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The emerging concept of “neurobiomechanics” embodies an integrative approach, 
bringing together insights from functional anatomy, the physiology of the 
musculoskeletal and central nervous systems, physics, and computer science. By 
examining human movement under normal, optimal, and pathological conditions, 
neurobiomechanics aims to unravel the intricate mechanisms driving motor function 
and dysfunction, offering a comprehensive perspective on disorders such as acquired 
brain injury and neurodegenerative diseases. In this narrative review, we sought 
to explore the “neurobiomechanics” as a potential approach to investigate both 
neural and biomechanical aspects of human motion, trying to answer the following 
questions: (1) “Which technologies can perform a neurobiomechanical assessment in 
neurological patients?,” (2) “What are the key neurophysiological and biomechanical 
parameters?,” (3) “How can we translate this approach from research to clinical 
practice?.” We have found that, to assess/understand a patient’s dysfunctional 
patterns, it is necessary to evaluate both neurophysiology and biomechanics in a 
complementary manner. In other words, assessing one aspect without the other 
is not sufficient, as this may lead to incomplete evaluations from both a functional 
and methodological perspective.
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1 Introduction

Human movement results from a highly coordinated and complex mechanical interaction 
among bones, muscles, ligaments, and joints within the musculoskeletal system, which is 
regulated by the nervous system. Muscles produce tensile forces and generate moments at 
joints with relatively short lever arms, thereby ensuring both static and dynamic stability, while 
enabling precise limb control under gravitational and other external forces (Lu and Chang, 
2012). At the core of motor control lies a sequence of transformations involving neural inputs, 
mechanical forces, and sensory feedback. Neural signals originating from the central nervous 
system (CNS) interact with mechanical forces generated by muscles, which subsequently drive 
movement and stabilize the musculoskeletal system (Nordin et al., 2017). External and internal 
forces, such as those exerted by the environment or between body segments, further modify 
movement patterns. Horak’s motion control theory emphasizes: “Normal motion control refers 
to the central nervous system by using existing and past information to transform neural 
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energy into kinetic energy and enable it to perform effectively 
functional activities” (Horak, 1991). This process involves the 
interaction between the CNS and motor muscle tissue. For example, 
during a hand grip, the motor cortex sends commands through the 
motor conduction pathway, activating peripheral nerves and muscles 
in the upper body to initiate movement (Babiloni et  al., 2008). 
Simultaneously, proprioceptive signals travel via the sensory 
conduction pathway to the spinal cord, brainstem, cerebellum, and 
partially to the cerebral hemisphere. Most of this sensory information 
reaches the brain’s sensory regions, where it is analyzed to adjust and 
regulate motor commands (Witham et al., 2011). Studying cortical-
muscle function coupling offers insight into the communication 
between the cerebral cortex and muscle tissue, illustrating how the 
brain integrates movement and processes feedback from muscle 
contractions. In neurological disorders, this delicate interplay becomes 
disrupted, leading to altered motor patterns and functional 
impairments (Nordin et al., 2017). Understanding these disruptions 
requires a thorough analysis of both neurophysiological signals and 
biomechanical forces. In this sense, the assessment of neurological 
disorders demands a multidisciplinary approach, integrating 
neurophysiology, muscular control, and biomechanics of movement 
(Garro et al., 2021). This integrated approach is essential for advancing 
our understanding of motor dysfunctions and for developing targeted 
treatment strategies.

However, Bernstein (1967) found out that the main issue of motor 
control was redundancy. This theory proposes that the human body 
possesses redundant degrees of freedom, allowing multiple motor 
strategies to achieve the same goal. On the other hand, motor 
redundancy could be seen not as a “problem” but as a “bliss” of motor 
abundancy, as suggested by Latash (2012). This redundancy enables 
the motor system to be highly adaptable and capable of identifying 
efficient solutions under varying task demands. According to Latash, 
the equilibrium-point hypothesis combines the theory of motor 
control grounded in physical principles and consistent with 
neuromotor physiology (Feldman, 1986). This hypothesis was initially 
developed for single-muscle and single-joint systems, proposing that 
muscle activity can be controlled by setting a single parameter, the 
threshold of muscle activation relative to length. This approach applies 
to the principle of abundance, allowing the system to explore multiple 
patterns of neural activation to achieve the same task. In 2009, this 
theory was expanded into the referent configuration hypothesis for 
multi-joint actions (Feldman and Levin, 2009). This model, a 
hierarchical control system, defines a desired body action via 
subthreshold neural activity. Although this body’s action may not 
be fully achievable due to physical constraints, the body reaches an 
equilibrium state where muscle activations reflect the gap between 
actual and referent positions.

Among the theoretical approaches to motor control, optimal 
feedback control (Todorov and Jordan, 2002) has emerged as a 
prominent theory for explaining how the CNS manages the complexity 
of motor redundancy. Rather than viewing redundancy as a problem, 
this theory treats it as a feature that allows for flexible and efficient 
movement strategies. According to this model, the nervous system 
minimizes a cost function that balances task performance (i.e., 
minimizing error) with energetic efficiency (i.e., minimizing the 
variability or effort of control signals). Movements are continuously 
adjusted through optimized sensory feedback, enabling adaptability 
to changing conditions. Another theory on how the CNS manages 

motor redundancy is the uncontrolled manifold (Scholz and Schöner, 
1999). Rather than attempting to control every individual joint or 
muscle, the CNS is thought to stabilize only those combinations of 
joint movements that are critical for achieving a specific motor goal, 
such as maintaining the center of mass or positioning the hand. 
Variability that does not interfere with the task outcome is allowed and 
even expected. This defines what is termed the “uncontrolled 
manifold.” Through quantitative analysis of the distribution of joint 
configuration variability across repeated task executions, it becomes 
possible to infer which task-specific variables are selectively stabilized 
by the CNS, thereby revealing their relative importance in the control 
hierarchy. For example, in a sit-to-stand task, Scholz and Schöner 
showed that the trajectory of the center of mass is tightly controlled, 
while the variability of joint motions that do not affect it remains 
relatively high. This suggests that the CNS organizes movement not 
by eliminating variability, but by shaping it in a task-relevant way.

The emerging concept of “neurobiomechanics” embodies an 
integrative approach, bringing together insights from functional 
anatomy, the physiology of the musculoskeletal and CNS, physics, and 
computer science (Ivancevic et  al., 2015). By examining human 
movement under normal, optimal, and pathological conditions, 
neurobiomechanics aims to unravel the intricate mechanisms driving 
motor function and dysfunction, offering a comprehensive perspective 
on disorders like acquired brain injury and neurodegenerative 
diseases. What makes neurobiomechanics particularly valuable is its 
ability to investigate the complex interaction between neural signals 
and mechanical forces (Ivancevic et al., 2015). Neurological disorders 
are not only issues of neural dysfunction, but they also involve 
disruptions in the mechanical processes governing movement. The 
coordination between the brain, muscles, and skeletal structures is 
fundamental to motor control, enabling flexible and task-specific 
stabilization of movement. However, the aforementioned theories of 
motor control suggest that the nervous system exploits motor 
redundancy by stabilizing task-relevant variables, such as end-effector 
trajectories, equilibrium configurations, or referent positions, while 
allowing variability in dimensions that do not affect task performance. 
Disruptions at any level of this system can impair the ability to 
produce coordinated and goal-directed actions.

Traditional diagnostic approaches, focused on neurochemical, 
neuroimaging, and electrophysiological assessments, often overlook 
biomechanical factors. However, recent advances in this field highlight 
how mechanical forces can shape neural function, influencing disease 
pathology (Rocha et al., 2022; Pillai and Franze, 2024) and even guide 
rehabilitation outcomes.

