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Blood flow restriction (BFR) is a peripheral intervention that induces transient

and reversible physiological perturbations. While this intervention o�ers a

unique model to explore neuromuscular responses in multiple contexts, its

impact on neural input to motoneurons remains unclear. Here, the influence

of BFR on muscle force control, behavior, and neural input to motoneurons

during isometric-trapezoidal and isometric-sinusoidal little finger abduction

precision tasks has been studied. Sixteen healthy participants performed the

tasks under pre-BFR, during BFR, and at two post-BFR conditions. High-density

surface electromyography (EMG) was recorded from the abductor digiti minimi

muscle, and motor unit spike trains (MUST) were decomposed using blind

source separation technique. Coherence between cumulative spike trains

(CSTs) of identified motor units was calculated to assess common synaptic

input in the delta and alpha frequency bands. As expected, during BFR

application, participants reported higher level of discomfort and significant

deterioration in force-tracking performance, as measured using root mean

square error (RMSE). Following the BFR release, the level of discomfort,

along with impaired neuromuscular performance were reduced to pre-BFR

condition. Coherence analysis revealed a prominent peak in the alpha band.

The mean z-score coherence in the alpha band showed a reduction of 27% for

isometric-trapezoidal and 31% for isometric-sinusoidal conditions from pre-BFR

to BFR, followed by a rebound post-BFR intervention with increases of 13% and

20%, respectively. In the delta band, coherence values were consistently higher

during sinusoidal tasks compared to trapezoidal ones. These findings indicate

that brief BFR application led to decrease in motoneuron synchronization and

force control precision likely due to desensitization as shown by changes in

coherence alpha band.

KEYWORDS

blood flow restriction (BFR), high-density electromyography (HD-EMG), motor unit

decomposition, motoneuron coherence, force tracking, isometric trapezoidal and
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1 Introduction

Coordinated muscle activity and precise motor control depend on the synchronized

activation of motoneurons within the central nervous system (CNS) (Farmer, 1998). This

synchronization is facilitated by common synaptic inputs to motoneurons, which lead to

coherence in their firing patterns and enable efficient force production and movement

accuracy (Baker et al., 1999). Examining coherence between various neurophysiological

signals provides valuable insights into the mechanisms underlying motor coordination and

the functional coupling within the CNS (Conway et al., 1995).
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In terms of spectral components, the coherence signal is

associated with different aspects of neural information processing.

The delta band (δ-band, below 5Hz) reflects the effective common

drive to motoneurons, and represents low-frequency oscillations

that synchronize motor unit firing for steady force production (De

Luca and Erim, 1994). In contrast, the alpha band (α-band, 5–

13Hz) is associated with physiological tremor and proprioceptive

(somatosensory) feedback, and indicates the influence of sensory

inputs and spinal circuitry on motoneuron synchronization

(McAuley et al., 1999).

Coherence calculation methods typically involve assessing the

level of common neural drive between various neurophysiological

signals, with electromyography (EMG) being a prominent example

(Halliday et al., 1999). However, relying on raw EMG signals

may underestimate coherence levels because motor unit action

potentials are naturally filtered neural information (Farina et al.,

2014). Furthermore, rectification of the EMG signal, a common

practice in EMG amplitude analysis, is a non-linear operation

(Clancy et al., 2002; Dideriksen et al., 2018), which can impose

additional distortions by potentially altering the signal’s frequency

content, further complicating the interpretation of neural drive

to the muscle (McGill et al., 2005). Therefore, these methods

face limitations in accurately capturing the complete spectrum of

neural drive.

Conversely, motor units–motor units (MUs–MUs) level

coherence is performed on cumulative spike trains (CSTs)

from motor units, calculated as the sum of discharge

times from a selected number of motor units (Negro and

Farina, 2012). This method offers a more precise measure

of neural connectivity and common drive (Negro et al.,

2009), and is less susceptible to noise issues that can affect

neurophysiological signals.

MU–MU–based coherence can be used as a tool to understand

the effect of interventions aimed at enhancing motor performance

and rehabilitation outcomes (Del Vecchio et al., 2019b; Avrillon

et al., 2021; Maillet et al., 2022). One such intervention is blood flow

restriction (BFR), a peripheral technique involving the application

of external pressure to limbs to partially restrict arterial inflow

and venous outflow (Loenneke et al., 2012). BFR creates a hypoxic

environment and induces transient physiological perturbations

(Patterson et al., 2019). The hypoxia and metabolic stress induced

by BFR can influence muscle afferent feedback and central motor

drive, potentially alteringmotor unit recruitment strategies (Taleshi

et al., 2025) and synchronization (Scott et al., 2016). These

consequences of BFR present it as a valuable model to study

sensorimotor system in healthy individuals.

