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Dissociated neuronal cultures provide a powerful, simplified model for

investigating self-organized prediction and information processing in

neural networks. This review synthesizes and critically examines research

demonstrating their fundamental computational abilities, including predictive

coding, adaptive learning, goal-directed behavior, and deviance detection.

A unique contribution of this work is the integration of findings on network

self-organization, such as the development of critical dynamics optimized for

information processing, with emergent predictive capabilities, the mechanisms

of learning and memory, and the relevance of the free energy principle within

these systems. Building on this, we discuss how insights from these cultures

inform the design of neuromorphic and reservoir computing architectures,

aiming to enhance energy e�ciency and adaptive functionality in artificial

intelligence. Finally, this review outlines promising future directions, including

advancements in three-dimensional cultures, multi-compartment models,

and brain organoids, to deepen our understanding of hierarchical predictive

processes in both biological and artificial systems, thereby paving the way for

novel, biologically inspired computing solutions.

KEYWORDS

dissociated neuronal cultures, predictive coding, self-organized criticality,
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1 Introduction

1.1 The challenge of neural computation and in vitro

models

The brain’s remarkable ability to process information, learn from experience, and adapt

to changing environments emerges from the dynamic interactions of billions of neurons.

Understanding how these capabilities arise from neural network organization represents

a fundamental challenge in neuroscience (Friston et al., 2006; Friston, 2010; Bastos

et al., 2012; Keller and Mrsic-Flogel, 2018). Dissociated neuronal cultures—simplified

systems where neurons are isolated from their native environment and allowed to

self-organize—provide a powerful experimental platform for investigating these processes.

These cultures retain core capabilities for network formation, information processing, and

adaptation while offering unprecedented access for manipulation and observation (Maeda

et al., 1995; Kamioka et al., 1996; Potter and DeMarse, 2001; Marom and Shahaf, 2002).
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1.2 Unique contributions of this review

Despite significant advances in understanding isolated

aspects of neuronal culture function, a comprehensive synthesis

that specifically focuses on self-organized prediction and its

implications has been lacking. This review makes several unique

contributions by: (1) integrating findings across previously

disconnected research domains spanning network development,

learning, prediction, and goal-directed behavior in dissociated

cultures; (2) providing a critical framework for understanding

how predictive capabilities emerge from self-organization in the

absence of explicit design; and (3) establishing conceptual bridges

between fundamental neuroscience findings in these simplified

systems and their applications for neuromorphic computing and

artificial intelligence.

1.3 Evolution of methodologies: from early
cultures to advanced MEAs

The study of neuronal cultures has evolved dramatically since

Ross Granville Harrison first demonstrated nerve fiber growth

in vitro in 1910 (Harrison, 1910). Harrison’s pioneering work

established the foundation for modern neurobiology by enabling

direct observation of neural development. A transformative

advance camewith the introduction ofmicroelectrode array (MEA)

technology (Figure 1A; Thomas et al., 1972; Gross et al., 1977;

Pine, 1980). MEAs revolutionized the field by enabling long-term,

non-invasive recording from multiple neurons simultaneously,

providing unprecedented insight into network dynamics and

development (Pine, 2006; Bakkum et al., 2013; Müller et al., 2015;

Obien et al., 2015).

Early MEA platforms allowed researchers to monitor network

formation in dissociated cultures, revealing spontaneous activity

and plasticity (Figures 1B, C). High-density CMOS microelectrode

arrays now enable recording from thousands of neurons with

unprecedented spatial and temporal resolution (Berdondini et al.,

2005; Frey et al., 2007; Ballini et al., 2014; Müller et al., 2015).

These systems (Figure 1D) facilitate detailed investigations of

both localized interactions and long-range network dynamics.

They provide subcellular resolution, as illustrated by the precise

alignment of neurons with individual electrodes (Figure 1E) and

allow spatial mapping of extracellular spikes overlaid on neuronal

morphology to track activity sources and connectivity (Figure 1F).

1.4 Insights from calcium imaging

Complementary to MEA technology, fluorescence calcium

imaging provides another powerful lens for observing neuronal

activity. Early studies, such as Murphy et al. (1992), using Fura-2,

demonstrated the utility of this approach by revealing spontaneous

synchronous calcium transients in cultured cortical neurons,

linking these network events to synaptic mechanisms. Building on

such foundational work, the technique now employs a range of

fluorescent indicators—from chemical dyes to advanced genetically

encoded calcium indicators (GECIs) like GCaMP6—to visualize

the transient intracellular calcium increases that accompany action

potentials. Calcium imaging offers distinct advantages, notably the

capacity to monitor large neuronal populations (often thousands

of cells) with single-cell resolution and to target specific cell types

through genetic strategies (Montalà-Flaquer et al., 2022; Soriano,

2023). It is particularly valuable for investigating the spatial

organization of network activity and how structural features, like

engineered anisotropies, shape functional dynamics. Furthermore,

the evolution of GECIs has enabled long-term tracking of network

development and plasticity over weeks (Estévez-Priego et al., 2023).

Thus, MEAs and calcium imaging offer synergistic insights: MEAs

provide superior temporal resolution for direct electrical events,

while calcium imaging excels in spatial coverage and cellular-

level detail, with ongoing advancements continually improving its

temporal capabilities.

1.5 Strengths and limitations of in vitro

models

While these in vitro systems offer unparalleled control,

accessibility for high-resolution recording and stimulation, and a

simplified environment to study fundamental principles of self-

organization and computation, it is crucial to acknowledge their

inherent limitations. These include the absence of native brain

architecture, the lack of structured sensory input experienced in

vivo, and patterns of spontaneous activity that can differ from

those in intact brains. A careful consideration of these factors is

essential when translating findings from dissociated cultures to

more complex biological systems, a theme that will be revisited

throughout this review.

1.6 Observed capabilities of neuronal
cultures

Research using these systems has revealed several fundamental

properties of neural network organization and function. As

cultures develop, they demonstrate a remarkable capacity for

self-organization, evolving from random collections of cells into

functional networks that exhibit critical dynamics optimized for

information (Beggs and Plenz, 2003; Levina et al., 2007; Millman

et al., 2010; Friedman et al., 2012; Yada et al., 2017; Kossio et al.,

2018). These critical phenomena have been observed using both

electrophysiological approaches and calcium imaging techniques

(Yaghoubi et al., 2024) with the latter providing complementary

evidence through optical measurements of population activity,

though careful consideration of data processing methods is

necessary to avoid potential artifacts in inferring spike dynamics

from calcium signals (Soriano, 2023). These networks show robust

capabilities for learning and memory formation, as demonstrated

through studies of synaptic plasticity and adaptive responses to

electrical stimulation (Jimbo et al., 1998, 1999; Shahaf and Marom,

2001; Le Feber et al., 2010, 2014, 2015; Dranias et al., 2013; Dias

et al., 2021).

Neuronal cultures have proven effective for studying goal-

directed behavior in closed-loop systems. Potter et al. (1997)
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FIGURE 1

Evolution of microelectrode array (MEA) technology for studying neuronal networks. (A) The MEA system, featuring a transparent glass substrate with

60 microelectrodes spaced at 200µm. This design provides su�cient spatial resolution for capturing network-level neuronal activity and allows for

optical imaging of the culture. The system is capable of both extracellular recording and stimulation for long-term culture studies. (B) Bright-field

microscopy of dissociated neuronal cultures grown on the MEA platform. The electrode array beneath the neuronal layer supports the

self-organization of functional networks while enabling the simultaneous observation of culture morphology and recording of extracellular signals.