Computational approaches are increasingly gaining traction 
within neurobiomechanics as powerful tools to explore the interaction 
between neural activity and musculoskeletal dynamics in both healthy 
and pathological conditions. Platforms such as OpenSim (NIH 
National Center for Simulation in Rehabilitation Research, Stanford, 
CA, USA)1 allow the estimation of joint forces and muscle activations 
based on kinematic and EMG data, offering a non-invasive way to 
study motor deficits and predict rehabilitation outcomes (Seth et al., 
2011). MOtoNMS, a MATLAB (The MathWorks, USA)-based toolbox 
developed for MOtion data elaboration for NeuroMusculoSkeletal 

1 https://opensim.stanford.edu/
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applications, facilitates standardized preprocessing of motion capture 
and EMG data, thereby streamlining their integration into 
neuromusculoskeletal simulations and enhancing the reliability of 
model-based analyses (Mantoan et  al., 2015). On the neural side, 
simulators like NEURON2 (Hines and Carnevale, 1997) and Brian 
(Goodman and Brette, 2009) enable detailed modeling of neural 
circuits and the study of how changes in connectivity or signal 
transmission may affect motor control. More recently, platforms such 
as the NEUROmotor integration and Design (NEUROiD) (Iyengar 
et  al., 2023) and the neuro-musculoskeletal flexible multibody 
simulation (NfMBS) (Geier et  al., 2019) have contributed to the 
development of multiscale and modular environments that integrate 
neural, muscular, and skeletal models for simulating human 
movement under pathological conditions. These tools have been 
applied to study disorders such as Parkinson’s disease, stroke, and 
spinal cord injury, offering quantitative biomarkers and virtual 
environments to test treatment strategies. The integration of these 
computational tools into neurobiomechanical research supports a 
more systematic exploration of neural-mechanical interactions and 
helps bridge the gap between empirical observations and 
mechanistic understanding.

Recent studies, for instance, have shown that combining 
neurophysiological tools like electromyography (EMG) with 
biomechanical analysis can provide deeper insights into post-stroke 
motor recovery (Krauth et al., 2019; Kukkar et al., 2024). By coupling 
EMG with electroencephalography (EEG), researchers can objectively 
assess motor function during rehabilitation, offering more precise 
measurements of patient progress. In healthy individuals, the use of 
neurobiomechanical assessment was largely studied (Artoni et al., 
2023; Hsu et al., 2023; Ortega-Auriol et al., 2023; Ke and Luo, 2024). 
This method was used to assess single or bimanual tasks, balance, and 
gait functions by exploring simultaneously neurophysiological and 
biomechanical data. In this sense, Ortega-Auriol et al. (2023) studied 
upper limb muscle synergies in healthy participants who executed an 
isometric upper limb task in synergy-tuned directions. In particular, 
the term “muscle synergy” refers to a set of muscles identified from 
experimental EMG data, characterized by consistent spatial and 
temporal patterns of activation, according to a certain model 
describing how these muscle groups are organized and contribute to 
the observed EMG signals (Berger and d’Avella, 2014; Cheung and 
Seki, 2021). Ortega-Auriol et al. measured cortical activity using EEG 
and muscle activity with EMG, revealing four distinct synergies from 
the multidirectional task, all showing significant intramuscular 
coherence (IMC) within the alpha band, particularly between muscles 
with high synergy weights. Additionally, a higher coherence strength 
correlation (CSC) was observed in the alpha band across high-
weighted muscles within each synergy. However, no significant 
cortico-muscular coherence (CMC) was found between the motor 
cortex and synergy muscles, suggesting that, while shared neural input 
likely shapes these synergies, only specific ones may receive cortical 
modulation. Muscle synergies represent a way to reduce complexity 
by voluntarily reducing the dimensionality of the analyzed motor tasks 
(Tessari et  al., 2025). It is worth noting that this is a positive 
connotation of their meaning. However, in the neurorehabilitation 

2 http://www.neuron.yale.edu

context, synergies can be referred to pathological movement patterns 
or undesired and involuntary movements on the paretic side, in the 
case of stroke (McMorland et al., 2015; Tessari et al., 2025).

Building on this concept, muscle synergy analysis, a method that 
decomposes multi-muscle surface EMG (sEMG) recordings into 
low-dimensional activation patterns, has gained popularity for its 
ability to provide meaningful insights into the neuromechanics of 
movement, both across different motor tasks and in the context of 
neurological impairments (Borzelli et al., 2024). In this sense, this 
concept supports the hypothesis that neurally driven muscle synergies 
are fundamental to human upper limb movement, with selective 
cortical influence on certain synergies. Another example can be the 
study of neuromuscular control of balance and posture, which is 
essential because both underpin fundamental human movement, 
impact quality of life, and are crucial for preventing injuries. Balance 
and postural control are especially critical in neurological disorders 
(e.g., acquired brain injury and neurodegenerative), where fall 
prevention can reduce severe injuries, such as fractures, reducing 
healthcare costs (Bryant et al., 2014; Cameron and Nilsagard, 2018; 
Bonanno et al., 2023). An innovative study by Ke and Luo (2024) has 
investigated neuromuscular coordination in healthy individuals, 
particularly the interaction between the cortex and muscles during 
varying levels of balance challenge. Using EEG and EMG in different 
balance paradigms, the study reveals that balance control involves 
shifts in brain-muscle communication, particularly in CMC patterns 
across the beta and gamma frequency bands. As balance demands 
increase, through conditions like closing the eyes or standing on 
unstable surfaces, the study found a stronger downward neural 
influence, indicating that the brain actively adjusts its control signals 
to the muscles. Concerning the rehabilitation field, knowing how the 
brain and muscles coordinate under different external conditions not 
only enhances our understanding of motor control but also 
underscores the importance of studying neuromuscular mechanisms 
to develop targeted rehabilitation interventions to recover motor 
functions. This aspect motivates a neurobiomechanical approach to 
study human behavior in both healthy and pathological conditions. 
Such an approach comprises the study of neural pathways involved in 
the activation of muscle synergies to achieve the goal of the movement 
and the biomechanics, which studies human movements through 
specific kinematic (trajectory and joint angles) and kinetic (muscular 
forces) elements (Ivancevic et al., 2015). However, this is only one of 
the many possibilities by which the CNS can control human motion 
(Feldman, 1986; Scholz and Schöner, 1999; Feldman and Levin, 2009; 
Latash, 2012, 2016). A recent work by Cheung and Seki (2021) 
provides valuable insight into the potential neural substrates of muscle 
synergies within both the central and peripheral nervous systems. 
They comprehensively reviewed the electrophysiological, anatomical, 
and behavioral evidence of muscle synergies, highlighting how they 
may be encoded at multiple levels of the motor hierarchy, including 
the spinal cord, brainstem, and motor cortex. Their analysis supports 
the view that synergies are not merely mathematical constructs but 
may reflect structured neural modules that contribute to coordinated 
motor output. Generally, traditional mathematical methods for 
extracting muscle synergies, such as non-negative matrix factorization 
or principal component analysis, can be used; however, they have 
intrinsic limitations due to the mathematical assumptions they 
impose, which may not fully capture the underlying neural 
mechanisms of motor control. Recent advances, such as the Synergy 
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Expansion Hypothesis proposed by Tessari et  al., suggest that 
synergies are not fixed modules but can be  flexibly reorganized 
depending on the task demands. This framework offers a more 
biologically grounded and computationally robust approach to 
studying motor coordination, potentially addressing some of the 
methodological constraints of conventional synergy analysis.

Neurobiomechanics may offer valuable insights and objective 
methods for quantifying the relationship between neural and 
biomechanical aspects of human motion (Ivancevic et al., 2015). In 
the neurorehabilitation field, the neurobiomechanical assessment 
could be performed with multiple tools to assess both neurophysiology 
and biomechanics (e.g., EEG, EMG, wearable sensors), offering 
clinically relevant metrics for diagnosis, monitoring, and intervention 
planning (Taiar et al., 2022). However, there are several open questions 
regarding the implementation of this approach, related to the 
methodologies, the neurophysiological and biomechanical parameters 
extracted, and how this approach can be translated from research to 
clinical practice. In this review, we  sought to explore the 
“neurobiomechanics” as a potential approach to investigate the neural 
and biomechanical aspects of human movement, trying to answer the 
following questions:

 • Which technologies can perform a neurobiomechanical 
assessment in neurological patients?

