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Bow-tie architecture (BTA) is widely observed in biological neural systems, yet the

underlying mechanism driving its spontaneous emergence remains unclear. In

this study, we identify a novel formationmechanismby trainingmulti-layer neural

networks under biologically inspired non-negative connectivity constraints

across diverse classification tasks. We show that non-negative weights reshape

network dynamics by amplifying back-propagated error signals and suppressing

hidden-layer activity, leading to the self-organization of BTAwithout pre-defined

architecture. To our knowledge, this is the first demonstration that non-negativity

alone can induce BTA formation. The resulting architecture confers distinct

functional advantages, including lower wiring cost, robustness to scaling, and

task generalizability, highlighting both its computational e�ciency and biological

relevance. Our findings o�er a mechanistic account of BTA emergence and

bridge biological structure with artificial learning principles.

KEYWORDS

bow-tie architecture, neural circuits, non-negative connectivity, computational
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1 Introduction

Bow-tie architecture (BTA) is ubiquitous in biological systems (Csete and Doyle,

2004; Tieri et al., 2010; Hilliard et al., 2023). BTA features a markedly smaller or simpler

intermediate system that links much larger and more complex upstream and downstream

components. This structural arrangement enables BTA to streamline complex interactions

and allow modular control in biological processes. Consequently, it has inspired research

into its potential applications in synthetic gene circuits (Prochazka et al., 2014) and

immune regulation (Carrión et al., 2023). In the context of information processing, the

intermediate “waist” of the architecture integrates diverse upstream inputs into a compact

representation, which is then reused to generate a wide range of downstream outputs. But

the the underlying mechanisms of its emergence are still unclear.

BTA is evident across various neural circuits, typically characterized by a smaller

ensemble of neurons within a specific brain region that receives converging input from,

and projects diverging output to, larger populations of neurons distributed across broader

brain systems (Figures 1A–C). This forms an hourglass-like structure (Figure 1D). A well-

known example of BTA is the mammalian visual pathway. Retinal ganglion cells project to

the lateral geniculate nucleus (LGN) in the thalamus, which acts as a functional bottleneck

by filtering and transforming visual signals before relaying them to the primary visual

cortex (V1). In V1, the information is then distributed widely across a large population of

Frontiers inNeural Circuits 01 frontiersin.org

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2025.1574877
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2025.1574877&domain=pdf&date_stamp=2025-08-18
mailto:k.wong-lin@ulster.ac.uk
mailto:wangdh@bnu.edu.cn
https://doi.org/10.3389/fncir.2025.1574877
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncir.2025.1574877/full
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Liu et al. 10.3389/fncir.2025.1574877

FIGURE 1

Observed and emergent bow-tie architecture (BTA) in neural networks. (A–C) BTA observed in visual (A), olfactory (B), and neuromodulatory (C)

systems. (A) redrawn from Nicholls et al. (2001). [(B,C) reproduced with permission from Caron et al. (2013); Schwarz et al. (2015)]. (D) Schematic of

BTA or “hourglass” structure (Friedlander et al., 2015). (E) Transformation of a network from without BTA (left) to BTA (right) through training.

cortical neurons (Zhaoping, 2006; Usrey and Alitto, 2015; Hammer

et al., 2015; Morgan et al., 2016; Rompani et al., 2017; Rosón

et al., 2019; Jang et al., 2020) (Figure 1A). Similarly, the

Drosophila olfactory system exhibits a BTA with a convergence-

divergence organization. Approximately 40 olfactory receptor

neurons (ORNs) per receptor type project to a single glomerulus

in the antennal lobe (Laurent, 2002), which connects to a

small number of projection neurons (PNs), typically 3–5 per

glomerulus (Turner et al., 2008; Dhawale et al., 2010; Singh

et al., 2019). These PNs then diverge to innervate thousands

of Kenyon cells (KCs) in the mushroom body (Caron et al.,

2013), with each KC sampling input from 7 randomly selected

PNs, resulting in a substantial expansion phase (Figure 1B).

Beyond sensory systems, the thalamus itself is known to act as a

middleman-like processor in large-scale cortico-thalamic-cortical

loops, mediating information flow between widespread cortical

areas (Sherman and Usrey, 2021; Worden et al., 2021; Shepherd

and Yamawaki, 2021). Another prominent example involves

chemical neuromodulatory systems, including the relatively

small midbrain dopaminergic nuclei, raphe serotonergic nuclei,

and the noradrenergic locus coeruleus, which receive diverse

afferent inputs and project widely across the brain (Beier

et al., 2015; Kohl et al., 2018; Luo, 2021; Sabrin et al., 2020)

(Figure 1C).

It has been shown that BTA, or its partial implementation,

contributes to efficient information processing by improving

information retention (Gutierrez et al., 2021), enhancing

computational speed and accuracy (Jeanne and Wilson, 2015), and

amplifying stimulus variability while enhancing representational

capacity (Babadi and Sompolinsky, 2014). BTA has been applied in

engineering domains such as face recognition (Hammouche et al.,

2022) and emotion recognition (Cheng et al., 2024). In machine

learning, BTA is widely adopted in autoencoders, where a low-

dimensional latent representation at the bottleneck layer enables

feature compression and dimensionality reduction (Bourlard

and Kamp, 1988). Despite the increasing awareness of BTA’s

functional roles in biological and artificial systems, the underlying

mechanisms of its spontaneous emergence in neural system remain

poorly understood.