Scale bar = 100µm. (C) Extracellular spike recordings from MEA, demonstrating its capacity to capture neuronal activity from multiple electrodes

simultaneously. The recording resolution and electrode layout enable the analysis of network activity patterns and dynamic behaviors. (D)

High-dense CMOS-based MEA system (MaxOne), incorporating 26,400 platinum electrodes with a 17.5µm pitch. This CMOS-MEA provides

subcellular spatial resolution for recording and stimulation, enabling the detailed investigation of localized neuronal activity and network interactions.

(E) Schematic overlay of a neuron (green) interacting with electrodes (red) on a CMOS-MEA. The figure illustrates how neuronal somas and

processes align with the electrode array. The red electrodes in close proximity to the soma demonstrate the ability of high-density CMOS arrays to

monitor and stimulate activity at a single-cell resolution. The scale bar indicates the high spatial resolution provided by this system, with electrodes

spaced at ∼17.5µm. (F) CMOS-MEA monitoring an action potential generated from the soma. Immunostaining image of a neuron on the CMOS MEA

is overlaid with spatially localized extracellular spike sources. The high-density electrode array enables the resolution of neuronal activity at

subcellular precision, revealing fine-scale functional properties of single neurons and their interactions with the network. Scale bar = 30µm.
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introduced the “Animat in a Petri Dish” concept, establishing a

paradigm where network activity controlled a simulated animal

(“animat”) while receiving sensory feedback through electrical

stimulation. This foundational work led to numerous studies

demonstrating that cultured networks can adapt to control external

devices (DeMarse et al., 2001; Potter et al., 2003; Bakkum et al.,

2008b; Chao et al., 2008; Tessadori et al., 2012; Masumori et al.,

2020; Yada et al., 2021; Kagan et al., 2022), advancing our

understanding of neural adaptation and control while suggesting

new approaches for brain-machine interfaces and neuroprosthetics.

The computational capabilities of neuronal cultures extend to

more sophisticated information processing tasks. These networks

exhibit predictive coding and deviance detection, supporting

theoretical frameworks such as the free energy principle (Rao

and Ballard, 1999; Friston, 2010; Huang and Rao, 2011; Isomura

et al., 2015; Isomura and Friston, 2018; Lamberti et al., 2023).

Their ability to perform complex computations while maintaining

remarkable energy efficiency has important implications for

neuromorphic computing and artificial intelligence (Marković

et al., 2020; Smirnova et al., 2023). Insights from neuronal cultures

can influence the development of new computing architectures,

particularly in areas such as reservoir computing and adaptive

neural networks (Dockendorf et al., 2009; Kubota et al., 2019;

Tanaka et al., 2019; Kubota et al., 2021b; Subramoney et al., 2021;

Cai et al., 2023; Sumi et al., 2023).

1.7 Emerging frontiers

The development of three-dimensional culture techniques

and brain organoids offers new opportunities to study neural

organization in more physiologically relevant contexts (Hogberg

et al., 2013; Lancaster et al., 2013; Clevers, 2016; Smirnova and

Hartung, 2024). These advances, combined with sophisticated

analysis techniques and theoretical frameworks, provide new

insights into how neural networks self-organize for efficient

information processing and adaptation.

1.8 Scope and structure of this review

This review synthesizes current research on dissociated

neuronal cultures, examining their contributions to our

understanding of neural network organization and function.

Specifically, it aims to: (i) trace the development of these cultures

toward complex, critical dynamics suitable for information

processing; (ii) detail their capacity for adaptive learning, memory

formation, and predictive processing; (iii) explore their utility

in modeling goal-directed behavior within embodied systems;

(iv) connect these empirical findings to overarching theoretical

frameworks like the free energy principle; and (v) discuss the

implications of this research for designing next-generation

neuromorphic computing systems.

We begin by exploring network development and the

emergence of critical dynamics (Chapter 2), followed by detailed

analysis of learning and memory formation in these systems

(Chapter 3). We then examine how neuronal cultures exhibit

deviance detection and predictive processing, including the

relevance of theoretical frameworks like the free energy principle

(Chapter 4), and their remarkable capacity for goal-directed

behavior when coupled with external systems (Chapter 5). Chapter

6 discusses how insights from neuronal cultures inform the

development of artificial neural networks and neuromorphic

computing systems. Finally, we consider future directions for the

field, including advances in three-dimensional culture techniques,

brain organoids, and their implications for both neuroscience and

artificial intelligence (Chapter 7).

By examining how these simplified neural systems self-organize

for prediction and adaptation, we aim to illuminate fundamental

principles of neural computation while highlighting their practical

applications in bio-inspired computing and neuroprosthetics. This

understanding may ultimately guide the development of more

efficient and adaptive artificial systems while deepening our

knowledge of biological neural network function.

2 Network development and
self-organized criticality

The transformation of dissociated neuronal cultures from

random collections of neurons into sophisticated, functionally

organized systems is a remarkable feat of biological self-

organization. This chapter explores the key processes and principles

underlying network development in these cultures, followed by an

introduction to the concept of Self-Organized Criticality (SOC) and

its relevance to understanding network maturation.

2.1 Early network development and activity
patterns

Network development in neuronal cultures progresses through

several distinct stages, each characterized by increasingly complex

patterns of activity. In the earliest stages, neurons exhibit seemingly

chaotic, independent firing patterns. Kamioka et al. (1996)

observed that this apparent randomness quickly gives way to more

organized activity as the culture matures. The transition from

independent firing to coordinated activity is heavily dependent on

NMDA receptor activation and is influenced by external factors

such as calcium concentrations (Segev et al., 2001). As development

continues, the network establishes stable, recurring patterns of

synchronized activity. Van Pelt et al. (2004) documented the

emergence of network bursting as a hallmark of culture maturation.

Early calcium imaging studies, such as those by Murphy et al.

(1992), using Fura-2 and Opitz et al. (2002) using Fluo-3, provided

crucial visualizations of these emerging spontaneous synchronous

calcium transients and their developmental timeline, linking them

to underlying synaptic mechanisms and the developmental GABA

shift. Further refinement of connections leads tomore sophisticated

firing patterns, including what Wagenaar et al. (2006) termed

“superbursts”—periods of intense, coordinated activity that reflect

the increasing complexity of network interactions.

As shown by Yada et al. (2017), these patterns exhibit

state-dependent properties, with different spatiotemporal patterns
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appearing successively and periodically, suggesting organized

fluctuations in neural activity propagation. Figure 2 illustrates

these developmental transitions using data from high-density

CMOS microelectrode arrays. Figure 2A displays spatial maps of

action potential amplitudes recorded at different developmental

stages, while Figure 2B highlights changes in spike waveforms at

selected electrodes over time. Figure 2C depicts the progression

of spontaneous spiking activity, showcasing the emergence of

synchronized bursts. Figure 2D visualizes the shift in neuronal

avalanche size distributions, from exponential at early stages

(4 DIV) to power-law distributions indicative of SOC by 16

DIV. Lastly, Figure 2E presents the integration-fragmentation

model explaining SOC emergence, highlighting the role of

synaptic pruning and balanced excitation-inhibition dynamics in

this transition.

2.2 Emergence of structural and functional
organization

The structural and functional organization of the network

evolves in parallel with these changes in activity patterns. Over time,

synaptic connections become more stable, as evidenced by metrics

like conditional firing probabilities (Le Feber et al., 2007). Early

studies on network development, such as Soriano et al. (2008), used

percolation theory to track the formation of global connectivity in

cultures, showing the emergence of a “giant connected component”

that integrates the network as it matures, a process paralleled

by the development of spontaneous network-wide bursting. The

importance of more structured architectures, such as modularity,

has since been highlighted.