 • What are the key neurophysiological and 
biomechanical parameters?

 • How can we  translate this approach from research to 
clinical practice?

2 Search strategy

In this review, we selected evidence reporting neurophysiological 
and biomechanical assessment of movement in patients with 
neurological disorders (including stroke, Parkinson’s disease, multiple 
sclerosis, spinal cord injury, and cerebral palsy). We  searched on 
PubMed and Scopus, without selecting a specific time range and 
searching for title/abstract, with combination of the following 
keywords: “neuromechanical assessment” OR “corticomuscular 
coherence” OR “corticomuscular coupling” OR “motor 
neurorehabilitation” OR “motor assessment” AND “neurological 
disorders” OR “parkinson’s disease OR “stroke” OR “cerebral palsy” 
OR “multiple sclerosis” OR “traumatic brain injury.”

To further investigate the role of computational modeling and 
simulation platforms in neurobiomechanical assessment, 
we performed a second targeted search using Google Scholar. The 
second search included the following additional keywords: AND 
“neuromusculoskeletal simulator” OR “biomechanical simulation” OR 
“musculoskeletal modeling” OR “computational neurorehabilitation.”

3 Overview of devices for 
neurophysiological and biomechanical 
instrumental assessment

In rehabilitation medicine, the evaluation phase is the first step to 
build a personalized rehabilitation pathway, according to patients’ 
needs, strengths, and residual functions. This is why it is important to 

have a global, but also quantitative and objective idea of the movement 
patterns of the patient, which is strictly individual due to diagnosis, 
etiologies, timing and location of the injury. In this context, 
quantifying subject-to-subject variability is a critical component of 
both clinical and laboratory investigations. Moreover, variability is 
often analyzed to assess motor control across different scenarios, 
providing insights into how the CNS simplifies muscle coordination 
by reducing the dimensionality of control (Rosati et al., 2017; Pale 
et al., 2020; Zhao et al., 2021).

The clinical assessment of patients’ physical and physiological 
health is fundamental for both physicians and physiotherapists to 
determine if the exercise has an influence and, ultimately, to modify 
their follow-up rehabilitation program, according to their specific 
needs. To this aim, a range of technologies, spanning from 
conventional methods (e.g., EEG, EMG) to innovative tools (e.g., 
robotic devices, markerless motion capture), can complement the 
clinical evaluation, including:

3.1 Neurophysiological investigation 
systems

EMG records the electrical activity of muscles and is used to assess 
muscle activation patterns, strength, and coordination. SEMG is 
widely utilized in neurorehabilitation due to its non-invasiveness, ease 
of application, and ability to provide real-time insights into muscle 
activity, aiding in both diagnosis and treatment monitoring 
(Disselhorst-Klug and Williams, 2020). However, sEMG can present 
several factors that can produce different types of noise signals. For 
example, proper skin preparation, including exfoliating, shaving, 
cleansing, and applying conductive gel, is essential for reducing 
electrode impedance and noise at the electrode-skin interface, thereby 
improving the quality of sEMG recordings (McManus et al., 2020). In 
addition, crosstalk, an undesired signal interference caused by 
overlapping electrical activity from neighboring muscles, can make it 
difficult to accurately identify the signal origin, especially when 
adjacent muscles are simultaneously active (Chowdhury et al., 2013; 
Pilkar et al., 2020). Although it can be minimized through careful 
selection of electrode placement, size, and spacing, crosstalk remains 
influenced by physiological factors such as subcutaneous fat and 
electrode orientation (Chowdhury et  al., 2013). Moreover, proper 
electrode placement, following the SENIAM guidelines (Hermens 
et al., 2000), is essential, with electrodes typically aligned along the 
direction of muscle fibers and positioned on the muscle midline. 
Importantly, no software can compensate for fundamental operator 
errors, such as incorrect electrode placement or inappropriate filtering 
(Campanini et al., 2020; McManus et al., 2020).

Nevertheless, sEMG can be used to obtain information regarding 
muscle activation during a movement, giving an idea of functional 
alteration. In neurorehabilitation, the application of sEMG can 
be suitable for the detection of co-activation of agonist and antagonist 
muscles, providing information about neuromuscular coordination 
control among muscles (Disselhorst-Klug and Williams, 2020; 
Al-Ayyad et al., 2023). In this sense, the concept of muscle synergies 
can simplify motor control without significantly affecting 
performance, as demonstrated by several authors (d’Avella et al., 2003; 
Ting and McKay, 2007; Bizzi et al., 2008; Berger and d’Avella, 2014). 
The clinical relevance of muscular coordination is particularly evident 
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in individuals with neurological conditions, where analyzing muscle 
activation patterns during reaching/grasping movements for the 
upper limb, or during gait for the lower limbs. A recent work (Avni 
et al., 2024) has demonstrated that both flexor synergy intrusion and 
muscle weakness contribute substantially to abnormal reaching 
kinematics in the sub-acute post-stroke phase. Specifically, 3D 
kinematic analyses revealed that synergy intrusion particularly affects 
out-of-synergy movements, and that both weakness and synergy 
explain a significant proportion of variance in clinical and functional 
scores. Taken together, these findings highlight the importance of 
moving beyond traditional clinical scales toward a more detailed 
characterization of neurological deficits through quantitative 
kinematic analysis of movements (Kwakkel et al., 2017). After a stroke, 
grasping movements are also impaired, with delays in palmar arch 
modulation and finger pre-shaping, as well as slower, less precise grasp 
aperture opening (Roby-Brami et al., 2021). Despite these deficits, 
stroke survivors rely on compensatory mechanisms within the 
sensorimotor system. These allow alternative finger coordination 
strategies, such as delayed metacarpophalangeal flexion, to adapt 
grasping to different object shapes, even when typical finger 
movements are limited (Raghavan et al., 2006, 2010). Interestingly, in 
another study (Lin et  al., 2023), the authors demonstrated that 
proximal and distal upper limb motor systems can be selectively and 
independently affected by acute stroke, leading to distinct clinical 
syndromes and functional outcomes. In this study with 141 patients 
after stroke, the authors found that proximal and distal motor deficits 
are dissociable, with distal motor control often relatively preserved in 
many patients. Notably, patients with preserved distal function 
showed better recovery outcomes both in the acute phase and after 
90 days. Neuroanatomically, proximal deficits were linked to 
widespread damage in descending motor pathways, while distal 
deficits were specifically associated with injury to the primary motor 
cortex. These findings highlight the distinct anatomical and functional 
organization of proximal vs. distal motor systems and their differential 
vulnerability and impact following stroke.

Although EEG provides high temporal resolution, it has 
limitations. For example, in some systems, a limited number of 
channels can lead to source mis-localization, affecting the accuracy of 
Source Electrical Imaging (ESI) (Formica et al., 2025). Moreover, the 
EEG system is susceptible to biological factors, such as muscular 
components, movements and extra biological artifacts, such as eddy 
current (Gorjan et al., 2022). For these reasons, EEG acquisitions need 
qualified staff in the best choice of measure cap, montage, and in the 
management of artifacts during acquisitions (Fiedler et al., 2022). EEG 
devices are innovative because they can be  triggered by external 
systems, such as E-Prime (Psychology Software Tools, Inc.; PA, USA), 
to analyze brain oscillations in response to specific events 
(MacWhinney et  al., 2001). However, interfacing EEG with other 
neurophysiological tools can be challenging, especially when these 
systems use wireless methods for data acquisition and transmission, 
which may introduce excessive noise into the EEG recordings (Gorjan 
et al., 2022).

Moreover, EEG systems transmit signals via wired connections 
attached directly to their amplifiers, which limits the ability to perform 
large upper limb movements or to record cerebral electrical activity 
during walking (Mundanad Narayanan et  al., 2021). Recent 
technological advances are addressing interface limitations by 
developing wireless EEG systems (Mundanad Narayanan et al., 2021). 