Numerous theoretical studies have explored the emergence

of bow-tie architectures (BTA) in the context of biological

networks such as metabolic, gene regulatory, and signaling systems,

rather than in neural systems (Friedlander et al., 2015; Itoh

et al., 2024) (Figure 1D, right). For instance, Friedlander et al.

(2015) employed linear transformation within network models

and demonstrated that BTA structures can naturally evolve

when information compression is beneficial for achieving low-

dimensional output goals. Similarly, Tishby et al. (2000) applied
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principles from information theory to explain how BTAs can

emerge as efficient solutions to input-output mapping problems

under certain constraints. These studies provided foundational

insights into how selective constraints and informational objectives

may drive the formation of modular, compressive network motifs.

Neural networks in both neuroscience and machine learning

are inherently nonlinear, and weights evolve through learning

algorithms aimed at task performance rather than matrix

matching (Rumelhart et al., 1986; Yamins and DiCarlo, 2016;

Yang et al., 2019). Moreover, previous neural models often

relied on manually specified architectures, lacking the generality

required to explore spontaneous BTA formation. From a

neurobiological perspective, long-range corticocortical projections

are predominantly excitatory, mediated by glutamatergic

synapses (Wang, 2025). For example, pyramidal neurons in

cortical layers 3 and 5 project to other cortical and subcortical

areas via excitatory pathways (Douglas and Martin, 2004).

In sensory hierarchies, feedforward connections are largely

excitatory, facilitating the progressive integration of sensory

information (Wang et al., 2021; Li, 2014). In contrast, inhibitory

interneurons are typically local and are less involved in long-range

inter-areal communication (Markram et al., 2004).

Despite the widespread presence of bow-tie architectures

(BTAs) in biological systems, their spontaneous emergence in

neural circuits remains poorly understood due to several key

research gaps. First, prior computational studies have largely relied

on linear models or manually specified architectures (Friedlander

et al., 2015; Tishby et al., 2000), limiting their ability to

capture the self-organizing dynamics of real neural systems.

Second, these models often ignore the inherent nonlinearity

of neural computation, where weights evolve through learning

algorithms aimed at task performance rather than analytical

matrix construction (Rumelhart et al., 1986; Yamins and DiCarlo,

2016; Yang et al., 2019). Third, most existing frameworks

lack biological plausibility, overlooking fundamental anatomical

constraints, such as the dominance of excitatory glutamatergic

long-range projections in cortical hierarchies (Wang, 2025; Douglas

and Martin, 2004). These omissions hinder our ability to explain

how BTAs might naturally arise in learning-driven, biologically

constrained systems.

To address these limitations, we investigate whether

biologically inspired constraints, specifically excitatory (which is

non-negative) feedforward connectivity, can drive the spontaneous

emergence of bow-tie architecture (BTA) in artificial neural

networks. In particular, we examine how non-negativity shapes

architectural compression during learning and assess the

potential computational advantages conferred by such emergent

structures, including wiring efficiency, enhanced robustness, and

structural stability. Additionally, we explore the generality of BTA

emergence across diverse classification tasks and varying output

dimensionalities.

Thus, our study aims to uncover the mechanistic role of

non-negative connectivity in the spontaneous emergence of

bow-tie architecture (BTA) in neural circuits. Specifically, we

investigate whether biologically inspired constraints, particularly

the prevalence of non-negative feedforward connections–can drive

the self-organization of compressive structures in neural networks.

We train feedforward architectures with non-negative weights on a

range of classification tasks using publicly available datasets to test

this hypothesis (Figure 1E). Our goal is to evaluate whether non-

negativity facilitates spontaneous architectural compression, and to

assess the computational advantages of the resulting BTA, including

stability with increasing output dimensionality, reduced wiring cost

and robustness across datasets .

2 Research methodology

2.1 Data description

Three datasets were used for the classification tasks. For the first

dataset, we synthetically generated a total of 2million samples. Each

sample s = (s1, s2, · · · , s50) is composed of signal x and noise ǫ, i.e.

si = xi + ǫi, where xi ∼ U(0, 1) and ǫi ∼ N(0, 0.05). For each

stimulus s, we generated 20, 000 samples, and we divided them into

100 categories or classes based on the mean value of the samples.

To verify the robustness of the BTA’s performance, we used two

other open datasets. One of them is the well-established MNIST

(LeCun et al., 2002) with 60, 000 samples of handwritten digits. The

other is the odor detection data (Wang et al., 2021), where each

odor is denoted as s = (s1, s2, · · · , s50) and si ∼ U(0, 1) with a

total of 1, 008, 192 samples, and the samples were categorized into

100 classes according to their nearest neighbors (Cover and Hart,

1967).