Engineered in vitro systems have shown that modular

organization, achieved through topographical patterning or

microfabrication, can lead to richer dynamical repertoires

and a balance between functional segregation and integration

(Yamamoto et al., 2018; Montalà-Flaquer et al., 2022). Further

work by Yamamoto et al. (2018, 2023) demonstrated that an

optimal level of sparse coupling between modules enhances

dynamical richness and allows asynchronous noise to effectively

desynchronize network activity. Theoretical work also supports

that modularity, often alongside interconnected hub structures

forming “rich-clubs,” is fundamental for enabling high “functional

complexity” in neural networks (Zamora-López et al., 2016), and

indeed, such rich-club organization has been shown to emerge

early in developing hippocampal cultures, with hub neurons

brokering activity flow (Schroeter et al., 2015), while in cortical

slice cultures, “information-rich” hub neurons form similar

rich-clubs that dominate information transfer (Nigam et al., 2016).

Baruchi et al. (2008) characterized how mutual synchronization

emerges between coupled networks, demonstrating that despite

engineering similarity, spontaneous asymmetries emerge in both

activity propagation and functional organization.

The emergence of coherent, network-wide activity from

seemingly random spontaneous neuronal firing (intrinsic noise)

has been explained by mechanisms such as “noise focusing.”

Orlandi et al. (2013) proposed that this effect arises from a

combination of dynamical and topological amplification of

spontaneous activity, where metric correlations in the network

structure play a key role in concentrating noise to specific

nucleation sites, thereby triggering global bursts without requiring

external pacemakers. Building on this, Hernández-Navarro

et al. (2021) further detailed how noise-driven amplification

mechanisms, dependent on network topology forming “amplifying

cores,” govern the emergence of such coherent events. The

interplay between spontaneous activity and network formation

is also crucial; Okujeni and Egert (2019) demonstrated that

activity-dependent neuronal migration and neurite outgrowth can

lead to self-organized modular architectures (clustering), which

in turn shape the characteristics of spontaneous network bursts.

Earlier work by Okujeni et al. (2017) showed that such mesoscale

architectures, like neuronal clustering, significantly influence the

initiation sites and richness of spontaneous activity patterns.

2.3 Developmental considerations and in

vitro limitations

While dissociated cultures provide invaluable insights into self-

organization, it is important to consider factors that differentiate

their development and activity from in vivo brain circuits.

For instance, the level of external input significantly shapes

network dynamics. Zierenberg et al. (2018) proposed that the

prevalent bursting in standard in vitro cultures results from

their low-input environment, which contrasts with the continuous

afferent drive in vivo that promotes more stable, reverberating

activity. Homeostatic plasticity mechanisms adapt the network

to these input levels, suggesting that the “default” state of

cultures can be tuned by providing appropriate weak, long-term

external stimulation. Furthermore, species-specific developmental

trajectories are evident. Studies comparing human iPSC-derived

cortical networks to rodent primary cultures have revealed that

while general developmental stages are similar, human-derived

networks often exhibit more gradual maturation, more variable

bursting patterns, and different levels of synchrony (Hyvärinen

et al., 2019; Estévez-Priego et al., 2023). These differences

underscore the importance of model selection based on the specific

research question and highlight considerations for translating

findings across species or to the in vivo context.

2.4 Self-organized criticality (SOC) in
developing networks

As researchers sought to understand the principles governing

these complex developmental dynamics, the concept of Self-

Organized Criticality (SOC) emerged as a powerful explanatory

framework. Introduced by Bak et al. (1987) and Bak (1996) in the

context of physical systems, SOC describes how complex systems

naturally evolve toward a critical state characterized by scale-

invariant behavior. Further theoretical work has expanded our

understanding of SOC in neural systems, highlighting its ubiquity

across different scales of brain organization and its functional

implications (Muñoz, 2018; Plenz et al., 2021). Networks at

criticality exhibit maximized dynamic range, optimally responding
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FIGURE 2

Developmental transition toward self-organized criticality (SoC) in dissociated neuronal cultures. (A) Spatial maps of action potential amplitudes

recorded using high-density CMOS MEAs at di�erent developmental stages: 4 days in vitro (DIV), 7 DIV, and 16 DIV. Black circles mark recording sites,

and the heatmap represents voltage amplitudes (color scale: −400 to 100 µV). Scale bar = 200µm. (B) Representative spike waveforms recorded at

selected electrodes [indicated by black circles in (A)] across developmental stages. Gray lines depict raw spike traces, while red lines indicate averaged

spike waveforms. Scale bars = 1ms, 100 µV. (C) Raster plots of spontaneous spiking activity from 120 s of recorded data for the same cultures at 4, 7,

and 16 DIV, illustrating the emergence of synchronized bursts over time. (D) Log-log plots of neuronal avalanche size distributions at 4, 7, and 16 DIV.

(Continued)
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FIGURE 2 (Continued)

Exponential distributions dominate early development (4 DIV), while bimodal distributions emerge at 7 DIV, and power-law distributions characteristic

of SoC appear by 16 DIV. Fitted red lines represent power-law distributions, and blue lines indicate exponential fits. (E) Schematic representation of

the integration-fragmentation model for SoC emergence. Initially, neurons form weak excitatory connections, generating exponential distributions.

Large-scale avalanches emerge as connectivity strengthens, leading to a bimodal distribution. Finally, synaptic pruning and the balance of excitation

and inhibition result in diverse avalanche sizes distributed according to a power-law. Figure reproduced from Yada et al. (2017).

to the broadest range of stimulus intensities (Shew et al., 2009). This

concept has been widely applied to neural systems, offering insights

into network development and function (Chialvo, 2010; Beggs and

Timme, 2012; Shew and Plenz, 2013; Bilder and Knudsen, 2014).

In the context of neuronal networks, SOC is most notably

manifested in the phenomenon of neuronal avalanches—cascades

of spontaneous activity that follow power-law size distributions.

Beggs and Plenz (2003) were among the first to observe and

characterize these avalanches in neuronal cultures using MEAs,

followed by confirmations in various neural systems (Mazzoni et al.,

2007; Pasquale et al., 2008; Petermann et al., 2009; Friedman et al.,

2012).

Calcium imaging has also been employed to investigate

criticality across different network activity states. For instance,

Yaghoubi et al. (2018) found that critical exponents for neuronal

avalanches are not universal and can be shaped by culture

conditions altering network topology. More recently, Yaghoubi

et al. (2024) showed that by adjusting temporal binning according

to the intrinsic timescales of network “up” and “down” states,

scale-free avalanche statistics could be observed in both activity

regimes in cultures monitored with calcium imaging. Indeed,

interpreting such optical data requires careful consideration of

spike inference challenges due to slow indicator kinetics (Soriano,

2023), often necessitating deconvolution algorithms like OASIS

(Friedrich et al., 2017) which have their own limitations regarding

temporal precision and algorithmic assumptions. Consequently,

alternative analytical approaches such as state-dependent Transfer

Entropy for connectivity reconstruction (Stetter et al., 2012;

Tibau et al., 2020) or spectral analysis of population signals

(Tibau et al., 2013) are also employed to characterize network

properties from calcium imaging, underscoring the need for

context-aware analysis.

Experimental evidence for the development of SOC in cultures

has been provided by studies using advanced recording techniques.

Yada et al. (2017) used high-density CMOSmicroelectrode arrays to

capture the progression of avalanche dynamics across three distinct

phases: an initial exponential distribution, a transitional bimodal

distribution, and a final power-law distribution characteristic of a

critical state. This observed sequence supports a gradual expansion

model of network development, where neural connections are

extended incrementally over time. Kayama et al. (2019) revealed

the formation of functional clusters within maturing cultures,

showing how these clusters exhibit diverse and repeatable patterns

of synchronized firing, indicating the development of specialized

subnetworks within the larger network structure. These findings

complement earlier observations (Baruchi et al., 2008) about

the emergence of mutual synchronization in coupled networks,

demonstrating how spontaneous asymmetries arise in both activity

propagation and functional organization.