EEG acquisition can be conducted either by directly analyzing the 
electrical potential differences recorded at each electrode or by adding 
an intermediate step involving the reconstruction of cortical sources 
to obtain the temporal and spectral patterns of the brain’s electrical 
field generators (Astolfi et al., 2007; Scano et al., 2023). Analyzing the 
connectivity of the brain aims to identify the areas that are 
synchronously active both at rest and during a given task. For example, 
while beta activity increases with motor practice and returns to 
baseline after rest, its amplitude does not depend on specific 
movement features. In contrast, gamma activity varies in proportion 
to movement speed and distance. In this context, Tatti et al. (2023) 
found that the overall amplitude of gamma activity decreased 
following motor practice as well as after periods of sleep or quiet rest. 
These findings suggest an effect partially associated with participants’ 
subjective fatigue.

Additionally, connectivity in brain regions linked to attention also 
decreased after both practice and rest. These results confirm that 
gamma activity is involved in movement control but suggest that the 
reduced amplitude is more likely due to mental fatigue or more 
automatic movement, rather than changes in brain plasticity. To 
analyze brain connectivity, two types of approaches can 
be distinguished: functional and effective analysis (Cao et al., 2022). 
In functional analysis, the functional network organization is 
examined; in effective analysis, the directionality and causal influence 
between structures are also assessed. Some authors combined EEG/
EMG analyses, demonstrating that this investigation can be used to 
evaluate the integrity of the neuromuscular system in subjects with 
spinal cord injury (Leerskov et al., 2020) or to study the sensorimotor 
cortex in patients with cerebral palsy (Short et al., 2020). Beyond their 
role in active control of movement and brain oscillations are 
increasingly recognized for their involvement in learning processes. 
The acquisition or improvement of sensorimotor skills relies on 
mechanisms of neural plasticity that support the formation and 
refinement of motor synergies (Tatti and Cacciola, 2023). In this 
context, other authors have quantified the coherence function between 
the EEG and EMG signals, which is named as CMC (Liu et al., 2019). 
CMC is considered a useful method to study the mechanism of the 
cerebral cortex’s control of muscle activity. It demonstrates the 
functional link between the cortex and muscles during sustained 
contractions. CMC originates from communication within the 
corticospinal pathways, connecting the primary motor cortex to the 
muscles (Liu et al., 2019).

Furthermore, Mobile Brain/Body Imaging (MoBI) consists of a 
simultaneous registration of brain activity, using EEG, and muscle 
activity, with EMG signals. This approach can be used to record and 
analyze brain dynamics and human movement under naturalistic 
conditions. Regarding brain imaging, only EEG and functional near-
infrared spectroscopy (fNIRS) have sensors suitable for measuring 
brain activity during active movement (Jungnickel et al., 2019). This 
combined approach could be  a new solution to investigate the 
potential communication between supraspinal and subcortical sites 
with concurrent kinematic events (De Sanctis et  al., 2020). This 
approach introduces novel, important opportunities enabling the 
investigation of the role of the CNS during movement. A MoBI set-up 
consists of a flexible multimethod approach to record human 
movement in unrestricted conditions, by using lightweight body 
sensors concurrently with brain activity (e.g., by means of EEG). The 
essence of the MoBI approach would require not only a mobile brain 
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recording device but also simultaneous (and thus precisely triggered 
in time) other measurements (e.g., visual, auditory, and tactile 
stimulation as inputs, motion capture, force measures, or scene and 
gaze tracking as outputs) (He et  al., 2018; Delaux et  al., 2021) to 
explore key aspects of the human locomotion linked to brain behavior 
(Delaux et al., 2021). Examples of such mobile wearable body sensors 
could be wireless sEMG, 3D motion capture, inertial measurement 
units (IMUs), foot plantar pressure measurement systems, and/or eye 
tracker devices.

3.2 Biomechanical investigation systems

The study of movement biomechanics involves the analysis of 
kinematic and kinetic components, which can be evaluated through 
specific devices capturing the multiple aspects of movement 
biomechanics. Optoelectronic systems consist of marker-based 
motion capture systems (MoCap). These systems are considered as 
“gold standard” for motion detection (Romero-Flores et al., 2024; 
Scataglini et  al., 2024), since they use infrared light to accurately 
estimate the 3D position of a set of active or passive markers, by 
triangulation from multiple cameras (Ceseracciu et al., 2014). Passive 
markers are covered by photo-reflective materials that reflect infrared 
light, while active markers emit infrared light. In particular, the 
markers are positioned on anatomical landmarks in correspondence 
with the joints involved in the analysis to track all the human motion 
features with high accuracy (Zago et al., 2020). MoCap allows 3D 
body model reconstruction; however, it is time-consuming for the 
complexity of the setup, and patients are not free to move easily due 
to the presence of multiple markers. These systems are largely used to 
perform 3D motion analysis, since they provide, through post hoc 
analysis, detailed information about joint mobility, coordination, and 
abnormal movement patterns. Despite the large use of MoCap systems 
for research purposes, these are still not implemented in clinical 
practice, due to their high costs and set-up complexity (Pardell et al., 
2024). Some of the most adopted MoCap systems are the Vicon 
system (Vicon Motion Systems, Oxford, United Kingdom) and the 
Optitrack system (Corvallis, OR, USA), consisting of multiple infrared 
cameras for kinematic and spatiotemporal movement analysis. 
Optoelectronic systems can be used for upper limb (De Pasquale et al., 
2024) as well as for lower limb (Bonanno et al., 2024) motion analysis 
to detect quantitatively movement alterations, including 
compensations and pathological synergies, and to monitor progress 
after the rehabilitation intervention.

Markerless motion capture (MMC) systems are growing rapidly 
in the field of neurorehabilitation. These systems avoid the need for 
marker placement during motion analysis. Different from MoCaps, 
MMC allows for reducing time-consuming marker placement and 
costs related to the equipment. Generally, MMC requires a standard 
camera, such as an RGB or infrared sensor, to register human 
movements. For more accurate 3D motion tracking, multiple cameras 
can be used from different angles (Wade et al., 2022). Once the video 
is captured, pose estimation algorithms process the footage using 
artificial intelligence systems like OpenPose (CMU-Perceptual-
Computing-Lab/openpose, 2025), MediaPipe (google-ai-edge/
mediapipe, 2025), or DeepLabCut (DeepLabCut/DeepLabCut, 2025). 
These systems analyze key body points, such as joints and limbs, by 
applying deep learning techniques, such as Convolutional Neural 

Networks (CNNs), to accurately detect skeletal structures. In this way, 
these systems allow the capture of a more lifelike human motion in the 
environment, in a more natural way. Through these features, they can 
be used with more portable and low-cost sensors compared to marker-
based multi-camera systems (Lam et al., 2023). Recent approaches 
(Cotton et al., 2023; West et al., 2023) have improved accuracy by 
using dense key point sets trained on multiple datasets, such as 
MeTRAbs, which better capture critical areas like the pelvis and torso. 
Additionally, new methods use neural networks to reconstruct smooth 
and anatomically consistent 3D trajectories from video, leading to 
more reliable inverse kinematic analysis. These advances make MMC 
suitable for real clinical use, allowing quick, detailed movement 
analysis in settings like rehabilitation hospitals, even with patients who 
use assistive devices or have complex motor impairments.