2.2 Neural network model and architecture

Feedforward neural network model architecture was used in

this study. The neurons were distributed in 5 layers, namely,

they are the stimulus, input, hidden, output, and readout layers

(Figure 1E, left). The input layer of neurons represents sensory-

based neurons, such as the retina in the visual system or neurons

with olfactory receptors in the olfactory system. The hidden layer

of neurons can be considered as an intermediate processing stage,

similar to the ganglion cells in the visual system or projection

neurons in the olfactory system. The output layer of neurons

represents the primary visual cortical neurons or Kenyon cells

in the visual or odor systems, respectively. The readout layer of

neurons encodes the classes, with the number of readout neurons

equaling the number of classes to be discriminated or identified by

the model.

The activity of each layer was represented by a vector as

h0, h1, h2, h3 and h4 for the respective 5 layers in the network.

Each activity vector had a dimension 1 × ni where ni indicated

the number of neurons in the ith layer. We let matrix W1 describe

the connections from the stimulus layer to the input layer, and

W2,W3 and W4 for connections from the input to the hidden,

from the hidden to the output, and the output to the readout

layer, respectively. For simplification, we set h0 = s where s is

the stimulus. We used the nonlinear rectified linear unit (ReLU)

function to describe the activity of the input, the hidden, the

output, and the readout neurons, mathematically described by hi =

ReLU(WT
i hi−1 + bi), where i = 1, 2, 3, 4, and bi is a bias vector.
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2.3 Model training and testing

The network was initialized as a fully connected network and

the initial connection weights followed a uniform distribution

between 0.01 and 0.2. We used a standard backpropagation

(BP) algorithm (Rumelhart et al., 1986) to train the network to

classify the stimuli into different classes, with support regarding

its approximation in neurobiological systems (Whittington and

Bogacz, 2019). We chose cross entropy as the loss function

(de Boer et al., 2005): Loss = −
∑

j yjlog(pj), with pj =

exp(h4(j))/(
∑N

k exp(h4(k))), where y is the predefined label of

stimulus in vector form, pj the soft-max function of the jth readout

neuron. The connection weights for consecutive iterations were

updated as follows:

W4 ←W4 − ηhT3 (p− y) (1)

W3 ←W3 − ηhT2 (p− y)WT
4 (2)

W2 ←W2 − ηhT1 (p− y)WT
4 W

T
3 (3)

W1 ←W1 − ηsT(p− y)WT
4 W

T
3 W

T
2 (4)

where η = 0.1 is the learning rate. We followed the stochastic

gradient descent method (Bottou et al., 2016) and used the Keras

Adam optimizer to train the network (Kingma and Ba, 2014). In

the presence of non-negative constraint, W1, W2 and W3 were set

to be non-negative constrain,namely, withW = 0 ifW < 0.

2.4 Model parameters and performance on
three tasks

To assess the specific effect of the non-negative constraint, we

compared models trained with and without this constraint across

three datasets. As shown in Tables 1, 2, while unconstrained models

achieved marginally higher accuracy, they exhibited significantly

denser connectivity, higher wiring cost, and lacked the bow-tie

architecture. In contrast, non-negative models naturally formed a

bottleneck in the hidden layer, with sparse activation and reduced

wiring cost, supporting our hypothesis that non-negativity drives

structural emergence of bow-tie organization.

To further evaluate the robustness of this effect, we conducted

a comprehensive sensitivity analysis across multiple random

seeds, network sizes, and pruning conditions. As detailed in the

Supplementary Section S1, the emergence of bow-tie architecture

and associated performance advantages remained consistent across

all tested configurations. In particular, we observed stable accuracy,

reproducible sparsity patterns–especially in the second hidden

layer–and strong resilience of bow-tie structure even under

architectural perturbations.

In addition, to assess the generalization capacity of the

model beyond the training distribution, we performed out-

of-distribution (OOD) tests using perturbed input data (see

Supplementary Section S2). The model maintained high accuracy

under additive Gaussian noise ( 86% ), but showed performance

degradation when 30% of the input features were occluded

TABLE 1 Training details for three tasks with non-negative constraint.

Synthetic
dataset

MNIST
dataset

Odor
detecting
dataset

No. classes 100 10 100

Input

dimension

50 784 50

Batch size 256 512 256

No. epochs 20 200 20

Training set

size

600,000 36,000 1,000,000

Testing set size 400,000 24,000 8,192

Initial neurons 500, 500, 500 1,000, 1,000, 1,000 500, 500, 2,500

Convergence

rate

0.850 0.307 -0.318

Accuracy of

training set

99.57% 96.13% 82.48%

Accuracy of

testing set

99.55% 92.60% 78.65%

No. active

neurons

225.69, 153.31,

498.85

380.14, 87.92,

997.76

62.08, 48.97,

2,308.74

F-1 score 0.9699 0.9707 0.7436

Sparsity (%) 75.4 81.7 89.6

Bottleneck

ratio

0.31 0.11 0.10

Wiring cost 16,372.4 20,639.2 13,492.7

Bow-tie

formed?

Yes Yes Yes

The data for the training results is based on the average of 50 training sessions.