2.5 Methodological considerations in
assessing criticality

While power-law distributions of neuronal avalanche sizes

are a key signature of SOC, it is crucial to consider potential

methodological artifacts in their detection and interpretation. Neto

et al. (2022) have demonstrated that aspects of data acquisition

and analysis, such as “measurement overlap” in spatially coarse

recordings (where signals from multiple underlying neurons

might contribute to a single electrode or ROI) and the choice

of parameters like signal thresholding for event definition and

temporal binning, can significantly bias avalanche statistics. Such

factors can even lead to the appearance of power-law distributions

in systems that are not genuinely critical, or mask true differences

between dynamic states. These findings emphasize the need

for careful methodological choices and critical interpretation of

avalanche data when assessing evidence for SOC in neuronal

cultures and other neural systems.

2.6 Mechanisms underlying self-organized
criticality

The emergence of SOC in neuronal cultures involves

multiple mechanisms developing over time. Van Vreeswijk and

Sompolinsky (1996) demonstrated the importance of balanced

excitation and inhibition in neural networks for achieving stable

yet complex dynamics. Abbott and Rohrkemper (2007) proposed a

growth-based mechanism where neurons add or remove synapses

based on their activity levels. Both short-term and long-term

plasticity contribute to the network’s evolution toward criticality

(Levina et al., 2007; Millman et al., 2010). Vogels et al. (2011)

showed how inhibitory plasticity maintains excitation-inhibition

balance in memory networks, and Hennequin et al. (2017)

synthesized how inhibitory synaptic plasticity acts as a crucial

control mechanism for network stability and computation.

The interaction between plasticity mechanisms is particularly

important: excitatory STDP with an asymmetric time window

destabilizes the network toward a bursty state, while inhibitory

STDP with a symmetric time window stabilizes the network toward

a critical state (Sadeh and Clopath, 2020). Structural changes,

such as axonal elongation and synaptic pruning, also shape the

network’s critical dynamics (Tetzlaff et al., 2010; Kossio et al., 2018).

Kuśmierz et al. (2020) demonstrated that networks with power-

law distributed synaptic strengths exhibit a continuous transition

to chaos.

The relationship between criticality and the edge of chaos

represents another important regulatory point in neural networks,
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associated with the balance between excitation and inhibition.

SOC, the edge of chaos, and excitation-inhibition balance

serve as complementary homeostatic set points in well-tuned

networks, each contributing to the optimization of computation

and memory formation. Ikeda et al. (2023) have shown how

the interplay between environmental noise and spike-timing-

dependent plasticity can drive networks toward criticality,

emphasizing the importance of optimal noise levels in this process.

Theoretical modeling by Kern et al. (2024) has emphasized the

crucial role of inhibitory circuitry, demonstrating how the density

and range of inhibitory synaptic connections significantly influence

the development of critical dynamics.

The study of network development through the lens of SOC

has provided valuable insights into the fundamental principles

governing the maturation of neuronal systems. It offers a

framework for understanding how complex, functional network

structures emerge from initially disordered collections of neurons,

and how these networks maintain a balance between stability

and flexibility as they mature. This self-organized development

toward criticality, supported by various plasticity mechanisms

and carefully regulated by inhibitory circuits, enables neuronal

networks to achieve optimal information processing capabilities

while maintaining adaptability. The resulting networks exhibit

a rich repertoire of dynamics that supports their computational

functions while preserving the ability to respond to changing

environmental demands.

3 Adaptive learning and memory
formation

Dissociated neuronal cultures offer a simplified system for

studying learning and memory, providing insight into how neural

networks adapt in response to external stimuli. This chapter

reviews key findings demonstrating that these cultures exhibit

learning behaviors and explores the mechanisms that enable

memory formation and adaptation in these systems.While learning

in these reduced preparations may not fully recapitulate the

complexity of in vivo cognition, the observed phenomena provide

valuable insights into fundamental cellular and network-level

adaptive processes.

3.1 Foundational studies on learning and
activity-dependent plasticity

Early studies laid the foundation for understanding learning

in dissociated cultures. Jimbo et al. (1999) showed that localized

tetanic stimulation could induce potentiation and depression

in specific pathways, highlighting the network’s capacity to

modify connections based on stimuli. Shahaf and Marom (2001)

demonstrated that networks could be trained to produce specific

responses through low-frequency electrical stimulation, without

the need for external reward mechanisms, suggesting that learning

can emerge from simple, self-organizing principles. Ruaro et al.

(2005) further established the computational capabilities of these

cultures, showing they could perform pattern recognition tasks

through targeted electrical stimulation. Their work demonstrated

how biological neurons could be trained to recognize specific

spatial patterns, with responses enhanced through long-term

potentiation mechanisms.

Later work explored how network dynamics could be

controlled and shaped through stimulation. Wagenaar et al. (2005)

demonstrated that closed-loop, distributed electrical stimulation

could effectively transform burst-dominated activity into dispersed

spiking patterns more characteristic of in vivo activity. Le Feber

et al. (2010) showed that adaptive electrical stimulation—where

stimulation is adjusted based on network feedback—was more

effective at inducing long-lasting connectivity changes compared

to random stimulation. This highlighted the role of feedback in

shaping the learning process.

3.2 Memory mechanisms: from lasting
traces to temporal processing

Memory formation in dissociated cultures was further

investigated by Le Feber et al. (2015), who found that repeated

stimulation could create multiple parallel memory traces. This

indicated that these cultures could handle complex memory

storage tasks, with distinct stimuli producing stable patterns of

connectivity. Additionally, Bakkum et al. (2008a) demonstrated

that even when synaptic transmission was blocked, changes

in action potential propagation still occurred, suggesting that

non-synaptic mechanisms contribute to network adaptation.

Short-term memory processes were explored by Dranias et al.

(2013), who identified two types of STM in these networks: “fading

memory,” reliant on reverberating neural activity, and “hidden

memory,” which persists through changes in synaptic strength

even after neural activity has ceased. Ju et al. (2015) expanded

on these findings, demonstrating that dissociated networks possess

an intrinsic capacity for spatiotemporal memory lasting several

seconds and can classify complex temporal patterns. Their work

highlighted the importance of short-term synaptic plasticity

and recurrent connections in enabling these computational

capabilities. Further elucidating temporal processing capacity,

Ferdous and Berdichevsky (2024) demonstrated that dissociated

cortical cultures can reliably distinguish spatiotemporal sequences

of electrical stimuli with optimal discrimination at 50–200ms

intervals, explicitly linking this behavior to reservoir computing

principles where recurrent dynamics create a “fading memory” that

enables temporal pattern classification and serves as a foundation

for predictive tasks.

3.3 Molecular, network state, and broader
contextual influences on learning

Further studies have providedmore detail on themolecular and

network dynamics underlying memory and learning. Dias et al.

(2021) found that memory consolidation in these cultures was

influenced by network state, with low cholinergic tone enhancing

memory formation. Ikeda and Takahashi (2021) demonstrated the

flexibility of dissociated networks, showing that low-frequency
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stimulation could initially induce depression but later lead to

potentiation, revealing the dynamic nature of learning.

While dissociated cultures provide insights into fundamental

learning mechanisms, related ex vivo preparations with preserved

microarchitecture offer additional context. Liu and Buonomano

(2025) showed that organotypic cortical slices could learn

to predict stimulus timing, generate prediction errors upon

omission, and spontaneously replay learned temporal patterns,

suggesting that sophisticated temporal prediction and replay are

fundamental computational primitives inherent to local cortical

microcircuits that help interpret the adaptive capabilities observed

in dissociated cultures.