Wearable sensors (WS) are often based on IMUs, which comprise 
accelerometers, gyroscopes, and magnetometers. These devices are 
portable and low-cost, and they can easily be attached to different 
body parts (e.g., ankles, wrists, or trunk) (Iosa et al., 2016). WS can 
be used to assess movements during activity of daily living, enabling 
unsupervised assessment (Wang and Choi, 2020). WS can be used to 
monitor patients at home, after discharge from the hospital, to 
guarantee continuity of care (van Melzen et  al., 2023). In clinical 
settings, WS can be used to measure kinematics of upper and/or lower 
limbs outside laboratory settings, promoting real-world evaluations 
(Lang et al., 2020). However, compared to optoelectronic systems, 
IMUs are considered less accurate, since metal objects in the 
evaluation environment cause electromagnetic interference and 
significant distortions (van Schaik and Dominici, 2020; Zhou et al., 
2020). On the other hand, the advantage in using IMUs systems is the 
absence of occlusions (because there are no barriers between sensors 
and transmitter), the large capture volume, and the availability of 
position and orientation data without post-processing analysis (Wirth 
et al., 2019). These systems offer portability, being lightweight and 
wireless, adaptable to diverse environments, albeit within proximity 
to a receiver and acquisition system (De Marchis et al., 2023). They 
combine cost-effectiveness and minimal recording latency, facilitating 
real-time applications (Ali et al., 2025). This is why they are often used 
for recording in real-time situations. However, inherent limitations, 
notably drift accumulation leading to estimation inaccuracies over 
time, impel reliance on external references for absolute accuracy 
(Takeda et al., 2014). To address this, a method was proposed that 
resets velocity estimates during the foot’s stance phase to constrain 
error accumulation (İkizoğlu et al., 2025). Using IMUs placed on the 
foot and knee, the approach achieved high accuracy in short-path gait 
analysis (error ~ 0.8%), without needing complex calibration setups. 
While effective for the foot, additional correction strategies were 
required for the knee, highlighting the importance of adaptive, 
segment-specific compensation techniques in inertial tracking 
systems. According to a recent systematic review by Gu et al. (2023), 
the use of IMU-based MoCap in rehabilitation assessment is quite 
mature. Several articles (Patel et al., 2012; Lefeber et al., 2019; Weygers 
et al., 2020) have validated the acceptable accuracy of the IMU sensor 
compared to the gold standard optical MoCap in a 
rehabilitation context.

In MoCap research, eye tracking technology provides objective 
insights into decision-making, attention, and cognitive load in 
medical settings (Pauszek, 2023). Most eye trackers, regardless of 
make or model, use the pupil-corneal reflection technique to 
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determine an observer’s point of gaze. This method relies on 
cameras, illuminators, and image-processing algorithms. Cameras 
capture high-resolution images of the eye multiple times per 
second, while near-infrared illuminators project a light pattern onto 
the eyes. This light, invisible to the human eye but detectable by the 
cameras, creates reflection patterns on the pupil and cornea. These 
reflections serve as reference points for algorithms to calculate gaze 
angles and map them onto the external world. The gaze data is then 
integrated with a video feed from an outward-facing camera or 
monitor (Pauszek, 2023).

In the field of kinetics, force sensors are used to study the 
interaction forces between the body and its environment. For instance, 
some authors have used force sensors to record the maximum 
voluntary isometric contraction (MVC) of the hand and force 
maintenance during contractions under constant load (Lai et al., 
2016). Other authors have estimated the upper limb’s MVC from 
sEMG signals, as muscle activation has also been used to estimate the 
end-point force generated by a human operator (Borzelli et al., 2023).

Other authors used this kind of sensor to obtain pressure foot 
evaluation during gait (De Sanctis et al., 2020; Kukkar et al., 2024). In 
addition, force sensors were used to detect ground reaction forces 
during gait analysis, as well as in dynamic posturography, to measure 
center of pressure (COP) (Kukkar et al., 2024).

Lastly, robotic devices that deliver motor rehabilitation sessions 
for upper and lower limbs can also serve as instrumental evaluation 
devices, as they are equipped with sensors (e.g., digital goniometers 
and force sensors) that provide kinematic and kinetic analyses. Robot-
aided motion analysis (R-AMA) can be used to quantitatively register 
spatial-temporal parameters of movement and allow personalization 
of the rehabilitation path according to patients’ needs (Bonanno and 
Calabrò, 2023). This is particularly true for devices whose assessment 
protocols have been validated in terms of reliability. For example, 
Bolliger et al. (2008) demonstrated the inter- and intra-rater reliability 
of Lokomat (Hocoma AG, Volketswil, Switzerland) for measuring 
maximal voluntary isometric muscle force. The authors suggested that 
this method is a valuable tool for documenting and monitoring the 
rehabilitation process in patients using a robotic device, as it enables 
a personalized approach to create a tailored patient profile that 
includes a precise physiotherapy program.

4 Neurobiomechanical assessment 
approach in patients affected by 
acquired brain injury

Acquired brain injury (ABI) is an umbrella term that indicates 
patients affected by an acute CNS lesion, commonly derived from 
cerebrovascular and/or traumatic causes. This condition can affect 
people of all ages, from children to adults and older individuals, 
causing sensory loss, muscle weakness, spasticity, and cognitive 
alterations. Altogether, these factors impact movements, including 
reaching tasks and manual strength as well as gait and postural 
stability (Goldman et  al., 2022). This aspect motivates a 
neurobiomechanical approach to studying human behavior in both 
healthy and pathological conditions (Table  1). This approach 
comprises the study of neural pathways involved in the activation of 
muscles to achieve movement goals and the biomechanics, which 
studies human movements through specific kinematic (trajectory and 

joint angles) and kinetic (muscular forces) elements (Ivancevic 
et al., 2015).

4.1 Upper limb function in ABI

Guo et al. (2020) employed CMC and EMG analyses to investigate 
the corticomuscular coordination patterns associated with 
compensatory proximal upper limb activity during distal movements 
in individuals with chronic stroke. They recorded EEG data from the 
sensorimotor region and EMG signals from the extensor digitorum 
(ED), flexor digitorum (FD), triceps brachii (TRI), and biceps brachii 
(BIC) to assess CMC peak values in the beta band. EMG parameters, 
including the activation level and co-contraction index (CI), were 
analyzed to assess compensatory muscular patterns in the upper limb. 
These authors found that stroke patients showed significant shifts in 
CMC from the ipsilesional to the contralesional side in proximal 
upper limb muscles, while distal muscles showed central region 
coherence. In addition, stroke patients demonstrated higher EMG 
activation levels and CIs in the TRI and BIC compared to controls, 
indicating increased compensatory activity in proximal muscles 
during both extension and flexion tasks. Significant differences in 
CMC were observed in ED and FD muscles during finger extensions 
between stroke patients and controls, highlighting distinct 
compensatory patterns in stroke recovery. However, the study by Zhou 
et  al. (2021) further investigates the neural pathways and specific 
timing of these interactions during fine motor control of finger 
extension by analyzing directed CMC (dCMC). While the study by 
Guo et  al. (2020) confirmed the cortical origin of proximal 
compensation, Zhou et  al. (2021) extended these findings by 
examining the directionality of neural pathways, differentiating 
descending signals (brain to muscle) from ascending feedback (muscle 
to brain). It reveals a pronounced descending dCMC in the proximal 
upper limb (BIC and TRI) among stroke patients, which differs from 
controls, who display this coherence dominantly in the distal upper 
limb (ED and FD). Interestingly, the study of Zhou et  al. (2021) 
suggests that EMG stability can indicate the quality of motor control. 
In stroke patients, the affected limbs show lower EMG stability and 
stronger ascending feedback from the distal muscles, likely as 
compensation for impaired fine motor control. In addition, Zhou 
et al., by examining the timing of descending dCMC, identified a 
significant delay in corticomuscular conduction time in the ED 
muscle of the affected limb compared to both the unaffected and 
control limbs.

Krauth et al. (2019) further support the potential of CMC as a 
measurable biomarker for motor recovery by showing that coherence 
rises as patients regain motor function, distinguishing the brain’s 
adaptation patterns over time. In particular, they observed that 
patients demonstrated larger, more bilaterally distributed cortical 
involvement compared to healthy controls. This expanded cortical 
distribution may signal compensatory neural reorganization to 
support motor recovery.

Both Krauth’s and Zhou’s studies imply that certain cortical 
regions play critical roles in functional compensation and recovery 
after stroke. The finding that EEG–EMG coherence patterns differ 
spatially and temporally between patients and controls suggests that 
CMC could guide targeted, real-time rehabilitation strategies aimed 
at specific cortical areas to enhance motor recovery (Krauth et al., 
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TABLE 1 Summary of the selected studies on stroke and cerebral palsy population.