Previous studies have demonstrated that BFR can affect

EMG activity and motor unit behavior, including changes in

EMG amplitude and motor unit firing rates (Yasuda et al.,

2011; Gizzi et al., 2021; Bubeck et al., 2024). However, it

remains unknown whether motoneurons are controlled in a

similar way and receive a similar type of common synaptic

input during occlusion, and how BFR administration alters

synchronization within the CNS to coordinate and control

muscle. Therefore, in this study, we aimed to report the changes

in the common synaptic input to motoneurons in response

to BFR during isometric-trapezoidal and isometric-sinusoidal

precision tasks.

To achieve this, we decomposed motor unit spike trains from

high-density surface electromyograms (HD-EMGs) recorded from

the abductor digiti minimi (ADM) hand muscle. By calculating

the coherence between groups of motoneurons at the muscle level,

we sought to understand how BFR affects this neural interplay.

Building upon existing evidence, our study is designed to report the

direct impact of muscle BFR on force control and common synaptic

input to motoneurons.

2 Methods

2.1 Participants

Sixteen participants (11 males, five females), of whom one

was left-handed, all self-reporting good health with no known

neurological, cardiovascular, or musculoskeletal disease, were

involved in this study. Ethical approval was granted by ethics

committees of University of Stuttgart (approval number 18–

003) and Aalto University (decision number: D/398/03.04/2021).

Participants were thoroughly informed on the study’s methodology

and provided informed consent by reviewing and signing the

necessary documents. The average [± standard deviation (SD)]

age was 32 years old (± 5 years), with an average weight

of 72 kg (± 19 kg) and an average height of 173 cm tall (±
12 cm). Blood pressure measurements indicated an average systolic

pressure of 112 mmHg (± 10 mmHg) and diastolic pressure of

80 mmHg (± 6 mmHg).

2.2 Experimental protocol and setup

Every participant completed two distinct little finger abduction

movement experiments lasting ∼3 h. Individual experiment

consisted of either trapezoidal or sinusoidal force tracking tasks,

performed in a randomized order to prevent order effects. A rest

period of at least 30min was provided between experiments.

Participants performed three maximum voluntary contraction

(MVC) force trials at the beginning (pre-MVC) and at the end

(post-MVC) of each experiment (Figure 1B). During these trials,

they were verbally encouraged to exert their maximum force for

3 to 5 s, with at least 120 s of rest between attempts. The highest

force recorded among the three trials was used for subsequent

calculations of relative force values in the motor tasks that followed.

The mean (± SD) values across all participants for experiment 1,

pre-MVC was 14.6N (± 10.3N) and post-MVC was 13.3N (±
10.8N), and for experiment 2, pre-MVC was 12.9N (± 8.9N) and

post-MVC was 12.5N (± 8.2 N).

Within each experiment, the initial five movements (pre-

BFR) and the final 10 movements (post1-BFR and post2-BFR)

were conducted under normal atmospheric pressure conditions,

with the BFR cuff deflated. The second five repetitions (BFR)

were conducted under high-pressure conditions, where the cuff

pressure was elevated to 1.3 times the participant’s systolic pressure

(Gizzi et al., 2021). Blood pressure was measured using an analog

sphygmomanometer (Boso classic and Bososcope cardio models,

Bosch+Sohn, Jungingen, Germany) equipped with a cuff and
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FIGURE 1

(A) Schematic of a high-density electromyography (HD-EMG) recording setup, featuring a subject with an arm placed in a rig to maintain hand

posture, connected to a real-time feedback system displaying actual and desired force outputs. (B) Sequential representation of blood flow

restriction (BFR) conditions on arm muscles. Only the isometric-sinusoidal experiment is shown here. The conditions are di�erentiated by distinct

pressure changes. The pre-BFR condition, where the arm is at atmospheric pressure; the BFR condition, where high pressure is applied to restrict

blood flow; followed by two post-BFR conditions where the pressure is released, returning the arm to atmospheric pressure conditions.

stethoscope. The cuff had 32–42 cm in circumference and was

placed 2.5 cm above the right elbow.

The entire BFR session lasted ∼14min, with initial recordings

starting 30 s after beginning the ischemia procedure. Participants

reported sensations of paresthesias immediately after cuff inflation.