(accuracy dropped to 50%). This asymmetry highlights the model’s

robustness to unstructured noise, while also suggesting reliance on

a sparse set of informative features–consistent with the compressive

nature of the bow-tie structure.

These results collectively underscore the statistical rigor,

generalizability, and biological plausibility of our findings.

2.5 Data analysis

We recorded the activity of each neuron exposed to different

samples and calculated the mean and variance of the activity

over the samples. The active neuron are defined as its standard

deviation below 0.01. To investigate the effects of non-negative

connectivity constraints, we trained 10 networks (training more

networks yielded similar results) with non-negative connectivity

constraint given different initialized connection weights to perform

the same classification task. We then trained another 10 network

without a non-negative connectivity constraint to perform the same

classification task. After training, we compared the connectivity of

these networks and the activity of neurons.

The source codes, generated data, and analyses that support the

findings of this study will be made available upon publication.
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TABLE 2 Training details for three tasks without non-negative constraint.

Synthetic
dataset

MNIST
dataset

Odor
detecting
dataset

Convergence

rate

0.825 0.402 -0.382

Accuracy of

training set

99.84% 99.72% 77.85%

Accuracy of

testing set

99.62% 99.53% 76.56%

No. active

neurons

432.13, 426.87,

428.92

805.24, 884.14,

853.76

470.83, 464.74,

2,292.46

F-1 score 0.9642 0.9785 0.7601

Sparsity (%) 22.7 15.3 12.6

Bottleneck

ratio

0.97 0.98 0.95

Wiring cost 42385.1 50614.7 73482.5

Bow-tie

formed?

No No No

The data for the training results is based on the average of 50 training sessions. Number of

classes, input dimension, batch size, number of epochs and set size are the same as those in

Table 1.

3 Results

3.1 Emergence of bow-tie architecture in
neural network

To demonstrate the emergence of BTA, we first trained a five-

layer neural network, with 500 neurons in each layer on a generic

stimulus input masked by additive noise. The stimuli were pre-

classified and banded into 100 classes based on the mean of each

dimension. The network was trained to correctly classify a stimulus

into the ith class if the activity of the ith readout neuron, described

by a soft-max function, was greater than that of any other readout

neuron given the same stimulus.

Initially, each neuron in a layer is fully connected to all neurons

in the next layer, and the connection weight is randomly sampled

from a uniform distribution U(0.01, 0.2). Each dimension of the

stimulus vector acts as input to each neuron in the input (first)

layer with predefined connection weights W1. The standard back-

propagation learning algorithm (Materials and Methods) was used

to train the network to classify the stimuli into the predefined

100 class labels. We divided the dataset into two parts, 60% of

which were for training and 40% for testing. The network was

exposed to all stimuli during each epoch to classify the stimuli, with

256 samples per training batch. We purposefully kept the model

training and testing procedures to be sufficiently simple to more

clearly identify the underlying mechanism for BTA emergence.

Figures 2A–C (left to right) shows snapshots of the evolution

of the connection weights between the layers at the beginning,

intermediate, and late stages during the training session. We can

observe that as training progressed, the connection from stimulus-

to-input layerW1, input-to-hidden layerW2, and hidden-to-output

layer W3, became sparser while the strength of the remaining

connections increased (Figures 2A–C). After 20 training epochs,

the classification accuracy for the training dataset was 0.9957, while

it was 0.9955 for the testing dataset.

Next, the activity of the neurons in the input, hidden and

output layers (h1, h2 and h3) are investigated. As higher neuronal

activity variability across different stimuli can indicate the encoding

of more stimulus information, we used the standard deviation

of neuronal activity as an indicator for neuronal responsiveness

[mean neuronal activity values gave similar results (not shown)].

Specifically, by defining a neuron to be responsive or active if the

standard deviation of its response to different samples was greater

than 0.1, we found that the overall neuronal activities decreased

after training, with the majority at the input and hidden layers

being completely inactivated and not responding to the stimuli

(Figure 2D). More precisely, at the end of 50 training sessions

with 20 epochs per session (in last training epoch), there were

225.69 ± 15.67 active input neurons, 153.31 ± 20.79 active hidden

neurons, and 498.85 ± 1.29 active output neurons. Note also the

relatively small variations in the numbers of active neurons across

different training sessions.

Compared to all other layers, the hidden layer had the least

number of active neurons after training (Figure 2D, middle). This

was also reflected in the lowest number of non-zero connection

weights from the input layer to the hidden layer (Figure 2B, right).

Thus, we have shown the emergence of BTA in the network using

a simple learning procedure on a generic classification task. Next,

we shall formally demonstrate that the BTA occurs only with

non-negative connections.

3.2 Non-negative connectivity causes
bow-tie architecture

The connection matrices from stimulus-to-input layer W1,

input-to-hidden layer W2 and hidden-to-output layer W3 were

initially set as random matrices. Thus, the activities of the output

neurons can be considered as random variables, since the different

samples were transformed by a series of randommatrices. However,

the weighted sum of afferent inputs to a readout neuron (e.g.,

neuron c4 in Figure 3A) from output neurons could initially just

turned out to be larger than that of other readout neurons (e.g.,

neuron c1 in Figure 3A), and hence the network would have

a strong tendency to produce the same readout decision with

different sample classes, i.e., poor classification accuracy (∼ 1%). As

a consequence, the classification for all 256 samples in a batch in the

first training epoch was concentrated to only one class (Figure 3B

right panel).