First author 
and year of 
publication

Function/
body target

Study 
population and 
sample 
characteristics

Assessment 
methodologies

Parameters analyzed

Neurophysiological Biomechanics

Belardinelli et al. 

(2017)

Upper limb/hand 

flexion-extension 

movements.

8 right chronic post 

stroke patients, 

consisting of 7 males 

and 1 female (mean age 

57 ± 11 years).

 • MEG (instead of EEG)

 • EMG detected muscle activity in 

the forearm, specifically in the 

Extensor Digitorum Communis 

(EDC), which was used for the 

final analysis.

 • MRI was used to acquire 

structural brain images with a 

voxel resolution of 1 × 1 × 1 mm 

and construct three-dimensional 

models for cortical source analysis.

 • Robotic hand orthosis (Amadeo)

 • MEG: CMC in the same 

frequency band to assess the 

synchronization level between 

brain activity and 

muscle activity.

 • MRI images: the spatial 

distribution of coherence 

sources was analyzed, 

identifying the main cortical 

areas involved.

 • EMG: activation intensity before 

and after the intervention of 

EDC, ECU, FCR, and RMS.

 • Robotic hand 

orthosis movements 

(flexion/extension).

Delcamp et al. 

(2023)

Upper limb 

(elbow flexion-

extension 

movements).

24 chronic post-stroke 

subjects (mean age 

57 years), comprising 

20 M and 4 F.

Lesions were 

distributed between the 

right and left 

hemispheres.

 • EMG from the flexor muscles (BB 

and BR) and the main extensor 

muscle (TB) during active elbow 

extension movements.

 • EEG was performed using a 

64-electrode system.

 • Motion capture systems 

(OptiTrack) were used to record 

the kinematics of elbow extension 

movements, with a sampling 

frequency of 125 Hz.

 • CMC and IMC analyze the 

correlation between EEG 

(cortical) and EMG (muscular) 

signals in the time-frequency 

domain, capturing the 

oscillatory dynamics between 

the brain and muscles.

 • Elbow angle during 

active extension and 

the movement 

velocity.

Fang et al. (2009) Upper limb/

reaching 

movements.

21 stroke patients 

(16 M and 5 F, with a 

mean age, 59.57 ± 8.61) 

who had persistent 

dyscoordination of the 

upper limb.

8 healthy controls (5 M 

and 3 F, with a mean 

age 60.62 ± 6.25)

 • EEG with a 64-channel 

NeuroScan system

 • EMG from AD, BB, TB muscles.

 • To standardize movement and 

record kinematic data, a robotic 

device (InMotion2) which 

collected detailed data on 

trajectory and applied force.

 • EEG–EMG coherence  • The lateral 

deviation, which 

reflects the patients’ 

difficulty in 

maintaining the 

desired trajectory 

during 

the movement.

 • Movement Duration

 • Applied Force

Fauvet et al. (2021) Upper limb/

elbow extension 

movements.

8 healthy control 

volunteers 

(43 ± 21 years, three F) 

and 17 chronic phase 

post-stroke patients 

(58.2 ± 12.7 years, four 

F and 13 M).

 • EEG for continuous recording 

with a 64-channel system 

(ActiveTwo System, Biosemi).

 • Surface EMG recorded from 

triceps brachii, biceps brachii, 

brachialis, and brachioradialis.

 • Upper limb kinematic sensors 

recording at 125 Hz using an 

eight-camera infrared system 

(model S250e, Optitrack).

 • Reflective markers placed on 

anatomical landmarks (e.g., lateral 

epicondyle, ulnar styloid, 

second metacarpal).

 • EEG, EMG, and kinematic data 

were synchronized via TTL pulses 

generated by the Biopac 

MP150 system.

 • CMC focusing on the beta 

frequency band (13–30 Hz).

 • Average CMC: Calculated over 

the entire movement, divided 

into acceleration and 

deceleration phases.

 • Elbow 

extension angle.

 • Peak 

angular velocity.

 • Smoothness of 

movement.

(Continued)

https://doi.org/10.3389/fncir.2025.1608328
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Bonanno et al. 10.3389/fncir.2025.1608328

Frontiers in Neural Circuits 09 frontiersin.org

TABLE 1 (Continued)

First author 
and year of 
publication

Function/
body target

Study 
population and 
sample 
characteristics

Assessment 
methodologies

Parameters analyzed

Neurophysiological Biomechanics

Guo et al. (2020) Upper limb/

distal finger 

movements.

14 chronic stroke 

subjects, with a mean 

age of 56.5 ± 9.5.

 • EEG: A 64-channel.

 • EMG: Surface EMG was 

recorded from four muscles: 

extensor digitorum (ED) and 

flexor digitorum (FD) (distal 

muscles). Triceps brachii (TRI) 

and biceps brachii (BIC) 

(proximal muscles).

 • Robotic hand orthosis.

 • EEG and EMG signals were 

synchronized using a DAQ card 

(NI, USB-6009, 14-bit 

multifunction DAQ USB) at a 

sampling frequency of 1,200 Hz.

 • CMC was measured in the Beta 

band (13–30 Hz).

 • The peak CMCoh was calculated 

for the extensor and flexor 

muscles of the fingers (ED and 

FD) as well as for the proximal 

muscles (TRI and BIC) during 

finger extension and 

flexion tasks.

 • EMG: Co-contraction 

Index (CI).

 • Robotic hand 

orthosis flexion/

extension 

movements

Krauth et al. (2019) Upper limb/wrist 

movements.

7 healthy volunteers, 5 

acute and subacute 

post-stroke patients.

 • EEG: A 64-channel

 • EMG using bipolar electrodes 

placed on the wrist extensor 

muscles (2 electrodes in 

each hand).

 • Resting conditions: Recordings 

were also made during periods of 

rest for comparison.

 • CMC  • Isometric strength 

and 

movement attempts

 • Wrist movement 

assessed using the 

FMA scale.

Lai et al. (2016) Upper limb/

thumb flexion.

15 healthy adults (8 

females, 24.0 ± 1.5 years 

old) 15 stroke 

survivors.

 • EMG from the tenar eminence 

muscles to assess muscle activity.

 • EEG from the primary motor 

area contralateral to the 

stimulated side.

 • Force meters, a force-sensing 

device used to record the 

maximum voluntary isometric 

contraction (MVC) of the thumb 

and force maintenance during 

contractions under 

constant load.

 • EEG–EMG coherence.  • Force deviation 

from target of 50% 

of maximum 

voluntary 

contraction (MVC).

Zhou et al. (2021) Upper limb/

distal finger 

movements.

14 subjects with stroke 

(mean age 

56.5 ± 9.5 years) (3 M 

and 8 F) and 11 healthy 

subjects (mean age 

50.6 ± 16.8 years) (3 M 

and 8 F).

 • EEG: 64-channel EEG electrode 

system to record brain activity in 

the sensorimotor cortex.

 • Four-channel EMG electrodes 

(Blue Sensor N, Ambu Inc.) were 

applied to the upper limb 

muscles estensor digitorum (ED) 

flexor digitorum (FD), triceps 

brachii (TRI), biceps 

brachii (BIC).

 • A robotic hand orthosis was 

used to fix the wrist and finger 

posture, standardizing the 

position of the upper limb 

during the motor task.

 • CMC measured in both 

descending (EEG → EMG) and 

ascending (EMG → EEG) 

pathways to assess the 

interaction between the 

sensorimotor cortex and 

muscles during fine 

motor control.

 • Relative muscle strength.

 • Wrist and finger 

posture, position of 

the upper limb 

during the 

motor task.

(Continued)
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TABLE 1 (Continued)

First author 
and year of 
publication

Function/
body target

Study 
population and 
sample 
characteristics

Assessment 
methodologies

Parameters analyzed

Neurophysiological Biomechanics

Bao et al. (2021) Lower limb/

pedaling.

Ten chronic stroke 

subjects, 5 females, 5 

males; age: 

57.1 ± 11.6 years; time 

since stroke: 

4.3 ± 2.3 years.

 • EEG during isometric contraction 

tasks, 128-channel.

