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Development of the rodent 
prefrontal cortex: circuit 
formation, plasticity, and impacts 
of early life stress
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The prefrontal cortex (PFC), located at the anterior region of the cerebral cortex, 
is a multimodal association cortex essential for higher-order brain functions, 
including decision-making, attentional control, memory processing, and regulation 
of social behavior. Structural, circuit-level, and functional abnormalities in the PFC 
are often associated with neurodevelopmental disorders. Here, we review recent 
findings on the postnatal development of the PFC, with a particular emphasis on 
rodent studies, to elucidate how its structural and circuit properties are established 
during critical developmental windows and how these processes influence adult 
behaviors. Recent evidence also highlights the lasting effects of early life stress on 
the PFC structure, connectivity, and function. We explore potential mechanisms 
underlying these stress-induced alterations, with a focus on epigenetic regulation 
and its implications for PFC maturation and neurodevelopmental disorders. By 
integrating these insights, this review provides an overview of the developmental 
processes shaping the PFC and their implications for brain health and disease.
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Introduction

The prefrontal cortex (PFC) is a brain region located in the anterior part of the frontal lobe. 
In primates, including humans, the PFC is subdivided into distinct subregions such as the 
medial PFC (mPFC), lateral PFC (lPFC), and orbitofrontal cortex (oFC), each of which 
contributes to higher-order brain functions, including decision-making, social behavior, 
memory processing, attentional regulation, and emotional control (Siddiqui et al., 2008; Kolk 
and Rakic, 2022; Preuss and Wise, 2022). In rodents, the PFC is thought to be composed of 
the mPFC [infralimbic cortex (IL), prelimbic cortex (PL), and anterior cingulate cortex (ACC)] 
and oFC, but probably lacking the anatomical equivalent of dorsolateral PFC in primates (Le 
Merre et al., 2021; Kolk and Rakic, 2022). The PFC integrates and processes information from 
a wide range of brain regions (Figure 1), enabling it to coordinate functions essential for 
adaptive behavior (Miller and Cohen, 2001; Friedman and Robbins, 2022). Dysfunction of the 
PFC has been implicated in the pathophysiology of various neuropsychiatric disorders, 
including schizophrenia, depression, and autism spectrum disorder (Siddiqui et al., 2008; Xu 
et al., 2019).

Despite significant evolutionary diversity, certain subdivisions of the PFC demonstrate 
structural homology across mammals, including humans, non-human primates, and rodents 
(Preuss and Wise, 2022). In humans, the PFC is particularly enlarged, with its proportion 
relative to total brain volume being notably greater than in other mammals, even among 
primates (Donahue et  al., 2018). This unique expansion is thought to support advanced 
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cognitive abilities. Although the rodent PFC differs substantially from 
that of primates, functional similarities in certain circuits, such as the 
prefrontal-hippocampal circuit for working memory and the 
prefrontal-amygdala circuit for social behaviors (Tsutsui et al., 2016; 
Gangopadhyay et  al., 2021), provide valuable insights into its 
conserved functions across species (Ongür and Price, 2000; Euston 
et  al., 2012; Carlén, 2017; Chini and Hanganu-Opatz, 2021). 
Additionally, the feasibility of manipulation with advanced genetic 
and molecular tools makes rodents, particularly mice, an indispensable 
model for studying PFC circuits and functions. Recent studies also 
demonstrate that rodent models effectively replicate neural circuits 
and behaviors relevant to neurodevelopmental disorders, underscoring 
their importance in PFC research (Schubert et al., 2015; Chini and 
Hanganu-Opatz, 2021). This review draws primarily on findings from 
rodent studies, specifically in mice and rats, to outline how the 
structure and circuits of the PFC are established during development.

Early life stress (ELS), such as abuse or social isolation during 
infancy, childhood, or adolescence, has been linked to an increased 
risk of psychiatric disorders, including depression, anxiety, impaired 
social skills, and memory deficits later in life. Studies in both humans 
and rodents suggest that specific developmental windows are 
particularly vulnerable to the effects of stress (Schroeder et al., 2018; 
Nestler and Russo, 2024). The PFC, characterized by its protracted 
maturation timeline and heightened postnatal plasticity (Chini and 
Hanganu-Opatz, 2021; Klune et al., 2021), is believed to be especially 
susceptible to stress during these critical periods. This vulnerability 
underscores the potential impact of ELS on mental health. This review 
provides an overview of PFC circuit maturation mechanisms across 
distinct postnatal stages and explores how ELS disrupts PFC structure, 
circuitry, and function. The long-term effects of stress may involve 
epigenetic modifications, which have the potential to induce persistent 