These findings demonstrate that dissociated neuronal cultures

are capable of both learning and memory formation through

various mechanisms, including synaptic plasticity, non-synaptic

adaptations, and network state-dependent processes. They can

learn to associate stimuli, encode temporal patterns, and form

lasting memory traces. However, it’s important to recognize the

context: the learning observed is often tied to specific stimulation

paradigms and may reflect fundamental associative capacities

rather than the complex, context-rich learning seen in vivo. The

absence of a developed organismal framework means that “goals”

and “rewards” are externally imposed or emergent from very basic

self-organizing principles. Understanding these adaptive behaviors,

even in their simplified form, provides an essential foundation for

exploring how neural networks manage information and anticipate

future events, particularly in the context of predictive processing

discussed in the subsequent chapter.

4 Prediction, deviance detection, and
the free energy principle

The free energy principle and predictive coding framework

propose that neural systems maintain internal models to minimize

prediction errors about their sensory inputs. Under this framework,

neural responses represent prediction errors—the difference

between expected and actual inputs. Organisms actively minimize

prediction errors through two complementary processes: updating

internal models to better predict sensory inputs and selecting

actions that confirm these predictions. This principle helps explain

phenomena like mismatch negativity (MMN), where the brain

produces enhanced responses to stimuli that violate statistical

regularities, representing prediction error signals in sensory

processing hierarchies.

4.1 Deviance detection in dissociated
cultures: from adaptation to prediction
error

In dissociated neuronal cultures, evidence for predictive

processing comes from multiple experimental approaches. Early

evidence for differential processing of frequent and rare stimuli

came from Eytan et al. (2003), who showed that cortical networks

could selectively adapt to different stimulation patterns using

multi-electrode arrays. Their work demonstrated that neurons

attenuated responses to frequent stimuli while enhancing responses

to rare events. Through careful pharmacological manipulations,

they showed this selective adaptation depended on both excitatory

synaptic depression and GABAergic inhibition, though their

findings likely primarily reflect stimulus-specific adaptation (SSA)

mechanisms rather than true prediction error signaling.

The distinction between SSA and genuine deviance detection

became clearer through subsequent work. While SSA reflects

passive reduction in responses to repeated stimuli through synaptic

depression, true deviance detection requires active comparison

between predicted and actual inputs (Kubota et al., 2021a)

provided preliminary evidence for genuine prediction error

detection using high-density CMOS arrays. By implementing both

oddball paradigms and many-standards control conditions, they

demonstrated that deviant responses were enhanced beyond what

SSA alone would predict. These paradigms and their results are

summarized in Figure 3, which illustrates the experimental setup

and neuronal responses. Figure 3A shows the electrode map of the

high-density CMOS microelectrode array, highlighting the spatial

distribution of stimulating and recording sites. Figure 3B details

the stimulation protocols used in the oddball and many-standards

control paradigms, demonstrating how the alternation of standards

and deviants elicits differential responses. Figure 3C compares

neural responses to standard and deviant stimuli, with raster plots

and population peristimulus time histograms (p-PSTHs) revealing

that deviant stimuli elicit stronger and more widespread responses

than standards, particularly in the late response phase.

Recent work (Zhang et al., 2025) has solidified these findings

using additional controls and larger sample sizes to confirm that

the enhanced mismatch responses are not artifacts of simpler

mechanisms like stimulus-specific adaptation. These findings

were particularly robust in demonstrating mismatch responses

dependent on NMDA receptor function, mirroring their role in

MMN generation in intact brains and highlighting the critical

role of synaptic plasticity in neural prediction. Additionally, this

study showed that cultured networks can detect violations of

complex statistical regularities, providing further evidence for

their sophisticated mismatch responses and sensitivity to sequence

predictability, similar to capabilities previously observed only in

intact cortex (Yaron et al., 2012). The findings suggest these

basic networks possess intrinsic capabilities for statistical learning

and prediction.

4.2 Mechanistic insights into deviance
detection

The mechanistic basis for deviance detection has been

illuminated through computational modeling. Kern and Chao

(2023) demonstrated that the interaction between two forms of

short-term plasticity—synaptic short-term depression (STD) and

threshold adaptation (TA)—can explain how neural networks

achieve deviance detection. Their work showed that threshold

adaptation alone enables basic deviance detection by reducing

responses to frequent stimuli while maintaining sensitivity to

unexpected inputs. However, the combination of TA with synaptic

short-term depression produces enhanced deviance detection
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FIGURE 3

Experimental paradigm and deviance detection responses in neuronal networks. (A) Electrode map from a high-density CMOS microelectrode array

showing the spatial distribution of stimulating electrodes (red, blue, and green dots for Stim A, Stim B, and Stim C, respectively) and recording sites

(light blue dots). Stimuli were delivered at specific locations to investigate network responses. (B) Stimulation protocols used in the oddball and many

standards control (MSC) paradigms. In the oddball paradigm, Stim A and Stim B were alternated as standard (std) and deviant (dev) stimuli. In the MSC

paradigm, multiple stimuli (Stim A, Stim B, Stim C, etc.) were presented in random order to eliminate expectations of repetition. (C) Top: Raster plots

showing neural responses to standard (top) and deviant (bottom) stimuli. Each row corresponds to a recording site, and black dots indicate spike

times relative to the stimulus onset. Deviant stimuli elicited stronger and more widespread responses compared to standards. Bottom: Population

peristimulus time histograms (p-PSTHs) comparing the number of spikes per time bin across conditions. Deviant stimuli (red line) evoke higher firing

rates and longer-lasting responses than standard (black line) and MSC (blue line) conditions, particularly in the late response phase (30–100ms).

Figure modified from Kubota et al. (2021a).

through synergistic effects: local synaptic fatigue from STD

amplifies the global recovery mediated by TA. This mechanism

allows networks to effectively encode predictable patterns while

maintaining heightened sensitivity to novel stimuli, providing a

computational foundation for understanding how neural circuits

implement prediction error detection.

4.3 Bayesian inference and free energy
minimization in cultures

Strong evidence for predictive processing in cultured networks

comes from studies demonstrating Bayesian inference capabilities.

Isomura et al. (2015) showed that cortical neurons in culture

could perform blind source separation using a microelectrode

array (MEA) system. By delivering mixed stimuli containing

distinct patterns, they demonstrated that rat cortical neurons could

develop selective responses to specific stimulus aspects through

Hebbian plasticity, distinguishing individual sources within the

mixed inputs. This work provided initial support for free energy

minimization in simplified neural circuits. Building on this

foundation, Isomura and Friston (2018) explored how neuronal

cultures perform inference about hidden causes in their sensory

environment. By stimulating cortical neurons with probabilistic

input patterns, they observed neurons developing functional

specialization—selectively responding to certain hidden sources

within mixed stimuli. This selective response pattern aligned with

Bayesian inference under the free energy principle, as neurons

refined their responses based on accumulated evidence regarding

the sources generating their inputs. Recent work Isomura et al.

(2023) provided the most direct evidence yet by demonstrating

that dissociated neuronal networks perform variational Bayesian

inference. Using an MEA to deliver structured stimuli composed

of two hidden sources, they observed that neuronal networks

adapted their responses through synaptic adjustments, functioning

as probabilistic beliefs about the sources. Notably, pharmacological

manipulation of network excitability altered these “prior beliefs,”

offering direct evidence for variational free energy minimization in

simplified neural systems.

4.4 Linking prediction and memory
formation

The relationship between prediction and memory formation

has been illuminated by Lamberti et al. (2023), who demonstrated

that focal electrical stimulation generates more effective long-term

memory traces compared to global stimulation. Using detailed

analysis of network responses, they showed that spatially specific

activation patterns enhance the network’s ability to predict future

inputs. This suggests that localized stimulation allows networks to

build more accurate predictive models through targeted synaptic
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modifications. Their follow-up study (Lamberti et al., 2024)

provided mechanistic insights by revealing that NMDA receptor

activity is crucial for stabilizing these memory traces and improving

prediction, demonstrating how synaptic plasticity enables networks

to build and refine their predictive models.