Suppose for each sample, the readout layer of the neural

network can be represented as a vector p (Figure 3C, top),

and the predefined class label of a sample is represented as a

vector y (Figure 3C, bottom) and randomly distributed in a batch

(Figure 3B, left). Assuming that the network accurately classifies the

ith sample, then the ith neuron in the output layer will be activated,

and the ith element of decision vector p will be 1. This means that

the decision vector p is the same as the predefined label of the

sample y, i.e., p− y = 0.

Then all elements of p − y are zero; thus, no error signal

propagates back through the network layers, and the connection
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FIGURE 2

Neural network’s non-negative connection weights and neuronal activities due to training. (A–C) Connection weights from stimulus to input

neurons (A), from input to hidden neurons (B), and from hidden neurons to output neurons (C), over training epochs (left to right). Color bars: values.

(D) Neuronal activities of input, hidden and output neurons after training. Error bars: standard deviation across stimuli.
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FIGURE 3

Non-negative connection weights amplify error signal and suppress neuronal activities, forming BTA. (A) Schematics of random initial connection

weights from output to readout neurons. Weighted sum of a�erents to readout neuron, c4 (red), larger than that of other neurons [e.g. neuron c1
(green)]. (B) Class labels for each sample in one batch (left) and neuronal activity in read-out layer (right) in the first training epoch (same decision

made regardless of samples). (C) Examples of classification decisions p, actual class labels y, and their errors p− y. Left (right): correct (error)

decision. (D) Backpropagation of error signals. A random batch chosen and error signal of samples illustrated. Top, middle, bottom rows: first, middle,

final training epochs. Left (right) columns: errors backpropagated from readout to output (from hidden to input) neurons; middle column: mean

backpropagated error values from readout neurons. W3 (W4): connections from hidden to output (output to readout) layer. h1: input layer’s activity.

(E) Number of active neurons in input (red), hidden (blue) and output (black) layers over training epochs.
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weights will not be changed. Otherwise, some elements of p − y

are not zero. For example, Figure 3C (right) shows the 1st and 4th

elements of p− y to be−1 and 1, respectively, because the reported

class of the sample is 4 (i.e., p4 = 1) but the predefined class of

the sample is 1 (i.e., y1 = 1). This error signal will then be back-

propagated to the output layer, the hidden layer, and the input

layer. In particular, the error signal back-propagated to the output

neurons depends on the efferent weights from the output neurons

to the readout neurons, which should be in the form of a vector as

(p− y)WT
4 , whereW

T
4 was the connectivity matrix for connections

from output layer to readout layer (illustrated in Figure 3D, left

column) (Rumelhart et al., 1986). Thus, the back-propagated error

to the mth output neuron is equal to the difference between the

efferent weight from the mth output neuron to the decision of

the readout neuron (e.g., neuron c4 in Figure 3A) and the efferent

weight from the mth output neuron to the readout neuron should

be activated as in the predefined label.

Often, the total efferent weights from the output neurons to the

activated readout neuron were greater than those to the inactive

readout neurons, so the error signal induced by a probe should

be non-negative. Considering (p − y)WT
4 for each sample in the

batch data as a random variable, the expectation value of (p −

y)WT
4 should be greater than zero for incorrect classification, or

equal to zero for correct classification (Figure 3D, middle column).

According to the learning rule for connections from the hidden

layer to the output layer, W3 ← W3 − ηhT2 (p − y)WT
4 (Materials

and methods, Equation 2), with learning rate η and hidden layer

(layer 3) activity h2, the total connection weight from the hidden

layer to the output layer should decrease. Due to the non-negative

connectivity constraint W2 and W3 for the earlier layers, the

expectation of ηhT1 (p− y)WT
4 W

T
3 should be positive, and the error

signal p− y being amplified by positive connections.

Further, the weights of the connections from the input to the

hidden layer, W2, decreased according to the learning rule W2 ←

W2−ηhT1 (p−y)W
T
4 W

T
3 . Considering that the stimulus is s ∈ [0, 1],

the changed values of W1, i.e. ηs
T(p − y)WT

4 W
T
3 W

T
2 , were usually

smaller than that of W2. As a result, the connection weights from

the input to the hidden layer, and from the hidden to the output

layer decreased during the first training epoch.

Due to the decrease in the connection weights, the activity of

the input and hidden neurons decreased significantly, and a portion

of the input and hidden neurons became inactive in subsequent

training epochs (Figure 3E). As training progressed, the back-

propagated error signals decreased (Figure 3D, left and middle

columns) and the magnitude of the weight change also decreased

(Figure 3D, right column), implying that the inactive neurons in

the input and hidden layers remained unchanged (Figure 3E; see

also Figure 2D). Considering that deafferentation can lead to the

degeneration of the postsynaptic neurons in sensory systems (Jones

and Marc, 2005; Mazzoni et al., 2008; Kujawa and Liberman, 2009),

the inactive neurons in the system will degenerate and can be

removed from the system. Therefore, the non-negative weights

between layers significantly reduced the number of active neurons

in the hidden layer, implying that the BTA had emerged from the

network.