changes in gene expression. Notably, findings from genome-wide 
association studies (GWAS) and related analyses indicate that genetic 
risk factors for psychiatric disorders—such as autism spectrum 
disorders, schizophrenia, and intellectual disabilities—are enriched in 
genes associated with epigenetic regulation and transcriptional control 
(Najmabadi et al., 2011; Satterstrom et al., 2020; Singh et al., 2022), 
highlighting their potential role in PFC development and disease 
vulnerability. Building on these findings, this review also examines the 
interplay between epigenetic regulation, PFC maturation, and 
stress responses.

Patterning, cell type specification, and 
cytoarchitecture of the prefrontal cortex

The patterning of the cerebral cortex, which is largely conserved 
across mammalian species (Krubitzer and Seelke, 2012), is established 
primarily by morphogen concentration gradients that develop along 
the anterior–posterior and medial-lateral axes during early embryonic 
development (O’Leary et al., 2007; Greig et al., 2013; Cadwell et al., 
2019). At this stage, neural progenitor cells are in an expansion phase, 
undergoing symmetric cell division to increase their population 
before differentiating into specialized cell types (Miyata et al., 2010; 
Greig et al., 2013). The expression patterns of transcription factors in 
neural progenitor cells, shaped by these morphogen gradients, lay the 
foundation for cortical patterning. In the anterior region of the mouse 
brain, including the prefrontal cortex (PFC), fibroblast growth factors 
(FGFs), such as FGF8 and FGF17, play critical roles. FGF8 is primarily 
associated with anteriorization (Fukuchi-Shimogori and Grove, 2001), 
while FGF17 is involved in the compartmentalization of anterior 
subdivisions (Cholfin and Rubenstein, 2007) (Figure  1). Recent 

FIGURE 1

Schematic timeline of mouse prefrontal cortex (PFC) development. This schematic illustrates the approximate timeline of key developmental events 
shaping PFC structural and circuit organization, along with major factors regulating PFC development and maturation. PFC patterning is largely 
established by the perinatal stage. Circuit formation progresses from the neonatal stage through adolescence, with synaptic refinement and circuit 
reorganization occurring during both the juvenile and adolescent stages. Abbreviations: vHip, ventral hippocampus; Th, thalamus; DRN, dorsal raphe 
nucleus; VTA, ventral tegmental area; BLA, basolateral amygdala; NAc, nucleus accumbens; E, embryonic day; P, postnatal day.
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studies have highlighted the role of retinoic acid (RA) signaling in 
establishing PFC patterning from the embryonic stage to the perinatal 
period, and subsequently affecting synaptogenesis and thalamo-
prefrontal connectivity (Shibata et  al., 2021a). Interestingly, RA 
signaling appears to be differentially regulated in mice and humans, 
with evolutionary changes in the enhancer region of Cbln2, a PFC 
marker, suggested to contribute to interspecies differences in PFC 
patterning and layer organization (Shibata et al., 2021b) (Figure 1). 
Since variations in PFC size and organization are often observed in 
patients with neurodevelopmental disorders (Glahn et al., 2008; De La 
Fuente et al., 2013; Bakhshi and Chance, 2015; Courchesne et al., 2019; 
Hashem et al., 2020; Zhao et al., 2022), understanding the mechanisms 
underlying PFC patterning could provide insights into the 
pathophysiology of these conditions.

The specification of cell types in the PFC follows a developmental 
program similar to other cortical areas. After the expansion phase, 
neural stem cells undergo the neurogenic phase, producing neurons 
mainly through asymmetric division, followed by the gliogenic phase, 
where glial cells such as astrocytes or oligodendrocytes are generated 
(Miyata et al., 2010; Greig et al., 2013). The production of deeper 
cortical layers precedes that of upper layers, reflecting a well-defined 
temporal sequence (Greig et al., 2013). Excitatory neurons in each 
layer of the PFC eventually form layer-specific connections to different 
brain regions governing specific functions (Murugan et al., 2017). 
From an evolutionary perspective, significant differences in the 
granular layer 4 (L4) are evident among species (Le Merre et al., 2021; 
Preuss and Wise, 2022). In primates, L4 in the PFC is characterized by 
a well-defined granular cell layer as in other cortical areas, but the 
granular L4 is largely absent in the PFC of rodents. In addition to 
excitatory neurons, cortical interneurons, which originate from the 
ventral telencephalon, migrate into the cortical layers during the 
perinatal stage (Wamsley and Fishell, 2017; De Marco García and 
Fishell, 2024), affecting excitatory-inhibitory balance later in postnatal 
stages (Caballero et al., 2021). Microglia, known for their roles in 
synaptic development and plasticity (Wu et  al., 2015), invade the 
cortical parenchyma early during embryonic development and 
continue to proliferate and organize postnatally in mice (Thion et al., 
2018). By approximately one or two weeks after birth in rodents, the 
fundamental cell types in the cerebral cortex are established and their 
migration is completed.