Within the next 5min, they verbally indicated increasing

numbness, and by ∼8min, they experienced a complete loss

of touch and deep sensation in the hand and forearm. Two

participants were unable to endure the entire 14min BFR session,

leading to their exclusion from further analysis.

Each isometric trapezoidal and isometric sinusoidal task

was structured with a 10 s rest period, a 5 s ramp-up, a 32 s

contraction phase, a 5 s ramp-down, and another 10 s rest period.

The amplitude targets were set to 25% ± 5% of MVC for

sinusoidal contractions and a constant 25% of MVC for trapezoidal

contractions. Continuous visual feedback was provided on a display

showing both the target cue and the participant’s force output. This

feedback enables real-time adjustments to adhere to the desired

movement pattern (Figure 1A).

To standardize little finger abduction, we used a custom rig to

immobilize the hand with straps. The finger was connected to a

calibrated load cell (MB-50, Interface, AZ, USA). The force output

was amplified 1000× (Forza-B, OT Bioelettronica) and digitized at

2,048Hz using a Quattrocento amplifier (OT Bioelettronica).
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HD-sEMG signals were recorded from the ADM muscle using

GR04MM1305 electrode grids (64 channels, OT Bioelettronica,

Torino, Italy) with 1mm diameter electrodes and 4mm inter-

electrode distance. The signals were acquired at 2,048Hz

with the Quattrocento amplifier, synchronized with force data.

Data collection was performed using OT Biolab+ v1.5 (OT

Bioelettronica, Torino, Italy). To ensure sEMG signal quality,

the participant’s skin was abraded and cleaned before electrode

placement. An average 7% (± 4%) of channels with significant

noise were removed based on visual and spectral analysis. Data

processing was done using MATLAB 2022b (MathWorks, Natick,

MA, USA) and Python (Version 3.11.1) with Visual Studio Code

(Microsoft Corporation, Redmond, WA, USA).

After the completion of each motor task, participants rated

their perceived pain or discomfort using a modified numeric rating

scale (NRS) (Gizzi et al., 2021; Bubeck et al., 2024), ranging from 1

(minimal discomfort primarily due to the experimental setup/no

pain) to 10 (maximum discomfort/worst pain). NRS-10 allowed

objective comparison of discomfort across individuals.

2.3 Data and statistical analysis

2.3.1 Reported discomfort level and force
tracking assessment

We analyzed the force recorded from each participant to

evaluate their ability to follow the instructed force trajectory or

cue. This evaluation focused on the precision or accuracy of force

performance, quantified using the root mean square error (RMSE).

This metric effectively captures the deviation between the desired

cue and the measured force, calculated as the square root of the

average of squared differences between the desired and measured

force. RMSE provides a comprehensive view of the magnitude of

error and offers a precise and clear picture of each participant’s

performance accuracy.

For each condition, we calculated the average RMSE and NRS

to observe trends and deviations in performance and perceived

discomfort. We plotted both RMSE and NRS variables in scatter

plots to visually analyze their trend and variation across these

conditions. For each condition, a 95% confidence ellipse (CE)

was constructed, and its area was used to quantify the variability

in the distribution of RMSE across NRS values. Given that BFR

is of interest here, cluster area ratios as Pre/BFR, Post1/BFR,

and Post2/BFR were calculated. These ratios provided numerical

insights into how RMSE and NRS variability evolved from pre to

post intervention.

2.3.2 HD-EMG decomposition and motor unit
tracking

After removing noisy channels, the HD-sEMG signals were

decomposed into motor unit spike trains (MUST) using a

convolutive blind-source separation method, as detailed by Negro

et al. (2016). In summary, after removing the mean for each

channel, the EMG signals were extended with an extension factor

of 16 (Taleshi et al., 2022). This extension increases the ratio of the

number of observations to the number of sources, enhancing the

reliability, and accuracy of motor unit decomposition. Following

extension, spatial whitening of the extended observation matrix

was performed using a matrix obtained from its eigenvalue

decomposition. Whitening is a critical step as it transforms the

observed signals into a new set of signals that are uncorrelated

and have unit variance, simplifying the model, and improving

the efficiency of the subsequent separation process. Next, the

sources were estimated by maximizing the non-Gaussianity and

sparsity of the estimated sources (Negro et al., 2016). This is

typically accomplished using fixed-point algorithms that iteratively

refine the source estimates to maximize statistical independence.