To further test the role of non-negative connectivity constraint

on BTA formation, we trained a network with identical architecture

and on the same classification task as above, but without the non-

negative weight constraint. We first found that the trained network

could perform the classification task as well, albeit with slightly

better classification accuracy (0.9984 for the training dataset and

0.9964 for the testing dataset). We also found that when using a

non-negative connectivity constraint, the network’s learning speed

was slightly reduced. Particularly, if we defined the accuracy after

the nth epoch of training as acc(n), and the convergence rate α

(Senning, 2007) of the network with and without non-negative

connectivity constraints training are 0.850 and 0.825, respectively.

Meanwhile, the trained connections between the layers were more

dense without non-negative connectivity constraint , and neurons

in the input, hidden and output layers were almost active compared

to Figure 2D). Therefore, the training of the network without non-

negative connectivity constraint did not result in the formation of

BTA in the network.

In summary, the non-negative connection weights between

network layers amplified the error signal and suppressed the

activities of a significant number of neurons in the input layer

and especially in the hidden intermediate layer, resulting in

the emergence of BTA. Moreover, the classification accuracy

and training speed achieved by the non-negative connectivity

constrained network, which resulted in BTA, was comparable to

that of the network without such constraint.

3.3 Bow-tie architecture is e�cient, robust
and generalizable

Since each synaptic connection is associated with metabolic

cost (Attwell and Laughlin, 2001; Laughlin et al., 1998), we can

evaluate the wiring cost for a neural network with BTA. For

simplicity, we defined the total wiring cost of the connections as

the sum of the absolute values of the network’s connection weights

and then compared the wiring cost for a network with and without

non-negative connectivity constraints. It is clearly shown that the

network with non-negative connectivity constraint had a much

lower (about a third lower) connection cost than the one without

this constraint (all p′s < 0.001). In addition, the number of active

neurons in the input and the hidden layers of the network with BTA

ismuch smaller than that in the network without BTA. These results

suggest that networks with BTA may be highly energy efficient.

Although it may be desirable to have the BTA network to having

a much smaller number of hidden neurons than other network

layers, the hidden layer with its smaller structure may perhaps be

more vulnerable to disruption or perturbation. To test the BTA’s

robustness with respect to structural changes, we separately trained

10 networks with identical initial architecture but different initial

connection weights to perform the same classification task. We

then randomly removed active neurons in the input, hidden, and

output layers of the trained network.

The removal of neurons generally degrades the classification

accuracy. In particular, for the same proportion of active neurons

removed in the input, the hidden, and the output layers, we

found that removing the hidden neurons degraded the classification

accuracy (Figure 4A, black) more than that in the input or output
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layer (Figure 4A, red and blue). This was expected because the

number of active hidden neurons in the trained network was much

smaller than the number of active input and output neurons.

Moreover, the small number of hidden neurons may encode key

latent features, and their removal can be costly to performance.

Thus, active hidden neurons act as a critical network hub for

processing important information, and their removal has greater

effect than removing neurons from the other layers.

As observed in Figure 3E that the model’s active neurons in

the output layer typically did not change relatively much, we next

allowed the number of neurons in the output layer to vary from

100 to 1, 000, while fixing 500 input neurons and 500 hidden

neurons in the network. The non-negative connectivity constraint

was applied and each network structure was trained to perform the

same classification task. We found that as the number of output

neurons increased, the number of active input neurons did not

vary too much, hovering around 140 (Figure 4B, left, filled red

circles), but the number of active hidden neurons was substantially

reduced (Figure 4B, left, filled blue circles). The BTA then became

stabilized with further increase in the number of output neurons.

Furthermore, increasing the number of output neurons did not

have a substantial effect on the accuracy of classification accuracy

(Figure 4B, middle) and the convergence rate of the training

process (Figure 4B, right). Repeating the procedures on networks

without the non-negative connectivity constraint did not show

substantial changes in the number of input and hidden neurons

(Figure 4B, left, opened filled circles). These results indicate that the

BTA is robust to the variation in the number of output neurons, as

had been observed in neural systems (Jang et al., 2020; Prochazka

et al., 2014).

So far, we have made use of a generic classification task

using synthetically generated dataset. Hence, our next step was to

investigate whether the emergence of BTA can be generalized to

various more realistic classification tasks. Thus, we first trained a

network with non-negative connectivity constraint, initially with

1000 input neurons, 1, 000 hidden neurons, and 1, 000 output

neurons to classify 10 handwritten digits in the well-knownMNIST

database with 60, 000 samples (LeCun et al., 2002). We found

the classification accuracy on the training and testing datasets

to be high, at 0.9613 and 0.9260, respectively. We then repeated

the training on the MNIST data for 50 networks, and found the

numbers of active neurons were on average 380.14± 15.80, 87.92±

7.35, and 997.76 ± 1.3 for the input, hidden, and output layers,

respectively. Hence, after training, the connections became more

sparse (Figure 4C) and the active neurons formed a BTA, similar to

our observation with our synthetic generic dataset. Thus, the non-

negative connectivity constrained network could classify very well

with a robust emergent BTA.