 • EMG placed on RF, VL, VM.

 • NMES-pedaling training system 

set to 2 kHz.

 • EMG analysis: normalized 

muscle activation ratio, force 

steadiness, adjust NMES 

intensity, ensuring a personalized 

training regimen that optimally 

stimulates the muscles.

 • EEG analysis: CMC was 

analyzed in the Beta (13–30 Hz) 

and low Gamma (30–45 Hz) 

bands, linked to motor control 

and isometric contractions.

 • Kinetic parameters 

included torque 

balance during 

pedaling, and 

pedaling speed 

(10–25 RPM) 

adjusted based on 

muscle activation 

ratio for 

personalized 

training.

Xu et al. (2023) Lower limb/

ankle 

dorsiflexion.

Twelve stroke patients 

(4 females, mean age ± 

55.58 ± 11.81 years old) 

were recruited. The 

study also recruited 15 

healthy controls with 

similar ages (8 females, 

mean age ± standard 

deviation: 

49.20 ± 10.26 years old).

 • EEG.

 • EMG from Tibialis Anterior (TA), 

Lateral Gastrocnemius (LG) and 

Medial Gastrocnemius (MG) 

muscles.

 • CMC.  • Fugl-meyer 

assessment 

lower limb

Kukkar et al. 

(2024)

Lower limb/

balance.

14 post-stroke patients 

(age: 61.93 ± 8.97 years, 

mean ± SD; range: 

37–70) and 10 healthy 

adults (age: 

55.3 ± 8.65 years, mean 

± SD; range: 35–65).

 • EEG-64 channels (Brain Products 

GmbH, Germany; 1,000 Hz).

 • EMG (Delsys Trigno EMG System, 

Boston, MA) from tibialis anterior 

(TA), gastrocnemius medialis 

(GM) and soleus (SOL) as distal leg 

muscle group, and rectus femoris 

(RF) and biceps femoris (BF).

 • Computerized dynamic 

posturography (CDP) was assessed 

using a commercially available 

CDP force platform (Neurocom 

Balance Master, Natus Medical 

Incorporated, Pleasanton, CA).

 • CMC across different frequency 

bands (delta, theta, alpha, 

beta, gamma).

 • Postural Stability 

Metrics, including 

RMS COP, COP 

path length (PL), 

and COP velocity 

(RMSCOPv), to 

quantify postural 

performance.

Short et al. (2020) Lower limb/

Treadmill 

walking.

9 children with 

unilateral CP (7 F, 2 M; 

with a mean age of 

16.0 ± 2.7 years) and 12 

with TD (8 F, 4 M; age: 

14.8 ± 3.0 years).

 • 64-channel wireless EEG system 

captured brain activity during 

walking and standing.

 • EMG from TA, MG, soleus (SOL), 

long peroneus (PL), rectus femoris 

(RF), vastus lateralis (VL), biceps 

femoris (MH) and long flexor 

hallucis (HL).

 • Vicon motion capture system with 

10 cameras and reflective markers 

on anatomical points of the pelvis 

and lower limbs.

 • Kinematic data recording at 

100 Hz to segment the gait cycle 

and synchronize with EEG 

and EMG.

 • EEG spectral power modulation.  • Support time; 

Walking speed and 

stride length; 

Cadence.

(Continued)
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2019). However, Makin and Krakauer (2023) offer a different 
perspective, as they propose that these neural pathways already exist 
before injury but remain largely inactive. Rehabilitation may not 
create new pathways, but rather facilitate the activation of these 
pre-existing, residual connections. In this view, the temporary 
expansion of cortical maps observed after intensive rehabilitation does 
not necessarily indicate functional reorganization but may instead 
be  an epiphenomenon of the underlying process driving 
motor recovery.

Another study (Fauvet et al., 2021) further investigated CMC’s 
role in regulating both agonist and antagonist muscle activity during 
voluntary movements, specifically focusing on its modulation in real 
time. The authors found that CMC dynamically adapts in real time 
between the cortex and muscles, particularly by continuously 
integrating both afferent (sensory) and efferent (motor) information. 
This finding supports the idea that CMC reflects the brain’s adaptive 
control in motor tasks. While previous research highlighted higher 
proximal CMC in post-stroke compensations (Krauth et al., 2019; Guo 
et al., 2020; Zhou et al., 2021), this study found that stroke patients 
exhibit higher instantaneous CMC in antagonist muscles during the 
acceleration phase of elbow extensions, a pattern not seen in healthy 
controls. The increased antagonist CMC observed by Fauvet et al. may 
reflect cortical-level adaptations, which could coexist with or 
contribute to the altered synergy patterns, such as merging, reported 
in synergy-based analyses of post-stroke motor control (Cheung 
et al., 2012).

Regarding the biomechanics of the upper limb movements, Fauvet 
et  al. found that the peak angular velocity of the upper limb was 
significantly reduced, and the smoothness was altered, compared to 
healthy controls. Taken together, both neurophysiological and 
biomechanical information can give a clear idea of the specific 
movement deficits of this patient population, allowing for personalized 
rehabilitation therapy. Moreover, Fang et al. (2009) provided other 
insights into how reduced brain-muscle connectivity may contribute 
to upper-limb motor deficits in post-stroke patients. These authors 
found that in post-stroke patients, EEG–EMG coherence in the 
gamma band (30–40 Hz), which is associated with cognitive functions 
(e.g., motor planning and information integration), was almost absent, 

suggesting reduced communication between the brain and muscles. 
The coherence in the beta band (20–30 Hz), related to motor control 
and submaximal force production, was reduced in patients compared 
to controls, although the effect was less pronounced than in the 
gamma band. In addition, they found a reduced coherence in the 
agonist muscles (AD and TB) in post-stroke patients, particularly in 
the gamma band, with a lesser involvement of the BB in patients 
compared to controls, indicating possible difficulties in movement 
coordination. According to the authors’ results, post-stroke patients 
manifested a higher lateral deviation trajectory, indicating difficulty 
in maintaining the desired trajectory, and they required more time to 
complete the reaching task.

Fang et al. provided other insights into how reduced brain-muscle 
connectivity may contribute to upper-limb motor deficits in post-
stroke patients. These authors found that in post-stroke patients, 
EEG–EMG coherence in the gamma band (30–40 Hz), which is 
associated with cognitive functions (e.g., motor planning and 
information integration), was almost absent, suggesting reduced 
communication between the brain and muscles. The coherence in the 
beta band (20–30 Hz), related to motor control and submaximal force 
production, was reduced in patients compared to controls, although 
the effect was less pronounced than in the gamma band. In addition, 
they found a reduced coherence in the agonist muscles (AD and TB) 
in post-stroke patients, particularly in the gamma band, with a lesser 
involvement of the BB in patients compared to controls, indicating 
possible difficulties in movement coordination. According to the 
authors’ results, post-stroke patients manifested a higher lateral 
deviation trajectory, indicating difficulty in maintaining the desired 
trajectory, and they required more time to complete the reaching task. 
Delcamp et al. (2023) found that not only is CMC altered in post-
stroke patients, but also intermuscular coherence (IMC), which 
represents the shared central drive to multiple muscles. In particular, 
Delcamp et al. recorded EEG and EMG data from both the elbow 
flexor and extensor muscles in both healthy and post-stroke 
individuals. CMC and IMC values were calculated in the time-
frequency domain for each limb in both the stroke and control groups. 
A significant correlation was observed between CMC and IMC in 
both the paretic and non-paretic limbs of post-stroke participants. 

TABLE 1 (Continued)

First author 
and year of 
publication

Function/
body target

Study 
population and 
sample 
characteristics

Assessment 
methodologies

Parameters analyzed

Neurophysiological Biomechanics

Forman et al. 

(2022)

Lower limb/

ankle 

dorsiflexion.

14 M and 7 F with a 

mean age of 37.6 years 

(± 10.1).

Neurologically intact 

(NI) group 10 

participants were 

recruited, 4 male, 6 

female.

 • EEG recording using a 64-channel 

helmet (BioSemi, 

The Netherlands).