To prevent the algorithm from converging on the same source

repeatedly, Gram-Schmidt orthogonalization was applied, ensuring

the uniqueness of the decomposed signals. After estimating the

sources, peak detection and K-means classification were utilized

to separate the discharge times of the motor units from the noise

(Negro et al., 2016). This process translates the signal into a spike

train representation of motor unit activation.

The quality of the decomposition was then assessed using

a silhouette (SIL) measure, and only motor units exhibiting a

SIL value exceeding 0.85 (Taleshi et al., 2022) and a coefficient

of variation (CoV) for the inter-spike interval (ISI) of <30%

(CoVISI < 30%) were included in subsequent analyses as detailed

in (Negro et al., 2016). The SIL denotes the difference between

intra-cluster and inter-cluster sums of point-to-centroid distances,

normalized by dividing it by the maximum of the two computed

values. This comprehensive process, from extension to quality

assessment, effectively decomposes complex EMG signals into

individual motor unit activities, and has been previously validated

using experimental and simulated signals (Negro et al., 2016;

Farina et al., 2017). After the automatic identification of the motor

units, all identified MUs underwent manual inspection by carefully

examining their pulse trains. Only MUs with a reliable discharge

pattern were considered suitable for further analysis.

After accurately estimating MUs for each repetition of

movement, we merged the MUs of five repetitions within each

condition (pre-BFR, BFR, post1, and post2) into one collective

set. Within each set, we removed the common units. To do so,

the rate of agreement (RoA) was used to find the common units

as highlighted in (Marateb et al., 2011). In summary, a pair of

motor unit spike trains (MUiand MUj) was considered to match

if at least 30% of their discharges were time-locked within a ±
0.5ms window. The RoA is calculated as a ratio of the number of

discharges that are common to bothmotor unit spike trains divided

by the total number of unique discharges identified in either of

the two trains, plus the number of common discharges. This is

then multiplied by 100 to get a percentage. This measure effectively

evaluates the degree of agreement between two spike trains and

indicates how likely they are to have originated from the same

motor unit based on their discharge synchrony.

2.3.3 Neural input to the muscle
To estimate the level of common input at the motor unit (MU)

level, we calculated the coherence between CSTs of motor units

in the ADM muscle. CSTs were derived as the sum of discharge

times from motor units. Coherence values range from 0 to 1,
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FIGURE 2

The figure illustrates the process of calculating the coherence (z-score). The left panel shows the motor unit spike train across five repetitions

(Rep5i−4 to Rep5i). Here, i ranges from 1 to 4, representing di�erent conditions: pre-BFR (i = 1), BFR (i = 2), post1-BFR (i = 3), and post2-BFR (i = 4).

For example, when i = 2, the repetitions span from Rep6 to Rep10, corresponding to the BFR condition. Cumulative Spike Trains (CSTs) are generated

by summing the spike events from all MUs in each subset. Finally, the bottom right panel presents the pooled coherence (z-score) with the delta (δ)

band ranges from 0–5Hz and the alpha (α) band from 5–13Hz.

indicating the degree of correspondence between signals x and y at

various frequencies. A value of 0 indicates no correlation, whereas

1 signifies perfect correlation in the frequency domain.

The magnitude-squared coherence, denoted as Cxy(f )
=

|Pxy(f )|
2/(Pxx(f )Pyy(f )), depends on the power spectral densities,

Pxx(f ) and Pyy(f ), and the cross power spectral density, Pxy(f ), of

x and y. To assess coherence, we calculated the magnitude-squared

coherence usingWelchs overlapped averaged periodogrammethod

via MATLAB’s mscohere function with a 1 s Hanning window with

50% overlap.

As coherence levels increase with the number of motor neuron

spike trains (Del Vecchio et al., 2019a), we considered a fixed

number of MUs for both isometric-trapezoidal and isometric-

sinusoidal movements to enable consistent comparisons between

conditions. The count of the selected pooled motor units was

determined by taking the minimum value among conditions (as

shown in Figure 2).

We conducted coherence analysis on two equally sized sets of

MUSTs, selecting the MUs for each set randomly. This process

involved calculating the CST for each set. We repeated this

procedure for all unique combinations of MUs in each group

with a maximum of 100 random permutations. The resulting

coherence values were averaged across these 100 combinations

(Figure 2). The coherence was then converted into a standard z-

score using the formula: COHzscore =
√
2L · atanh(COH) – bias.

Here, “COH” represents coherence, “L” is the number of time

segments used for analysis (e.g., analysis on 1 s windows with 50%

overlap for 32 s of task), and “bias” is the mean “COH” z-score

between 250 and 500Hz, where no significant correlated activity

is expected. This z-score transformation normalizes the variance of

coherence estimates.