Finally, we seek to know whether the BTA network can also

perform odor discrimination task. Here, we trained the network

with the same structure as in Wang et al. (2021) but with a

non-negative connectivity constraint to classify the 1, 008, 192

odor samples into 100 classes. This required a four-layer neural

network, initially with 500, 500, 2, 500 and 100 neurons from the

first odor stimulus layer to readouts (Wang et al., 2021). The

accuracy of the training and testing datasets were found to be

0.9248 and 0.7865, respectively. After training, the network with

non-negative connectivity constraint formed a BTA with sparse

connectivity from input to hidden and from hidden to output

neurons (Figure 4D). Based on 50 sessions of training with 20

epochs per session, we found that the numbers of active neurons

were 62.08± 3.71, 48.97± 4.19 and 2, 308.74± 39.60 for the input,

hidden, and output layers of the network, respectively. This was

again a BTA, consistent with previous work (Wang et al., 2021).

Overall, we have shown that BTA emerged even with different,

more realistic tasks, suggesting that BTA emergence could be

generalized and applied to different cognitive tasks.

4 Discussion

In this work, we provide the first evidence that non-negative

(excitatory) connectivity serves as a mechanistic driver for the

spontaneous emergence of bow-tie architecture (BTA) in neural

networks. Unlike previous studies that rely on linear assumptions

or predefined structures, our results show that training neural

networks with non-negative weights on noisy signal classification

tasks leads to the self-organization of BTA. This occurs through the

amplification of back-propagated error signals and suppression of

neuronal activity, particularly within the hidden layer (Figure 1).

These findings are consistent with neurobiological observations

showing a dominance of long-range excitatory over inhibitory

projections (Douglas and Martin, 2004; Stepanyants et al., 2009),

reinforcing the biological plausibility of our model and revealing

a novel computational role for non-negativity in shaping neural

architecture.

In contrast to the models used in previuos studies, neural

networks are nonlinear, have complex connectivity, can perform

cognitive tasks such as sensory discrimination, and can modify

their architecture on a relatively faster timescale through learning

(Martin et al., 2000). Our work complements and extends these

studies by focusing on dynamic, learnable neural networks

constrained by feed-forward non-negative connection. In contrast

to Tishby et al. (2000)’s theoretical framework, where compression

is externally optimized, our networks spontaneously self-organize

into BTA-like structures as a direct outcome of constrained

learning dynamics. Compared with Friedlander’s evolution

models (Friedlander et al., 2015), our system demonstrates

that BTA can emerge rapidly within task-optimized nonlinear

networks, without predefined objective matrices or domain-

specific structures. In this sense, our findings provide a more

mechanistic and biologically motivated explanation for BTA

emergence, grounded in modern learning theory. Moreover,

instead of using a predefined neural network (Wang et al., 2021),

we trained the network using a flattened architecture and found

that BTA can emerge through training.

Moreover, as we have demonstrated, the non-negative

constraint may play a potential role in promoting the emergence

of a bow-tie architecture by encouraging sparse neural activity

in the hidden layer. During training, we observed a notable

reduction in the number of active neurons, which suggests

that the network gradually converges toward more efficient

internal representations. This observation is reminiscent of

principles in biological systems, where functional efficiency

Frontiers inNeural Circuits 09 frontiersin.org

https://doi.org/10.3389/fncir.2025.1574877
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Liu et al. 10.3389/fncir.2025.1574877

FIGURE 4

Robustness and generalizability of BTA. (A) Removal of neurons in the trained network at di�erent layers decreased classification accuracy at di�erent

rates, with hidden neurons as the largest contributors. Horizontal axis: proportion of removed active neurons in input, hidden, or output layer.

Shades: standard deviation of classification accuracy for 10 separately trained networks with di�erent initial connection weights. (B) Left: with

non-negative connectivity constraint, the number of output neurons did not substantially a�ect the final number of active input neurons (filled red

circles) but decreased the active hidden neurons (filled blue circles). BTA was stabilised with increasing number of output neurons. Unfilled circles:

without non-negative connectivity constraint. Middle, right: Classification accuracy (middle) and convergence rate (right) of networks with (yellow)

and without (green) constraint. Fitted lines: linear regression y = 6.71× 10−4x− 0.67 (green); y = −4.23× 10−4x+ 0.72 (yellow). (C) MNIST

classification task. Trained connection weights from input to hidden layer (left) and from hidden to output layer (right) led to BTA. Small number of

hidden neurons active after training (bottom). (D) Olfactory discrimination task. Trained connection weights from input to hidden layer (left), and

from hidden to output layer (right) led to BTA. Small number of hidden neurons active after training (bottom).

is often associated with sparse and specialized neural coding

strategies (Fakhar et al., 2025). Such sparsity may reflect an

adaptive mechanism that enables the brain to maintain high-

level cognitive function while minimizing metabolic cost.