These findings demonstrate that even simplified neuronal

networks can implement core aspects of predictive processing—

from basic prediction error detection to sophisticated Bayesian

inference. While the exact mechanisms may differ from intact

brains, the evidence suggests that prediction is a fundamental

feature of neural computation that can be studied effectively

in reduced preparations. Understanding how these basic circuits

implement prediction may inform both theories of brain

function and development of artificial systems incorporating

similar principles.

5 Goal-directed behavior

Dissociated neuronal cultures, when integrated with embodied

systems, provide a powerful model for studying goal-directed

behavior. These paradigms typically rely on closed-loop

interactions, where the network’s activity influences a virtual

or physical environment, and feedback from that environment, in

turn, shapes network activity and learning.

5.1 Pioneering embodied systems: the
animat concept

Potter et al. (1997) pioneered this field by introducing the

“Animat in a Petri Dish” concept, combining cultured neural

networks with real-time computing environments. Using multi-

electrode arrays (MEAs) and advanced imaging techniques,

they established a paradigm where network activity controlled

a simulated animal (“animat”) while receiving sensory feedback

through electrical stimulation. This groundbreaking work

demonstrated the potential for studying learning and memory in

simplified neural networks through feedback-driven interaction

with their environment.

DeMarse et al. (2001) built upon this foundation by

demonstrating that cultured networks could control a simulated

aircraft’s pitch and roll in a virtual environment, showing that these

cultures could learn to maintain flight stability over time. Potter

et al. (2004) further advanced the field by introducing “Hybrots”

(hybrid neural-robotic systems), where cultured networks served as

“brains” for robotic systems. This approach addressed limitations of

traditional in vitro systems by providing sensory inputs and motor

outputs through closed-loop interaction.

5.2 Systematic training and analysis of
goal-directed behavior

A systematic investigation of these systems emerged through a

series of complementary studies. Chao et al. (2005) demonstrated

that random background stimulation could stabilize synaptic

weights after tetanization in both simulated and living networks,

preventing spontaneous bursts from disrupting learned patterns.

They developed novel analytical tools, further refined in Chao

et al. (2007), including the Center of Activity Trajectory (CAT) to

better detect and analyze network plasticity. This work provided the

methodological foundation for more complex behavioral studies.

Chao et al. (2008) demonstrated how simulated neural

networks could be shaped for adaptive, goal-directed behavior.

Using leaky integrate-and-fire neurons inspired by cortical cultures,

they created a closed-loop system where an animat learned to

move and remain within specific target areas. Their work revealed

several key principles: random background stimulation was crucial

for maintaining network stability, successful adaptation required

stimuli that evoked distinct network responses, and long-term

plasticity through STDP was essential for learning. Building on

these insights, Bakkum et al. (2008b) made the crucial advance

of implementing these principles in living neural networks.

Using multi-electrode arrays, they showed how real biological

networks could be trained to perform goal-directed behavior

through a structured combination of context-control probing

sequences (CPS), patterned training stimulation (PTS), and

random background stimulation (RBS). Their success in training

cultures to guide an animat toward predefined areas demonstrated

that biological neural circuits could be shaped for adaptive

control in real-world applications, establishing a foundation for

developing neuroprosthetics and therapeutic interventions. This

work provided definitive evidence that living neuronal networks

could be systematically trained to perform specific behaviors

through carefully designed stimulation protocols.

5.3 Exploring network architecture and
advanced computational paradigms

Tessadori et al. (2012) further explored modular network

architectures, showing that hippocampal neurons divided into

distinct compartments could enhance goal-directed behavior.

Their virtual robot avoided obstacles in an arena by interfacing

with the neuronal culture, with tetanic stimulation applied to

reinforce successful movements. Modular networks exhibited more

structured and selective neural activity, improving the robot’s

performance compared to random networks.

Recent advances have explored new computational paradigms

in these systems. Masumori et al. (2020) introduced the concept

of “neural autopoiesis,” showing how networks can regulate

self-boundaries through stimulus avoidance behaviors. Their

work revealed how networks adaptively distinguish between

controllable and uncontrollable inputs, providing insights into

neural self-organization and adaptation. Yada et al. (2021)

demonstrated physical reservoir computing with FORCE learning

in living neuronal cultures. Figure 4 illustrates this closed-loop

system, where cortical neurons cultured on a microelectrode

array (MEA) generate spiking activity processed via FORCE

learning to create coherent signals. Figure 4A shows the system’s

design, including optical stimulation using a digital micromirror

device (DMD) for feedback. Figure 4B demonstrates the robot

navigation task, where neuronal activity controls a robot navigating

through a maze toward a goal (highlighted in yellow), with

electrical stimulation applied when obstacles are encountered.
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FIGURE 4

Closed-loop system for goal directed behavior using a living neuronal culture. (A) Schematic representation of the closed-loop system. Cortical

neurons cultured on a microelectrode array (MEA) generate spiking activity, which is recorded and processed via FORCE learning to create a

coherent signal. For FORCE learning, the feedback to the neuronal network is provided via optical stimulation (using a digital micromirror device,

DMD). (B) Robot navigation task. Representative trajectories of a robot in a maze with obstacles toward a designated goal (target zone highlighted in

yellow) are shown. The robot’s movements are controlled by neuronal activity, with FORCE learning enabling adaptive task performance. Electrical

stimulation is applied when the robot hit an obstacle. Feedback from the environment—through optical and electrical stimulation—guides the robot’s

trajectory toward the goal. Figure adapted from Yada et al. (2021).
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Feedback from the environment guides the robot’s trajectory,

highlighting how intrinsic neural dynamics, coupled with real-

time learning algorithms, enable adaptive task performance.

This work underscores the potential of embodied neuronal

networks for solving goal-directed tasks without additional external

learning mechanisms.

5.4 Recent advances in adaptive learning
and complex task performance

The sophistication of tasks that in vitro networks can learn

continues to advance, particularly with the implementation of

more adaptive closed-loop feedback and the use of more complex

culture systems. Kagan et al. (2022) made a significant advance

by demonstrating that dissociated neuronal cultures could rapidly

adapt to controlling a paddle in a simplified “Pong” game (often

referred to as DishBrain). Using a high-density multi-electrode

array (HD-MEA) with 26,400 electrodes, the system provided

real-time feedback to neurons, which were able to adjust their

firing patterns within minutes. Their latest work (Khajehnejad

et al., 2024) compared the learning efficiency of biological neurons

with deep reinforcement learning (RL) algorithms, revealing that

neurons could learn faster in environments with limited training

data, highlighting their unique adaptability. Building on this,

Habibollahi et al. (2023), using a similar DishBrain setup, found

that networks consistently tuned themselves closer to criticality

during active gameplay with structured input compared to rest

conditions, and importantly, that task-relevant feedback was

crucial for learning, even when near-critical dynamics were present.

Recent preprints further demonstrate the potential for complex

adaptive learning in in vitro systems. Chen et al. (2025) developed

the “Multi-scale Adaptive In-vitro Sandbox” (MAIS) platform

and successfully trained cortical cultures to exhibit strategic

behaviors like “tit-for-tat” in simulated games through adaptive

stimulation, while Robbins et al. (2024) showed that mouse cortical

organoids embodied in closed-loop systems could learn goal-

directed control in the “Cartpole” task, demonstrating that even

dissociated networks can acquire complex adaptive strategies when

embedded in sufficiently interactive environments.