In this study, coherence analyses focused solely on the

contraction phase (plateau/oscillation phase) of movements. We

averaged coherence profiles across subjects and analyzed within

two frequency bands: delta (below 5Hz) and alpha (5–13Hz).

The mean coherence values over delta and alpha frequency bands

were calculated and presented for both isometric-trapezoidal and

isometric-sinusoidal movements.

2.3.4 Statistical analysis
The normality of the data for each condition (pre-BFR,

BFR, post1-BFR, post2-BFR) was assessed using the Kolmogorov-

Smirnov test. If the normality assumption was met, paired t-tests

were used to evaluate differences between conditions. If normality

was not met, the non-parametric Wilcoxon signed-rank test was

applied. Subsequently, we calculated the mean and confidence

interval (CI). The CI provides a range of values within which we

can estimate the true population parameter with a certain level of

confidence. The formula for calculating the confidence interval is:

CI = x ± t · s/
√
n, where CI represents the confidence interval, x

is the sample mean, t is the critical value from the t-distribution

corresponding to the desired confidence level, s is the sample

standard deviation, and n is the sample size. In our analysis, we

chose a confidence level of 95%, denoted by t= tcritical, which allows

us to assume that the true population parameter lies within the

calculated confidence interval with 95% confidence. The percentage

change between conditions was calculated, and a significance level
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FIGURE 3

Discomfort level and tracking accuracy across conditions (pre-BFR, BFR, post1-BFR, and post2-BFR) and subjects. Panel (A) shows the discomfort

levels for subjects during an isometric-trapezoidal task, while panel (D) displays the same for the isometric sinusoidal task. Each subject’s data is

uniquely color-coded, with female subjects denoted by “×” markers and male subjects by “o” markers. Panels (B, E) correspondingly plot the root

mean square error (RMSE) for subjects across conditions for trapezoidal and sinusoidal tasks, respectively. Panels (C, F) provide a density distribution

of discomfort levels against RMSE for trapezoidal and sinusoidal tasks, accordingly.

of p < 0.05 was used to determine statistical significance. All

analyses were conducted using Python’s SciPy library.

3 Results

3.1 Reported discomfort level and force
tracking performance assessment

Figure 3 shows the reported discomfort level (Panel A and D)

and tracking accuracy (Panel B and E), measured by RMSE, across

pre-BFR, BFR, post1-BFR, and post2-BFR conditions for both

isometric-trapezoidal and isometric-sinusoidal tasks. Each subject’s

data is uniquely color-coded, with female participants marked

by “×” and male participants by “o”. The density distributions

of discomfort levels against RMSE for trapezoidal and sinusoidal

movements are shown in Panels C and F, respectively.

In the isometric-trapezoidal task, the average discomfort level

showed a significant (p = 3.1e−5) increase of 300% from the pre-

BFR (1.06 ± 0.13) to the BFR condition (4.25 ± 0.71). After the

BFR intervention, discomfort levels dropped substantially, with a

55.88% reduction observed between the BFR and post1-BFR (1.88

± 0.43) conditions (p = 2.0e−6) and a further 33.33% decrease

between post1-BFR and post2-BFR (1.25 ± 0.24) condition (p

= 0.015). Tracking accuracy, measured by RMSE, also declined

during the BFR condition, with a 37.25% increase from pre-

BFR (0.97 ± 0.24) to BFR (1.32 ± 0.43) conditions (p = 0.049),

indicating reduced performance under BFR. The RMSE value of

1.32 ± 0.43 during the BFR condition reflects an average deviation

of about 1.32% from the target force of 25% MVC. Following

the BFR intervention, mean RMSE was 16.86% lower from BFR

to post1BFR (1.10 ± 0.28) and 8.56% lower from post1BFR

to post2BFR (1.01 ± 0.34). However, neither difference reached

statistical significance (p = 0.168 and p = 0.145, respectively).
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FIGURE 4

Coherence analysis across conditions (pre-BFR, BFR, post1-BFR, and post2-BFR) and subjects. The top panel, dedicated to isometric-trapezoidal

movements, and the bottom panel, focusing on isometric-sinusoidal movements, both display coherence (z-score). Each line plot shows individual

participant data (thin lines) and average data (thick line) across four conditions, with each condition identified by a distinct color. Adjacent to z-score

line plot, bar charts show the mean z-score over the delta (δ) band (0–5Hz) and the alpha (α) band (5–13Hz). In each bar chart, individual subjects’

data are uniquely color-coded, with females marked by “×”, and males by “o”.