The cell types mentioned above (e.g., excitatory neurons, 
inhibitory neurons, and astrocytes) are known to be further classified 
into subtypes based on factors such as gene expression patterns and 
their localization within specific cortical layers (Greig et al., 2013; 
Lanjakornsiripan et al., 2018; De Marco García and Fishell, 2024). 
While differences in subtypes or gene expression signatures across 
cortical areas were previously not well understood, recent 
technological advancements, such as single-cell and spatial 
transcriptomics, have begun to provide new insights into how diverse 
cell types acquire region-specific characteristics in humans, macaques, 
and mice (Nowakowski et al., 2017; Tasic et al., 2018; Bhaduri et al., 
2021; Chen et al., 2024; Qian et al., 2024). Although the mechanisms 
driving area-specific cell type diversification and maturation during 
postnatal development remain incompletely understood, current 
evidence suggests that area-specific traits, including those of the PFC, 
motor, somatosensory, parietal, temporal, and primary visual cortices, 
first emerge in neural progenitors and become progressively more 
distinct during differentiation and maturation in the human fetal 

brain (Nowakowski et al., 2017; Bhaduri et al., 2021). Ongoing single-
cell transcriptomic studies that span distinct stages of postnatal 
development into adulthood (Zhong et al., 2018; Bhattacherjee et al., 
2019, 2023; Ortiz et  al., 2020; Joglekar et  al., 2021) offer valuable 
opportunities to trace developmental trajectories. While most studies 
focus on specific developmental time points, integrating findings from 
these studies may reveal the mechanisms underlying PFC cell type 
maturation and plasticity, providing deeper insights into its structural 
and functional complexity. Moreover, epigenetic modifications, which 
are not fully captured at the transcriptional level, are likely to play a 
role in PFC maturation processes. Recent studies have begun to 
uncover the epigenetic landscape of the postnatal PFC, including 
chromatin accessibility and three-dimensional chromatin interactions 
at the single-cell level (Lake et al., 2018; Ziffra et al., 2021; Herring 
et al., 2022; Yao et al., 2022; Heffel et al., 2024; Ma et al., 2024). These 
findings have shed light on the regulatory landscape that underpins 
cell type specification and maturation in the PFC. The PFC is thought 
to undergo a protracted maturation process, extending from birth to 
adolescence, relative to other cortical regions in both primates and 
rodents (van Eden et al., 1991; Gogtay et al., 2004; Kolb et al., 2012; 
Chini and Hanganu-Opatz, 2021; Kolk and Rakic, 2022). However, the 
mechanisms governing this protracted timeline remain poorly 
understood. A recent paper using human pluripotent stem cell-
derived cortical neurons suggested that epigenetic regulation in neural 
progenitor cells sets the pace of neuronal maturation after 
differentiation (Ciceri et al., 2024). Future research is expected to 
elucidate the molecular and epigenetic factors that regulate the pace 
of PFC maturation and their implications for both normal 
development and neurodevelopmental disorders.

Circuit formation and plasticity in 
prefrontal cortex development

The PFC achieves its complex brain functions through 
connections with various brain regions, such as the sensory cortex, 
ventral tegmental area (VTA), basolateral amygdala (BLA), and 
thalamus, with bi-directional reciprocal connections (Figure 1), being 
a notable feature that facilitates feedback and integration of 
information critical for higher-order cognitive functions (Anastasiades 
and Carter, 2021). While the specific roles of these circuits have been 
extensively reviewed elsewhere (Le Merre et al., 2021; Yizhar and Levy, 
2021; Howland et al., 2022), this review focuses on the maturation of 
PFC neurons and the formation of circuits during 
postnatal development.