Moving forward, these works open new opportunities for

exploring more complex tasks in embodied neural systems, though

questions about the intelligence or sentience of these behaviors

remain (Balci et al., 2023). Further research could involve more

intricate feedback systems and multi-compartment setups, to

deepen our understanding of neuronal plasticity and prediction in

embodied systems, with potential applications in neuroprosthetics,

robotics, and bio-hybrid systems.

6 Insights for artificial neural networks
and neuromorphic systems

6.1 The imperative for bio-inspired
computing

Research into dissociated neuronal cultures has become

increasingly relevant for designing neuromorphic computing

systems that address traditional computing limitations. The scale

of this challenge is striking: Marković et al. (2020) highlight

that training a single state-of-the-art natural language processing

model on conventional hardware consumes energy equivalent

to running a human brain for 6 years. In contrast, biological

neural networks perform complex computations with remarkable

energy efficiency, requiring ∼20W for the entire human brain.

Beyond energy savings, neuronal cultures offer a paradigm where

computation and memory coexist within the same substrate, which

may interface directly with biological systems (Gentili et al., 2024).

The computational properties of neuronal cultures, detailed in

earlier chapters—from their self-organization toward critical states

optimizing information flow (Chapter 2), to their demonstrations

of adaptability and learning (Chapter 3), deviance detection,

and predictive coding (Chapter 4)—display capabilities crucial

for efficient information processing, adaptation, and prediction,

suggesting principles for artificial system design.

6.2 Temporal processing and reservoir
computing principles in neural systems

Early studies revealed fundamental aspects of temporal

processing in neural systems. Buonomano and Maass (2009)

demonstrated how cortical networks process spatiotemporal

information by encoding temporal sequences through transient

activity patterns, highlighting how recurrent connections and

short-term synaptic plasticity enable sequence recognition and

prediction. Nikolić et al. (2009) revealed that neurons in the visual

cortex retain fading memories of stimuli for several 100ms, which

supports sequential processing. Later work by Enel et al. (2016)

extended this by demonstrating reservoir computing properties in

the prefrontal cortex, showing how high-dimensional dynamics

allow adaptive decision-making through mixed selectivity,

while Seoane (2019) examined reservoir computing from an

evolutionary perspective.

Reservoir computing applications in neuronal cultures have

revealed increasing sophistication in computational capabilities.

Dockendorf et al. (2009) demonstrated that cultured networks

could act as liquid state machines, effectively separating input

patterns with high-frequency stimulation. Kubota et al. (2019)

identified the echo state property in cultured networks, which

is crucial for maintaining short-term memory and processing

temporal information. Using high-density multielectrode arrays,

they systematically tested various inter-pulse intervals (IPIs)

and found that the optimal range, particularly between 20

and 30ms, maximized reproducibility and differentiation of

neural responses. Kubota et al. (2021b) expanded on this

work by quantifying the networks’ information processing

capacity (IPC), a comprehensive metric capturing their

computational versatility. Suwa et al. (2022) demonstrated

that dissociated cortical cultures possess both first-order (linear

memory of past inputs) and second-order (interactions of past

inputs) IPC, enabling them to perform arithmetic and logical

operations on previous stimuli. Ikeda et al. (2023) further

refined these insights by investigating the dynamic interaction

between evoked and spontaneous activities. These findings

collectively underscore the potential of cultured networks
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to act as robust and adaptable computational substrates,

providing critical benchmarks for designing bio-inspired

computing architectures.

The capacity of dissociated cultures to act as physical

reservoirs for computation has been further solidified by recent

work. Ferdous and Berdichevsky (2024) showed that these

networks can reliably distinguish different spatiotemporal

sequences of electrical stimuli, with this ability being dependent

on recurrent dynamics creating a “fading memory,” explicitly

linking this to reservoir computing principles. Iannello et al.

(2025) introduced a “Biological Reservoir Computing” (BRC)

paradigm where cultured hippocampal neurons successfully

performed temporal pattern recognition tasks, including classifying

spatiotemporal spike patterns and handwritten digits (N-MNIST)

with high accuracy. These studies underscore the potential of

harnessing living neuronal networks as computational substrates,

leveraging their self-organized complexity for time-series

data processing.

6.3 Learning rules and neuromorphic
hardware design

Various approaches have emerged for implementing

neural computation in artificial systems. Abbott et al. (2016)

tackled challenges in building functional spiking networks,

emphasizing stable excitation-inhibition balance and scalable

training mechanisms. Learning strategies in artificial systems

have also drawn from these findings: Diehl and Cook (2015)

demonstrated unsupervised learning in spiking networks with

STDP to classify MNIST digits with competitive accuracy,

while Nicola and Clopath (2017) introduced FORCE training,

stabilizing chaotic network dynamics to reproduce complex

temporal sequences like oscillations and trajectories. Subramoney

et al. (2021) proposed the “Learning-to-Learn” framework,

enabling spiking neural networks to adapt rapidly to new tasks

by leveraging meta-learning strategies. Ishikawa et al. (2024)

integrated predictive coding principles with reservoir computing

in spiking neural networks, advancing the capacity for dynamic

temporal processing.

A critical aspect of developing bio-inspired neuromorphic

systems is the validation of computational models and hardware

emulations against the complex dynamics observed in living

neuronal networks. Pani et al. (2017) developed an FPGA-based

platform capable of real-time simulation of large-scale spiking

neural networks (Izhikevich models), successfully reproducing

key electrophysiological features of in vitro cortical cultures,

such as spontaneous bursting and stimulus responses. Such real-

time hardware emulations are vital for Hardware-in-the-Loop

(HIL) applications, potentially interfacing artificial networks with

biological preparations. Furthering this comparative approach,

Vallejo-Mancero et al. (2024) provided a study of in vitro

recordings, in silico simulations, and real-time FPGA-based in duris

silico emulations, demonstrating that computational approaches

can be tuned to faithfully replicate biological dynamics. These

developments are crucial for creating robust neuromorphic

hardware and bio-hybrid systems.

6.4 The constructive role of noise in neural
computation

The presence of noise in biological neural systems represents

not merely a challenge but often a crucial computational resource

that enables energy-efficient processing. Unlike digital computers,

biological networks can harness noise for computation. Early

studies revealed fundamental principles: Matsumoto and Tsuda

(1983) showed that noise can stabilize chaotic systems, while

Kirkpatrick et al. (1983) showed how noise-based optimization

through simulated annealing could solve complex problems.

Gassmann (1997) demonstrated noise-induced transitions between

chaos and order, and Gammaitoni et al. (1998) showed how

stochastic resonance could enhance weak signal detection.

Anderson et al. (2000) revealed noise’s role in maintaining visual

contrast invariance. A comprehensive review by Faisal et al. (2008)

documented noise’s pervasive and often beneficial role throughout

nervous systems. Subsequent work demonstrated specific

computational advantages: Habenschuss et al. (2013) showed

how cortical circuits harness noise for stochastic computation,

and Maass (2014) established noise as a resource for learning in

spiking networks. This noise-harnessing computation represents

an evolutionary adaptation.

Recent studies have revealed specific mechanisms by

which noise shapes neural computation. Ikeda et al. (2023)

demonstrated that noise interacts with STDP to drive self-

organized criticality in spiking neural networks. Ikeda et al.

(2025) further revealed how noise-driven spontaneous activity

serves broader computational functions, such as maintaining

criticality and supporting memory consolidation. These

findings suggest that incorporating controlled noise in

neuromorphic systems might improve their adaptability and

computational efficiency.

7 Conclusions and future directions

7.1 Recap: the power and utility of
dissociated neuronal cultures

Dissociated neuronal cultures serve as powerful, simplified

model systems for examining fundamental neural processes.