Additionally, the cluster ratios with respect to the BFR condition

were 0.10 for pre–BFR/BFR, 0.40 for post1-BFR/BFR, and 0.26

for post2-BFR/BFR.

In the isometric sinusoidal task, the pattern of discomfort levels

showed a similar trend to the trapezoidal task, with a significant

(p = 3.1e−5) increase of 294.12% from the pre–BFR (1.06 s 0.13)

to the BFR’ condition (4.19 ± 0.59). After the BFR intervention,

discomfort levels dropped substantially, with a 53.73% reduction

observed between the BFR and post1-BFR (1.94± 0.41) conditions

(p = 4.0e−6) and a further 41.94% decrease between post1-BFR

and post2-BFR (1.12 ± 0.18) condition (p = 0.006). Tracking

accuracy, measured by RMSE, showed a minimal change during

the BFR condition from pre-BFR (1.90 ± 0.35) to BFR (2.00 ±
0.36) conditions (p = 0.233). Following the BFR intervention,

RMSE values showed a 10.68% reduction between BFR and post1-

BFR (1.78 ± 0.26) condition (p = 0.027) and an additional

13.60% decrease between post1-BFR and post2-BFR (1.54 ± 0.26)

condition (p = 4.6e−5). The cluster ratios for the sinusoidal task

were 0.21 for pre-BFR/BFR, 0.50 for post1-BFR/BFR, and 0.22

for post2-BFR/BFR.

The pre-to-post comparison shows that, for the isometric-

trapezoidal task, discomfort levels significantly increased from

pre-BFR to post-BFR1 (p < 0.001) and tracking performance, as

measured by RMS error, significantly deteriorated over the same

interval (p = 0.02). In the isometric-sinusoidal task, discomfort

levels were significantly increased from pre-BFR to post1-BFR (p

< 0.001), while RMS error showed a significant improvement from

pre-BFR to post2-BFR (p < 0.001).

3.2 Neural input to the muscle assessment

Figure 4 shows the coherence analysis across four conditions

and subjects. The top panel shows coherence (z-score) during

isometric-trapezoidal movements, while the bottom panel focuses

on isometric-sinusoidal movements. Within each panel, the

thin lines plots show individual participant data, and the

average coherence across all participants is represented by a

thick line, with each condition distinguished by a unique

color. Adjacent to each line plot, bar charts display the

mean z-scores within the delta (δ) band (0–5Hz) and the

alpha (α) band (5–13Hz). In these bar charts, individual

subjects are color-coded, with females marked by “×” and

males by “o”.
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In the isometric-trapezoidal movements, the mean coherence

in the delta band increased by 47.84% from pre-BFR (0.86 ± 0.18)

to BFR (1.28 ± 0.27) condition (p = 0.0187). Between BFR and

post1BFR (1.03± 0.25), themean delta coherence was 18.98% lower

(p = 0.1227), and from post1BFR to post2BFR (0.92 ± 0.32),

there was an 11.35% difference (p = 0.2330). Neither of these

differences was significant (p > 0.05). Coherence was 27.20% lower

at BFR (0.81 ± 0.12) relative to preBFR (1.11 ± 0.26) (p = 0.008,

significant). From BFR to post1BFR (0.92 ± 0.18), the change was

13.74% (p = 0.1333), and from post1BFR to post2BFR (0.90 ±
0.18), there was only a slight numerical difference (p= 0.7119).

In the isometric-sinusoidal movements, the delta band

coherence showed a minor change from pre-BFR (3.04 ± 0.49)

to BFR (2.98 ± 0.68) condition (p = 0.792). Between BFR and

post1BFR (3.27± 0.66), the difference was about 9.83% (p= 0.277),

and from post1BFR to post2BFR (3.03 ± 0.66), the change was

7.55% (p = 0.026), indicating statistical significance in that specific

interval. In the alpha band, coherence decreased significantly by

31.00% from pre-BFR (1.10± 0.25) to BFR (0.76± 0.15) condition

(p = 1.84e – 4). Between BFR (0.76 ± 0.15) and post1BFR (0.97

± 0.26), coherence was 27.85% higher (p = 0.037, also significant).

Lastly, from post1BFR to post2BFR (0.86 ± 0.18), the coherence

difference was about 12.04% (p= 0.314), which was not significant.