However, it is also important to note that excessive reduction in

neural activity or synaptic connectivity may have pathological

consequences. For example, synaptic pruning caused by immune

dysfunction that exceeds functional thresholds has been implicated

in neuropsychiatric disorders (Keshavan et al., 2020; Li et al.,

2025). Therefore, while sparsity and non-negativity may support

the emergence of efficient architectures like the bow-tie, they

must be balanced to preserve robustness and functional

integrity. This trade-off between efficiency and resilience may

be an important consideration for future biologically inspired

modeling studies.

Throughout training, we observed that the number of active

neurons in the hidden layer decreased, eventually stabilizing. A

dynamic we visualized in Figure 3E. This progressive sparsification

suggests the development of efficient internal representations as

learning proceeds. Such dynamics mirror sparse coding strategies

seen in biological systems (Fakhar et al., 2025). The BTA models

exhibited lower wiring cost, fewer active neurons, and faster

convergence, without significantly compromising accuracy. These

characteristics are in line with biological neural circuits, which

often exhibit sparse coding and minimal energy expenditure

while maintaining task performance (Babadi and Sompolinsky,

2014). Given the dynamic and heterogeneous nature of biological

networks, we further examined the resilience of the learned BTA

architectures. Numerical experiments showed that performance

was most sensitive to disruptions in the bottleneck (hidden)

layer (Figure 4A). This aligns with the functional importance

of bottleneck regions such as the thalamus or neuromodulatory

nuclei in the brain, which act as key integrative hubs and may

be particularly vulnerable in disease contexts (Dorocic et al.,

2014; Ogawa et al., 2014; Lee and Dan, 2012; Halassa et al.,

2014).

We validated our approach across multiple classification tasks

and class sizes–from 10 classes in digit recognition to 100 classes in

synthetic signal and odor discrimination. BTA formation emerged

consistently, independent of the task domain. Sensitivity analyses

(Supplementary Section S1) confirmed that this effect holds

robustly across different random seeds, network sizes, and pruning

conditions. In particular, sparsity patterns in the hidden layers

remained reproducible, and bow-tie formation proved stable even
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under architectural perturbation. To further assess generalization

beyond the training distribution, we conducted out-of-distribution

(OOD) testing (Supplementary Section S2). Models retained strong

performance under moderate noise (accuracy 86%) but showed

reduced accuracy with structured occlusion (accuracy 50%),

suggesting a reliance on compressed, essential features–consistent

with BTA’s theoretical function as an information bottleneck. These

findings reinforce the biological and computational relevance of the

observed architecture.

4.1 Limitations and future directions

Our findings establish non-negativity as a key constraint for

BTA emergence, with functional benefits and task generality.

Future work should extend this framework to recurrent networks

and inhibitory interactions to better mimic biological circuits.

While these results offer important insights, several limitations

highlight directions for future research. First, the model relies on a

specific learning algorithm and employs simple feedforward neural

networks focused on sensory discrimination tasks. Given that

error back-propagation is not biologically plausible, future work

should explore more biologically grounded learning algorithms.

Second, while we investigate the bow-tie structure across layers,

important biological features such as Dale’s principle and recurrent

connections are not incorporated. Additionally, although non-

negative connections between layers may contribute to information

compression, engineering constraints and real-world complexities

are not addressed in this study. These simplifications enable

theoretical tractability and clearer explanations of how non-

negative connectivity can give rise to BTA. Considering the

brain’s complexity, where each neuron plays a specialized

role in problem-solving, future research will aim to integrate

more biologically plausible connectivity rules and neuronal

dynamics to tackle more complex engineering challenges (Li

et al., 2022; Davari et al., 2024; Gupta, 2024; Li et al.,

2021). Furthermore, subsequent work will extend beyond the

current model’s scope by exploring whether the principles

of BTA formation identified here generalize to other neural

network architectures, alternative learning rules, and diverse

cognitive functions.

5 Conclusion

In summary, this study identified non-negative (excitatory)

connectivity as a key mechanistic driver of the spontaneous

emergence of bow-tie architectures (BTA) in neural networks.

By constraining network weights to be non-negative reflecting a

biologically plausible condition. we showed that neural networks

self-organize into compressive structures that amplify error signals

while suppressing hidden-layer activity. These dynamics naturally

lead to the formation of efficient bow-tie configurations. We

further demonstrated that the emergent BTA architecture confers

distinct functional advantages. Compared to unconstrained

networks, BTA networks achieved reduced wiring cost, enhanced

robustness to scaling, and improved task generalizability.

Importantly, these properties were not limited to a specific task

or architecture. As shown in our cross-dataset evaluations, BTA

emergence generalized across multiple classification problems and

output dimensionalities.

By providing a mechanistic account of BTA formation under

biologically inspired constraints, our findings bridge observations

in neuroscience with principles of artificial learning systems. This

work not only offers insights into the computational organization

of the brain, but also suggests strategies for designing more efficient

and scalable machine learning models.
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