Neuronal maturation and circuit formation in the PFC begin 
during the perinatal period as cell production and migration subside 
(Chini and Hanganu-Opatz, 2021). During postnatal development, 
which progresses through the neonate, juvenile, and adolescent stages, 
the PFC matures more slowly than other cortical areas, such as 
sensory and motor areas. This prolonged maturation is observed in 
both primates and rodents, at least in certain aspects, including the 
dynamic reorganization of synaptic properties during adolescence 
(Paus et al., 2008; Pinto et al., 2013; Pöpplau et al., 2024) and the 
delayed maturation of parvalbumin-positive (PV) interneurons (Reh 
et al., 2020; Canetta et al., 2022). This delayed maturation of the PFC 
likely serves an adaptive function. Sensory and motor areas are 
required to develop early to process sensory inputs and produce motor 
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outputs. In contrast, the PFC may retain plasticity during later stages 
to integrate sensory inputs, interpret them, and link them to motor 
outputs for complex behavioral decision-making. The delayed 
development of the PFC may also be associated with higher-order 
cognitive functions, such as social interactions and sexual maturation, 
which emerge during juvenile and adolescent periods (Chini and 
Hanganu-Opatz, 2021; Klune et al., 2021).

In sensory systems, it is well-established that critical periods exist 
during specific developmental stages when neuronal maturation and 
circuit formation undergo plastic changes (Hensch, 2005; Erzurumlu 
and Gaspar, 2012; Espinosa and Stryker, 2012; Levelt and Hübener, 
2012). These critical periods allow circuits to be appropriately wired 
to meet environmental demands. Similarly, the PFC is thought to 
undergo significant plasticity during developmental stages (Larsen 
and Luna, 2018), which might relate to neurodevelopmental disorders, 
mood disorders, and addiction (Guirado et  al., 2020; Nelson and 
Gabard-Durnam, 2020). Recent advances in optogenetic and 
chemogenetic tools, combined with viral vectors and genome-editing 
technologies, have enabled precise, circuit- or cell-type-specific 
manipulation of neuronal activity and gene expression at defined 
developmental stages. These technologies have shed light on the 
mechanisms underlying the progressive maturation of the PFC.

In the early postnatal stages, from the neonate to the juvenile 
period, distinct layer-specific changes occur in the mouse mPFC 
(Kroon et al., 2019). In pyramidal neurons of upper layer 3 (L3) and 
deep layer 5 (L5), developmental changes in dendritic morphology 
and intrinsic membrane properties have been observed during the 
first, second, and fourth postnatal weeks. While these properties 
develop largely in parallel across layers, excitatory inputs to L3 
pyramidal neurons increase more rapidly during the second postnatal 
week compared to L5 neurons. Conversely, inhibitory inputs develop 
more rapidly in L5 than in L3. This layer-specific modulation of the 
excitatory/inhibitory (E/I) balance appears to be a unique feature of 
the PFC and is not observed in the sensory cortex. The activity of L2/3 
neurons during this period drives frequency-specific spiking and 
enhances network oscillations within the beta–gamma frequency 
range, but the patterned network was not driven by the activity of L5/6 
neurons in the mouse mPFC (Bitzenhofer et al., 2017). The role of 
neural activity during early postnatal life has also been explored in 
functional studies. For instance, transient optogenetic activation of 
excitatory neurons in L2/3  in the mPFC of neonatal mice during 
postnatal day 7 (P7)–P11 induces premature neuronal maturation, 
leading to impaired task-related gamma oscillations and deficits in 
PFC-dependent functions such as working memory and social 
preference later in life (Bitzenhofer et  al., 2021) (Figure 1). These 
effects are thought to involve inhibitory feedback from PV 
interneurons. Notably, the same manipulation performed slightly later 
(P12–P16) results in only partial effects, suggesting the existence of a 
critical period for plastic changes in early postnatal development. The 
first one to two postnatal weeks in rodents, corresponding to the 
breastfeeding period, are dominated by maternal interactions. Open 
questions remain about the role of external stimuli, from maternal or 
environmental cues, in activating the PFC, whether spontaneous 
activity contributes, and how these factors influence long-term 
outcomes. Connections from the thalamus or dorsal raphe nucleus 
(DRN) to the PFC are already observed during this stage, with these 
connections potentially modulating retinoic acid (RA) and serotonin 
(5-HT), respectively (Larsen et al., 2019; Garcia et al., 2019). As RA 

plays a significant role in PFC development (Shibata et al., 2021a), 
external inputs in early life may regulate PFC size or 
compartmentalization. Following weaning, during the juvenile stage, 
social behaviors such as juvenile social play become prominent. In 
rats, this behavior, observed between P21 and P42, has been shown to 
influence PV-mediated inhibitory inputs and cognitive skills in the 
PFC later in life (Bijlsma et al., 2022).