The pre-to-post comparison shows that, for the isometric-

trapezoidal task, alpha coherence significantly reduced from pre-

BFR to post1-BFR (p = 0.013) and from pre-BFR to post2-BFR

(p = 0.05). In the isometric-sinusoidal task, alpha coherence

significantly decreased from pre-BFR to post2-BFR (p= 0.008).

4 Discussion

This study investigated the effects of BFR on motoneuron

synchronization and force control during isometric-trapezoidal

and isometric-sinusoidal little finger abduction tasks. By analyzing

torque data, HD-sEMG signals and decomposed MUSTs, we

assessed changes in force tracking performance and common

synaptic input to motoneurons across pre-BFR, during BFR,

and post-BFR conditions. In summary, the BFR intervention

led to a noticeable increase in perceived discomfort, which was

largely alleviated in the post-BFR conditions. Performance, as

indicated by force-tracking accuracy, deteriorated during BFR but

improved following the intervention. Similarly, coherence in the

delta band tended to increase during BFR and then decreased post-

intervention, while alpha band coherence decreased during BFR

and partially recovered afterward.

4.1 Discomfort and force tracking
performance

Our results confirmed a significant increase in reported

discomfort levels during BFR for both isometric-trapezoidal

and isometric-sinusoidal tasks, with ∼300% rise compared

to pre-BFR conditions. This substantial increase aligns with

previous studies that reported heightened sensations of pain and

discomfort under BFR conditions (Yasuda et al., 2011; Gizzi

et al., 2021; Bubeck et al., 2024). The elevated discomfort can

be attributed to the accumulation of metabolic by-products

and reduced oxygen supply, which activate group III and

IV muscle afferents and contribute to the perception of pain

(Amann et al., 2010; Scott et al., 2016).

In the isometric-trapezoidal task, we observed a significant

37.25% increase in RMSE during BFR (p = 0.049), indicating

impaired force tracking performance. This finding is consistent

with previous research showing that BFR impairs isometric force

steadiness and increases EMG activity due to altered sensory

feedback and increased effort (Zambolin et al., 2024). The static

nature of the trapezoidal task, which relies heavily on steady force

production, may make it more susceptible to the negative effects of

discomfort and disrupted proprioceptive feedback.

For the isometric-sinusoidal task, the RMSE showed a minimal

change during BFR (p = 0.233). Interestingly, the initial RMSE

was significantly higher in the sinusoidal movements (RMSE–pre-

BFR: 1.90 ± 0.35) compared to the trapezoidal task (RMSE–pre-

BFR: 0.97 ± 0.24). This higher RMSE suggests that participants

found the dynamic modulation of force more challenging, possibly

due to the unfamiliarity of the task and the muscle involved (the

abductor digiti minimi is not typically used in daily activities

requiring precise force modulation). As the task progressed, RMSE

values decreased significantly post-BFR (p= 0.027 and p= 4.6e−5

for post1-BFR and post2-BFR, respectively), indicating improved

performance likely due to motor learning and adaptation through

repeated practice. This observation aligns with the notion that

repetition enhances motor proficiency, especially in tasks that are

initially unfamiliar or challenging (Wulf and Schmidt, 1997).

Additionally, the pairwise comparisons (pre-BFR vs. post-

BFR1 and pre-BFR vs. post-BFR2) revealed that trapezoidal-task

impairments in discomfort and RMS error were transient, while

in the sinusoidal task, performance improved more gradually. This

comparison highlights the interplay of BFR-induced discomfort

and task-specific adaptations.

The cluster ratio analysis, reflecting the variability in RMSE

and discomfort levels, showed the largest variability during BFR for

both tasks. This supports the idea that BFR significantly impacts

both subjective discomfort and objective performance measures.

The reduced variability post-BFR suggests a recovery of motor

control and adaptation to the task demands after the intervention.

4.2 Changes in common synaptic input to
motoneurons

Coherence analysis of the cumulative spike trains provided

insights into the changes in common synaptic input to

motoneurons under BFR. We observed a significant decrease

in coherence within the alpha frequency band (5–13Hz) during

BFR for both tasks with a 27.20% reduction in the trapezoidal

task (p = 0.008) and a 31.00% reduction in the sinusoidal task

(p = 1.84e−4). The alpha band is associated with proprioceptive

feedback and motoneuron synchronization influenced by sensory

inputs (McAuley et al., 1997, 1999). In this study, proprioceptive

feedback is considered broadly to the ensemble of sensory inputs

from muscle spindles (Ia and II afferents), Golgi tendon organs,

joint receptors, and cutaneous afferents. While Ia afferents from
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muscle spindles are commonly considered the primary source in

controlling low-frequency oscillations and tremor, we acknowledge

that additional contributors, including secondary endings (type

II afferents), tendon organs and joint receptors, can modulate

motoneuron synchronization. The reduction in alpha band

coherence suggests that BFR disrupts proprioceptive pathways,

likely due to altered afferent feedback from reduced oxygenation

and increased metabolic by-products affecting muscle spindle

sensitivity (Scott et al., 2016; Zambolin et al., 2024).