As detailed in this review, these cultures exhibit complex

dynamics characteristic of self-organized criticality and adaptive

computation (Chapter 2), demonstrate learning and memory

formation through various plasticity mechanisms (Chapter 3), and

show predictive processing and deviance detection capabilities

consistent with theoretical frameworks like the free energy

principle (Chapter 4). They have also demonstrated the capacity for

goal-directed behaviors in controlled, closed-loop environments,

further illustrating their potential as computational models

(Chapter 5). These discoveries not only enhance our understanding

of biological neuronal function but also provide insights that

could influence the design of future artificial neural networks and

computational architectures due to the unique blend of simplicity,

adaptability, and controllability found in these in vitro systems

(Chapter 6).
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7.2 Advancements in interfacing
technologies

While our current understanding of dissociated neuronal

cultures is robust, several avenues remain open for deepening

our knowledge and refining the practical applications of these

systems. Continued advancements in microelectrode array (MEA)

technology are expected to enable more precise recordings and

manipulations of neuronal activity. Improvements in the spatial

and temporal resolution of MEAs may further clarify how specific

patterns of connectivity and synaptic plasticity underlie adaptive

computations and dynamic behavior in neuronal networks. Novel

fabrication techniques are also emerging for MEAs designed to

interface with more complex, three-dimensional in vitro systems.

For instance, electrohydrodynamic inkjet printing allows for the

rapid prototyping of 3D microelectrode arrays with micrometer-

scale resolution, offering new possibilities for extracellular

recording from within 3D cell cultures or organoids (Grob

et al., 2021). Furthermore, the combination of high-density MEAs

with cell-type-specific or single-neuron resolution optogenetics

(Kobayashi et al., 2024) offers unprecedented capabilities to

dissect the contributions of individual neurons to network-level

phenomena and to understand how network states modulate

single-cell information processing.

7.3 Engineered network architectures:
compartmentalization and modularity

A significant direction involves engineering more structured

in vitro networks to better mimic specific brain circuits and

investigate inter-regional communication. Early microfabricated

compartmentalized culture systems, exemplified by Taylor et al.

(2003) and Ravula et al. (2007), demonstrated key capabilities

such as achieving fluidic isolation for targeted drug application

while allowing guided axonal growth, often integrated with MEAs.

Bisio et al. (2014), for instance, demonstrated how modular

networks grown on polydimethylsiloxane (PDMS) structures

can exhibit higher firing rates during early development and

display unique synchronization properties compared to uniform

networks, shedding light on hierarchical organization. Building

on this foundation, Joo and Nam (2019) introduced an agarose-

based microwell patterning method, enabling the recording

of slow-wave activity from micro-sized neural clusters while

preserving high-frequency spiking information. Negri et al. (2020)

refined protocols for multi-well MEA experiments—providing a

spike-sorting pipeline and statistical methodologies to improve

reproducibility—while also highlighting the importance of proper

experimental design.

More recent work by Gladkov et al. (2017, 2021) and Duru

et al. (2022) has further extended the engineering of biological

neural networks by integrating microstructures with high-density

CMOS arrays. These approaches confine axonal outgrowth

to specific channels, creating reproducible unidirectional

connectivity; for instance, Dupuit et al. (2023) showed that

hippocampal neurons in dual-compartment microfluidic

devices exhibited enhanced electrical activity and accelerated

maturation. To achieve even more precise control, Ming et al.

(2021) developed a device enabling unidirectional “en passant”

synapses between micro 3D (µ3D) neuronal cultures. Brofiga

et al. (2023) utilized removable polymeric masks to create

MEA-based models of multiple interacting neuron clusters, and

Brofiga et al. (2025) successfully co-cultured cortical, striatal, and

thalamic neurons in a three-compartment system, demonstrating

self-organization into a functionally connected Cortical-Striatal-

Thalamic (CST) circuit with enhanced dynamic richness and

memory properties. Finally, Sumi et al. (2023) revealed how

increasing network modularity enhances reservoir computing

performance in biological neuronal networks, enabling improved

classification accuracy in both spatial and temporal tasks. These

approaches allow for the investigation of how defined multi-cluster

topologies and inter-regional communication influence emergent

network dynamics.

7.4 Bridging to complexity: 3D cultures and
brain organoids

Looking ahead, research into three-dimensional neuronal

culture systems and brain organoids offers new opportunities to

study how increased complexity within these in vitromodels affects

network organization and computation. By introducing additional

layers of structural and functional complexity, researchers can

investigate how hierarchical connectivity and layered processing

influence predictive coding, learning, and memory. Such 3D

cultures and organoids more closely mimic the architecture

of in vivo brain tissue, potentially providing deeper insights

into complex cognitive functions and developmental processes

(Hogberg et al., 2013; Lancaster et al., 2013; Clevers, 2016;

Smirnova and Hartung, 2022, 2024). Osaki et al. (2024)

demonstrated a system where two human cerebral organoids

formed reciprocal axon bundles, developing more complex

oscillatory activity and short-term plasticity than single or fused

organoids, and also showing maturation toward critical dynamics.

Hernandez et al. (2025) combined HD-MEAs with spatial

transcriptomics to reveal how human organoids autonomously

develop functional modules and hub-like structures. Furthermore,

the integration of such advanced 3D models with closed-loop

electrophysiology is enabling new paradigms; Robbins et al. (2024)

demonstrated goal-directed learning in mouse cortical organoids

performing a dynamic control task using reinforcement learning-

guided training.

7.5 The synergy of experimentation and
computational modeling

Future studies will likely explore how the principles uncovered

in dissociated neuronal cultures generalize to more complex neural

systems. While introducing 3D structures and organoids adds

realism, it is the balance between complexity and controllability

that makes these models so valuable. Researchers will need
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to maintain the simplicity that allows for precise control and

manipulation, ensuring that the systems remain tractable for in-

depth investigations of network function. By carefully scaling

complexity, it is possible to examine how additional layers of

organization and connectivity influence predictive processing

and adaptive computation without losing the crucial benefits

of simplicity.

There is also significant potential for an increased synergy

between experimental neuroscience and computational modeling.

As our ability to record andmanipulate neuronal activity improves,

so does our capacity to develop and refine computational

models that can predict network behavior. These models can, in

turn, guide experimental interventions, allowing researchers to

probe network function more systematically. The development of

dedicated hardware platforms, like FPGA-based systems for real-

time simulation of spiking neural networks that can replicate in

vitro dynamics (Pani et al., 2017; Vallejo-Mancero et al., 2024), will

be vital for testing theoretical models rapidly and for creating future

bio-hybrid systems. This iterative process between experimentation

and modeling may help identify the principles underpinning

self-organization, learning, and prediction in neural networks

and aid in translating these insights into artificial systems. The

development of integrated “sandbox” environments, such as the

MAIS platform (Chen et al., 2025), which merge high-resolution

interfaces with microfluidics and real-time adaptive closed-loop

control, and embodied platforms like DishBrain (Kagan et al.,

2022; Habibollahi et al., 2023; Khajehnejad et al., 2024), are

pushing the boundaries of in vitro neuroscience, allowing for

the study of learning algorithms and computational capacities in

living networks.

In summary, dissociated neuronal cultures remain an

invaluable model system for exploring fundamental aspects of

neuronal function and computation, particularly the mechanisms

underlying self-organized prediction. They have proven essential

in examining how networks self-organize, learn, and adapt,

providing a simplified and controllable environment to study

complex neural phenomena that underlie predictive processing.

As researchers continue to balance the simplicity of these

systems with increasing complexity—and leverage advanced

interfacing and analytical techniques, including those inspired

by Biological Reservoir Computing (Iannello et al., 2025)—our

understanding will deepen further. These insights not only

elucidate how biological brains function through prediction and

adaptation but also inspire the next generation of computational

architectures and neurotechnological applications, moving

toward systems that may operate synergistically with living

neural tissue.
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