By adolescence, sensory areas have largely matured, with 
significantly reduced plasticity compared to earlier developmental 
stages. In contrast, PFC maturation and circuit formation accelerate 
during this period, reflecting its extended developmental timeline and 
ongoing plasticity (Caballero et al., 2016, 2021). Synaptic density in 
the PFC undergoes dynamic changes during this period. Recent 
studies reveal that layer 2/3 pyramidal neuron circuits in the mouse 
mPFC experience transient disruption due to microglial activity 
during adolescence, followed by reorganization into adulthood 
(Pöpplau et al., 2024) (Figure 1). This reorganization is crucial for 
neural network formation and higher cognitive functions. High-
frequency activity patterns in the PFC exhibit a biphasic trajectory 
during this period. The gamma and spiking activity peaks firstly 
during pre-juvenile (P16–P23) and early adolescence (P28–P35) but 
decreases significantly in late adolescence (P36-43) before rising again 
into adulthood (P53–P60) (Bitzenhofer et al., 2020; Pöpplau et al., 
2024). Microglial phagocytic activity is increased during adolescence 
and promotes period-specific synaptic pruning in the PFC in mice 
and rats (Mallya et  al., 2019; Pöpplau et  al., 2024). Furthermore, 
microglia-driven remodeling during adolescence has been linked to 
not only dendritic complexity and synaptic structures but also 
behaviors such as social recognition memory, temporal memory, and 
fear of extinction later in life at the adult stage in mice (Schalbetter 
et al., 2022; Pöpplau et al., 2024). Adolescence thus appears to be a 
critical period when the PFC is particularly sensitive to 
microglial activity.

During adolescence, connections between the PFC and other 
brain regions also undergo significant establishment. Connections 
between the amygdala and subdivisions of the PFC, such as the ACC 
and IL, exhibited a marked increase during the late postweaning 
period in rats (Cunningham et al., 2002). Another study has shown 
that projections from the basolateral amygdala (BLA) and 
hippocampus to the PL peak at P30, then decline later at P45 into 
adulthood in mice. These dynamic changes are thought to influence 
the persistence of fear memories. Interestingly, no such peak is 
observed in projections to the IL, suggesting subregion-specific 
plasticity within the mPFC (Pattwell et  al., 2016). Bidirectional 
connections between the mPFC and BLA also show developmental 
dynamics, with projections from the mPFC to the BLA peaking 
during adolescence and being pruned into adulthood in mice and rats 
(Cressman et  al., 2010; Arruda-Carvalho et  al., 2017). These 
synchronized peaks in bi-directional connectivity may optimize 
feedback calculations. Connections from the thalamus to the PFC, 
observed as early as the first postnatal week, are also highly plastic 
during adolescence. Chemogenetic inhibition of thalamo-prefrontal 
(mediodorsal/midline thalamus to medial prefrontal) activity during 
the postweaning period (P20–P50) impairs mPFC excitability and 
cognitive functions in adulthood in mice. In contrast, similar 
manipulations in adulthood have minimal effects, suggesting 
adolescence is a critical period for thalamo-prefrontal circuit 
development (Benoit et  al., 2022). Interestingly, reduced 
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thalamo-prefrontal connectivity has been reported in young 
adolescents with psychosis such as schizophrenia even before their 
diagnosis (Anticevic et  al., 2015; Woodward and Heckers, 2016), 
raising the possibility that adolescence may also represent a period of 
heightened plasticity for modulating behaviors later in life in humans. 
Top-down corticocortical projections, such as those from the ACC to 
the visual cortex, show increased excitability during adolescence 
(P29–P37) in mice. Evidence suggests that disruptions to this activity 
during the critical developmental window may affect local and long-
range input balance, leading to long-term alterations in PFC 
excitability and attention-related behaviors (Nabel et al., 2020; Allen 
and Morishita, 2024).