Post-BFR, alpha band coherence increased in both tasks

[13.74% in the trapezoidal task (p = 0.1333) and 27.85% in

the sinusoidal (p = 0.037) task] indicating a partial restoration

of proprioceptive feedback and motoneuron synchronization.

This recovery aligns with the decrease in discomfort levels and

improvements in force tracking performance, and suggests that the

neuromuscular system can adapt and recover from the transient

effects of BFR.

In the delta frequency band (below 5Hz), which reflects the

common drive for steady force production (De Luca and Erim,

1994), we observed different trends between the tasks. In the

trapezoidal task, delta band coherence increased significantly by

47.84% during BFR (p = 0.0187). This suggests a compensatory

mechanism where increased low-frequency common input helps

maintain force output despite impaired sensory feedback and

increased discomfort. Similar observations have beenmade in other

studies, where increased central drive compensates for peripheral

inhibition to sustain motor performance (Heckman and Enoka,

2012). Conversely, in the sinusoidal task, delta band coherence

showed a minor change during BFR than pre-BFR. The dynamic

nature of the sinusoidal task requires continuous adjustments in

force output, which may rely less on low-frequency common input

and more on higher-frequency inputs.

Similarly, extended pairwise testing for alpha- and delta-band

coherence showed that trapezoidal alpha coherence remained

suppressed through post-BFR2, whereas sinusoidal coherence

shifted significantly only by the final post-BFR phase further

underscoring how BFR effects and task specificity jointly influence

neural synchronization.

4.3 Limitations and future directions

Despite the findings of this study, several limitations should

be acknowledged. Our investigation focused only on the ADM

muscle during specific precision tasks involving little finger

abduction. This controlled condition may not fully represent

the effects of BFR on larger muscle groups or during more

complex, functional movements. The ADM is an isolated muscle

responsible for straightforward tasks, and the neuromuscular

adaptations observed may differ in muscles involved in multi-

joint activities or those that function within larger muscle

groups and antagonistic pairs. Incorporating multiple muscles

and more complex tasks in future research could provide a

more comprehensive understanding of BFR’s impact on motor

control and neural input. Furthermore, while BFR effectively

induces muscle ischemia and activates muscle afferents, this

intervention cannot isolate the effects of mechanoreceptor vs.

metaboreceptor activation—it reflects a combination of both. Cuff

compression may activate mechanoreceptors (Ge and Khalsa,

2003), while progressive muscle ischemia can lead to increased

metabolite concentration andmetaboreceptor activation (Kaufman

and Hayes, 2002). Consequently, it is challenging to discern

which receptor type had a greater influence on the observed

changes in motoneuron synchronization and force control. Future

research employing methods to separate these effects or directly

measure metabolite concentrations could provide clearer insights.

Additionally, we did not account for individual anatomical

differences, such as arm circumference, which could influence the

degree of blood flow restriction and the resulting physiological

responses. Moreover, while this study was not powered or

sufficiently balanced (5 females vs. 11 males) to systematically test

gender-specific responses, we intend to expend our research in

future in order to investigate whether gender-related differences

modulate the effects of BFR on motoneuron coherence, force

steadiness, and perceived discomfort. Lastly, the study focused

on acute effects of BFR without considering the longitudinal

impacts on neural drive and muscle function. Understanding

these long-term effects is essential for determining the safety and

efficacy of BFR as a therapeutic or training method. Investigating

personalized occlusion pressures may allow for more targeted

analyses and interventions.

4.4 Conclusion

The conducted experiments indicate that brief BFR application

leads to altered motoneuron synchronization, which in turn

negatively impacts force control. This is evidenced by impaired

force-tracking performance and reduced alpha band coherence

during the intervention. The partial recovery observed post-

BFR includes improvements in force tracking and a restoration

of motoneuron coherence. Thus, within a short period, the

neuromuscular system appears to adapt to and recover from the

transient effects of BFR. These findings enhance our understanding

of common synaptic inputs to motoneurons under altered blood

flow conditions. Future research should further investigate the

long-term effects and extend these findings to broader muscle

groups and functional tasks.
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