only one motor neuron pool.

We make these observations to suggest a possible topography
that would allow motor circuits to incorporate compensation
for transmission times. We submit that the deep cerebellar
nuclei provide the hardware for precise timing associated with
motor coordination.

7.3 Regarding other models

Our modeling envisages that microzone-grouped Purkinje cell
spike probability is narrowly focussed, as suggested by a model of
the cerebellar granular layer computation (Gilbert and Rasmussen,
2025, in press). In that model, granule cell encoded information is
coded in the joint activity of large cell groups in the shape of long
strips which mirror microzonal organization. The result is that the
Purkinje cell population of a microzone downstream all receive, at
any time, the same parallel fiber code. Control of Purkinje cells is
rate coded.

On the face of it, this is in conflict with supervised learning
models which have had a strong influence on thinking about the
cerebellum, and which some researchers regard as an accepted
understanding, and also with assumptions often made by artificial
neural network models. In those models, learning under externally
sourced instruction signals (hence “supervised”) teaches synaptic
changes of transmission strength. Following training, the naive
response to “remembered” patterns (inputs to training modified
synapses) is displaced by a learned response. The function is to
actively supplant control by firing rates. There is no proposal
that microzone-grouped Purkinje cells receive the same code,
or mechanism for them to fire at coherent rates. The ideas
presented here are probably therefore not readily reconciled
with those models.

7.4 A note on DCN recurrent collaterals

It feels counterintuitive that a cell group would have
monosynaptic input to itself via axon collaterals. It would seem
to achieve only that they receive information they already have.
The function is to synchronize firing rates in a group. In this view,
recurrents that angle back to make dendritic contact on other cells
in the group provide background excitatory tone which reflects an
average of firing rates of a random sample of other cells. The effect is

to further tighten the focus of DCN rates by adding a second “layer”
of averaging. In the first, DCNs randomly sample Purkinje cells
afferent to the group, and in the second they randomly sample their
neighbors, averaging the outputs of the first step. The precision this
seeks to achieve is related to the contribution of the cerebellum to
fine control and smooth execution of movements.
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