As described above, the PFC undergoes substantial plasticity 
changes during specific developmental windows for each circuit. The 
mechanisms driving these changes remain an active area of research. 
In sensory cortices, the development of inhibitory neurons is crucial 
for determining critical period timing (Hensch, 2005). Similarly, 
changes in PFC plasticity have been linked to GABAergic neurons 
(Caballero et al., 2016, 2021), particularly PV interneurons (Caballero 
et  al., 2020), whose activity during adolescence (P14–P50) in the 
mouse mPFC has been shown to be  critical for the regulation of 
gamma oscillations and behaviors later in life (Canetta et al., 2022). 
Late-adolescent activation of PV interneurons can even rescue deficits 
in schizophrenia model mice (Mukherjee et  al., 2019). 
Neurotransmitters also play a crucial role in the postnatal development 
of the PFC, influencing its maturation and the regulation of behaviors. 
Key examples include serotonin, dopamine, acetylcholine, oxytocin, 
and endocannabinoids, each contributing to distinct aspects of PFC 
development (Mukherjee et al., 2019; Soiza-Reilly et al., 2019; Yaseen 
et al., 2019; Miguelez Fernández et al., 2021; Mastwal et al., 2023; Islam 
and Blaess, 2024; Molla et al., 2024; Ogelman et al., 2024) (Figure 1). 
For instance, serotonin signaling during the first two postnatal weeks 
is essential for regulating PFC maturation, including neuronal 
development, circuit formation, and the modulation of anxiety/
depression-like behaviors in mice (Soiza-Reilly et al., 2019; Ogelman 
et al., 2024). In contrast, dopaminergic signaling and projections to 
the PFC increase significantly during adolescence, potentially 
correlating with pubertal changes and the refinement of cognitive 
functions (Walker et al., 2017b), partly through the regulation of PV 
interneuron maturation in mice (Mukherjee et al., 2019; Islam and 
Blaess, 2024). Future research should aim to clarify the precise timing, 
cellular targets, and behavioral outcomes of these neurotransmitter 
signals during critical developmental periods.

Impact of early life stress on prefrontal 
cortex circuitry and function

During postnatal development, the PFC exhibits significant 
plasticity, facilitating the establishment of functional neural circuits. 
This period represents a critical window for experience-dependent 
brain development but also coincides with increased susceptibility to 
environmental factors, such as early-life stress (ELS), which may 
elevate the risk of mental disorders (Takeda et al., 2024; Pechtel and 
Pizzagalli, 2011; McLaughlin et al., 2010; Green et al., 2010; Nestler 
and Russo, 2024). Evidence from human studies indicates that 
childhood neglect or abuse is associated with deficits in social–
emotional development and cognitive functions, including IQ, 

memory processing, and problem-solving abilities (Egeland et al., 
1983; Nelson et al., 2007; Spatz Widom et al., 2007; De Bellis et al., 
2009; Pollak et al., 2010). Alterations in synaptic dynamics during 
critical developmental periods have been implicated in the 
pathophysiology of neurodevelopmental disorders, such as autism 
spectrum disorder and schizophrenia (Forrest et al., 2018; Faust et al., 
2021). Recent studies using rodent models have provided valuable 
insights into the mechanisms that render the developing brain 
particularly vulnerable to early-life stress (ELS) and its contributions 
to the onset of mental disorders later in life. This review focuses 
primarily on the impact of social stressors, including maternal neglect 
and social isolation, on the structural and circuit-level development 
of the PFC.

ELS in neonatal rodents is frequently modeled using maternal 
separation (MS) or environmental deprivation (e.g., limited bedding 
and nesting materials), both of which disrupt caregiving environments 
and lead to behavioral alterations in adulthood, including impaired 
learning and memory, social deficits, and increased depression-like 
behaviors (Tractenberg et al., 2016; Walker et al., 2017a). MS has been 
shown to influence cytoarchitecture by impairing oligodendrocyte 
differentiation in the mouse mPFC (Teissier et al., 2020) and delaying 
the onset of neuronal and glial apoptosis in the rat mPFC (Majcher-
Maślanka et al., 2019), ultimately altering the composition of each cell 
type in adulthood. Functionally, it has been reported that MS reduces 
neuronal activity in the PFC during the stress period. Chemogenetic 
reduction of mPFC excitability during the first two postnatal weeks 
(P2–P14) in mice reared under standard facility conditions replicates 
MS-associated phenotypes, including premature oligodendrocyte 
differentiation and impairments in emotional behavior and object 
recognition in adulthood, underscoring a critical period for stress 
susceptibility (Teissier et al., 2020) (Figure 2). The presence of this 
critical period is further supported by a study showing that transient 
chemogenetic activation of PFC neurons during MS in mice 
ameliorates behavioral deficits in adulthood (Menezes et al., 2024). 
However, MS has also been reported to increase neuronal excitability, 
reduce inhibitory neurons, and shift the excitatory/inhibitory (E/I) 
balance toward excitation in the PFC in mice and rats (Ohta et al., 
2020; Oh et  al., 2021). Whether stress increases or decreases 
excitability may depend on specific neuronal subtypes, cortical layers, 
and circuit connections. Moreover, differences in stress sensitivity 
have also been reported in circuits between the PFC and specific brain 
regions (Reincke and Hanganu-Opatz, 2017; Oh et al., 2021) as well 
as across subregions within the PFC (Luo et al., 2023).

During juvenile and adolescent periods, social isolation is a 
commonly used stress model to examine long-term effects on PFC 
function in rodents (Burke et al., 2017; Li et al., 2021; Morishita, 2021). 
Juvenile social isolation (jSI), particularly during the postweaning 
period between P21 and P35 in mice, induces greater deficits in social 
behaviors and cognition in adulthood compared to later isolation 
periods (P35-P65), indicating a critical period of heightened stress 
sensitivity during early adolescence (Makinodan et  al., 2012). jSI 
disrupts key elements of neuronal plasticity, including myelination 
and microglial activity (Makinodan et al., 2012, 2017; Komori et al., 
2024), and alters the organization of circuits involving PV or 
somatostatin (SST)-positive interneurons, leading to long-term 
changes in E/I balance and behavior (Bicks et al., 2020; Yamamuro 
et  al., 2020; Li et  al., 2022) (Figure  2). Social isolation during 
adolescence in mice also influences actin dynamics in the PFC, which 
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is also observed in rat MS model (Tada et  al., 2016), activating 
cytoskeletal regulatory pathways typically suppressed during this 
period, thereby affecting dendritic spine properties and long-term 
brain function (Li et al., 2024a). Furthermore, PFC-associated circuits, 
including PFC-posterior paraventricular thalamus (pPVT), 
PFC-nucleus accumbens (NAc), PFC-VTA, and PFC-BLA pathways, 
have been implicated in mediating the long-term effects of isolation 
stress in early life on social and cognitive behaviors in adulthood in 
rodents, with neurotransmitters like dopamine and subregion-
dependent differences playing important roles (Baarendse et al., 2013; 
Yamamuro et al., 2020; Park et al., 2021; Kuniishi et al., 2022; Li et al., 
2022; Musardo et al., 2022; Wang et al., 2022).

Epigenetic changes in the prefrontal cortex 
induced by early life stress: emerging 
insight

Comprehensive transcriptomic analyses have increasingly been 
employed in recent years to investigate how ELS influences genome-
wide gene expression in the PFC of rodents (Peña et al., 2019; Usui et al., 

2021; Wang et  al., 2022; Luo et  al., 2023). For example, single-cell 
transcriptomic analysis of PFC tissues from adult mice exposed to MS 
has revealed long-lasting alterations in gene expression, particularly in 
genes related to GABAergic and serotonergic pathways (Ohta et al., 
2020; Menezes et  al., 2024). Environmental factors are thought to 
influence epigenetic states, which may underlie these persistent 
transcriptional alterations. Recent studies have shown that stress during 
early life or adulthood alters histone modifications and DNA 
methylation states at loci such as Bdnf or serotonin-related genes in the 
rodent PFC, which are crucial for neuronal plasticity (Roth et al., 2009; 
Márquez et al., 2013; Xu et al., 2018; Konar et al., 2019; Zhao et al., 2020; 
Fachim et al., 2021; Jiang et al., 2021; Araki et al., 2024). Moreover, ELS 
has been shown to induce long-lasting epigenetic changes in cell types 
critical for neural plasticity, such as PV interneurons and 
oligodendrocytes, within the rodent PFC (Chen et al., 2020; Noel et al., 
2024). Pharmacological inhibition of histone-modifying enzymes, 
including histone H3K9 methyltransferase, histone H3K4 demethylases, 
and histone deacetylases (HDACs), has been shown to mitigate 
behavioral abnormalities caused by ELS in rodent models, suggesting 
that epigenetic regulation may play a role in both the pathogenesis and 
potential treatment of stress-related disorders (Wei et al., 2020; Wang 

FIGURE 2

Long-lasting effects of early-life social stress on PFC structure and function. Early-life social stress, such as maternal separation during the neonatal 
period or social isolation during juvenile–adolescent stages, has been widely used as a model for early-life stress (ELS). These stressors induce 
persistent alterations in PFC structure, circuit properties, and behaviors into adulthood. During the stress period, maternal separation in neonates 
affects PFC neuronal activity and cell composition, whereas social isolation in juveniles and adolescents influences neuronal activity, myelination, and 
microglial function. These changes have been implicated in long-term disruptions in PFC circuit organization, including cell composition and 
excitatory/inhibitory (E/I) balance, in a circuit- and PFC subregion-specific manner. Ultimately, ELS contributes to behavioral abnormalities in 
adulthood, including impairments in sociability, emotion regulation, and memory function.
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et al., 2023; Hernandez Carballo et al., 2024; Li and Yan, 2024). Notably, 
these inhibitors were administered not only during the stress exposure 
itself but after the stress period or even later in adulthood, yet still 
resulted in significant behavioral improvements. This highlights the 
enduring nature of stress-induced epigenetic changes and their potential 
reversibility. Furthermore, recent studies in mice suggest that 
susceptibility to social stress may also be linked to the regulation of gene 
expression by specific histone-modifying enzymes in the PFC and NAc 
(Kronman et al., 2021; Li et al., 2024b; Torres-Berrío et al., 2024). Future 
research should aim to elucidate the specific timing, cell types, and 
epigenetic mechanisms underlying stress responses to better understand 
how ELS shapes long-term PFC function and stress vulnerability.

Discussion

This review has highlighted studies, primarily in rodents, 
illustrating how the PFC undergoes sequential structural and circuit 
development during postnatal stages. Particular attention has been 
given to periods of elevated plasticity in the PFC, during which circuit 
formation and reorganization are especially dynamic. Furthermore, 
we discussed how these critical windows of plasticity render the PFC 
particularly vulnerable to environmental stressors, such as ELS, and 
explored the relationship between ELS and epigenetic regulation in 
shaping PFC function.

Emerging evidence indicates that the effects of ELS differ 
substantially across developmental stages, cell types, PFC subregions, 
and circuits, highlighting the necessity for more detailed investigations. 
Notably, while the impact of ELS persists into adulthood, epigenetic 
modifications induced by stress appear to continue evolving even in 
mature stages. Future research should focus on identifying the genes 
susceptible to long-term epigenetic changes and elucidating how these 
alterations influence PFC function over time.

Interestingly, the long-lasting effects of ELS are also implicated in 
the vulnerability to subsequent stress exposure, consistent with the 
“two-hit” model (Castillo-Gómez et  al., 2017). Differences in 
responses to second-hit stress have been linked to epigenetic 
mechanisms, which can either increase or decrease stress resilience 
depending on the context (Chaby et  al., 2020; Reshetnikov et  al., 
2021). Additionally, even in fully developed adult mice, the PFC 
retains experience-dependent plasticity (Levy et al., 2019), suggesting 
that future studies should not only address second-hit vulnerabilities 
but also investigate the factors that determine plasticity in the 
adult PFC.

This review did not extensively address how findings from rodent 
studies translate to humans. While the structural and circuit-level 
correspondence between the rodent and primate PFC has been 
discussed extensively (Carlén, 2017; Chini and Hanganu-Opatz, 2021; 
Le Merre et al., 2021; Preuss and Wise, 2022), further investigation is 
needed to clarify the similarities in stress responsiveness, particularly 
given the differences in developmental timelines. Despite the 
significant differences in the extent of postnatal development, it is 
worth noting that PFC development appears to progress more slowly 
than other cortical areas in both humans and rodents, raising 
intriguing questions about the mechanisms that contribute to the 
protracted maturation of the PFC.

Another limitation of this review is the lack of discussion on sex 
differences. Notably, sexual maturation occurs during the juvenile and 
adolescent periods, and numerous studies have emphasized the 

sex-specific effects of stress on PFC development and function 
(Tottenham and Galván, 2016; Heitzeg et al., 2018; Schroeder et al., 
2018; Konar et al., 2019; Shaw et al., 2020; Wang et al., 2022). Future 
research should seek to unravel the intricate interplay between sex 
differences, developmental stages, and stress responses in shaping PFC 
development and function.

Achieving a comprehensive understanding of PFC development 
and its vulnerability to stress will require integrating data across 
multiple dimensions. By bridging single-cell transcriptional and 
epigenetic states with circuit-level changes and behavioral outcomes 
at distinct developmental stages, future research holds the potential to 
uncover the mechanisms that drive PFC maturation and contribute to 
the pathophysiology of psychiatric disorders.
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