 • EMG recording of muscle activity 

using surface electrodes applied to 

the tibialis anterior (agonist) and 

soleus (antagonist) muscles.

 • Correlation between EEG and 

EMG activity (forward and 

reverse).

 • Maximal torques 

and MVC 

fatigue test.

The table reports the characteristics of the included sample, target function, technological equipment for the neurobiomechanical assessment, and neurophysiological and biomechanical 
parameters.
M (Male), F (Female), NMES (Neuromuscular electrical stimulation), CMC cortico-muscular coherence; Magnetencephalography (MEG), RMS (Root Mean Square), Extensor Digitorum 
Communis (EDC), Extensor Carpi Ulnaris (ECU), Flexor Carpi Radialis (FCR); Intermuscular coherence (IMC); anterior deltoid (AD), biceps brachii (BB), and triceps brachii (TB); 
Brachioradialis (BR); electrical stimulation (ES); Fugl-Meyer (FMA); cerebral palsy (CP); healthy controls (HC); Typical development (TD); Brain magnetic resonance imaging (MRI); 
Transcranial Magnetic Stimulation (TMS); central motor conduction time (CMCT); Functional Corticomuscular Coupling (FCMC); Direct cortico-muscular coherence (dCMC); transcranial 
magnetic stimulation (TMS); somatosensory evoked potentials (SEPs); Electro-oculography (EOG).
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This correlation suggests that, in stroke patients, there is a form of 
motor control simplification, likely beyond previously proposed 
cortical and spinal explanations. When central-peripheral 
communication increases in these individuals, it becomes less 
modulated and more uniformly distributed across the muscles 
involved in movement. This motor control simplification may offer 
new insights into the plasticity and reorganization of the 
neuromuscular system following stroke. Other authors recorded MEG 
and EMG signals while patients tried to open and close their paralyzed 
hand, both before and after a four-week robotic training. The goal was 
to test whether the training could increase CMC in patients with 
severe and lasting impairments.

Belardinelli et al. (2017) used simultaneous MEG/EMG recordings 
along with magnetic resonance imaging (MRI)-based individual 
models to analyze CMC. This multimodal approach allowed 
researchers to map cortico-muscular connectivity to finger extensors 
in stroke patients, both before and after a rehabilitation training 
program. After the training, patients’ upper extremity Fugl-Meyer 
Assessment (FMA) scores showed a significant improvement, 
increasing from 16.23 ± 6.79 to 19.52 ± 7.91 (p = 0.0015). All patients 
exhibited significant increases in CMC within the beta frequency 
range, showing a distributed pattern across both hemispheres, 
although with high variability between individuals. The observed 
CMC changes did not correlate with motor impairment severity, the 
degree of motor improvement, or lesion volume. This is in line with 
previous findings by Rossiter et al. (2013), who also reported a lack of 
correlation between impairment levels and CMC patterns, including 
in patients with varying degrees of motor deficits and at different post-
stroke stages. Nevertheless, the findings by Belardinelli et al. support 
the hypothesis that the contralesional hemisphere can serve as a 
source of coherent descending cortical input to muscles involved in 
functional motor tasks following stroke. Importantly, the observed 
CMC increases cannot be  attributed solely to changes in EMG 
amplitude, as EMG root mean square (RMS) values varied across 
patients without a consistent pattern. Collectively, these results suggest 
that CMC, particularly in the beta-band within premotor and 
contralesional areas, can be  modulated through therapeutic 
interventions, even in patients with chronic, severe motor 
impairments. This aspect provides evidence of cortical adaptability 
and reinforces the role of non-primary motor areas in supporting 
motor recovery after stroke (Funato et al., 2022).

Another study by Lai et al. (2016) assessed whether EEG–EMG 
coherence can detect changes in corticomuscular control resulting 
from peripheral electrical stimulation. Electrical stimulation (ES) 
applied to peripheral nerves has been shown to promote brain 
plasticity and is used in clinical settings to aid motor recovery in 
individuals with CNS lesions. Despite its use in clinical settings, the 
clinical effectiveness of ES is still limited due to the difficulty of 
accurately mimicking natural recruitment patterns (Epstein et al., 
2025). In biological systems, neurons are naturally recruited from 
small to large axons, following Henneman’s size principle (Henneman, 
1957, 1985). However, external ES reverses this order by preferentially 
activating large-diameter axons first. This mismatch between 
physiological and artificial recruitment hierarchies presents a 
significant challenge for the clinical effectiveness of ES therapies (for 
a review, see Epstein et al., 2025). Despite this limitation, ES has been 
shown to improve motor function through peripheral effects like 
muscle strengthening and reduced spasticity, as well as through 

cortical effects. Some studies (Shin et al., 2008; Sasaki et al., 2012; 
Milosevic et  al., 2021) have provided evidence that functional ES 
therapy promotes cortical reorganization. This neuroplasticity is 
thought to result from the active participation of the patient, as 
functional ES therapy requires voluntary movement attempts before 
stimulation is applied. This timing ensures that descending motor 
commands from the brain coincide with ascending sensory and 
antidromic signals generated by stimulation. The repeated convergence 
of these signals is believed to strengthen synaptic connections 
(Popovic et al., 2002; Milosevic et al., 2021).

In the study by Lai et al., the ES was delivered in 1-ms rectangular 
pulses at 100 Hz, with a 20-s on/off cycle. The intensity of the 
stimulation was set at the highest tolerable level for each participant, 
avoiding muscle contraction or pain. Before and after ES, participants 
performed a 20-s steady-hold thumb flexion at 50% of their MVC, 
during which EEG and EMG data were recorded. The authors found 
a significant increase in EEG–EMG coherence within the gamma 
frequency band following electrical stimulation, with increases of 
22.1% in healthy participants and 48.6% in stroke survivors. 
Additionally, force steadiness improved in both groups, as evidenced 
by a reduction in force fluctuation during steady-hold contraction 
(−1.7% MVC in healthy participants and −3.9% MVC in stroke 
survivors). These results demonstrate that EEG–EMG coherence can 
effectively detect electrical stimulation-induced changes in 
neuromuscular function. Furthermore, given the association between 
gamma coherence and sensory encoding, the observed improvements 
in motor performance may be attributed to the enhanced sensory 
input and sensorimotor integration induced by the stimulation.

4.2 Trunk and lower limb functions in ABI

Kukkar et  al. (2024) studied changes in functional coupling 
between the cortex and lower limb muscles across multiple frequency 
bands during a challenging balance task in chronic stroke survivors. 
Eleven stroke patients and nine healthy controls performed a balance 
task on a computerized platform with and without somatosensory 
input distortion. This distortion was created by sway-referencing the 
support surface to vary task difficulty. CMC was calculated between 
EEG and leg muscles, and balance performance was evaluated using 
the Berg Balance Scale (BBS), Timed Up and Go (TUG), and COP 
measures. These authors found reduced delta frequency band 
coherence in stroke patients compared to healthy controls under 
medium-difficulty conditions for distal, but not proximal, leg muscles. 
Both groups exhibited similar coherence levels in other frequency 
bands. Stroke patients also demonstrated poorer balance on the BBS 
and TUG, though COP measures did not consistently reflect these 
group differences. The distal versus proximal muscle effects indicate 
potential differences in corticospinal reorganization between these 
muscle groups for balance control. The reduced delta coherence in 
stroke patients is suggested to stem from altered mechanisms for 
somatosensory modulation in response to sway-referencing, 
impacting balance control. Regarding COP measures, the authors 
found these to be  sensitive to variations in task difficulty during 
balance assessments. However, COP metrics alone were insufficient to 
distinguish between the postural control strategies employed by stroke 
participants and healthy controls. In contrast, power spectral density 
(PSD) analysis, by decomposing the signal into its frequency 
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components, allows for a more detailed examination of the sensory 
contributions to postural control, identifying subtle balance 
impairments related to aging and stroke (Kukkar et al., 2024).

Xu et al. (2023) observed stroke patients’ brain control of lower 
limb movement during ankle dorsiflexion using EEG and EMG to 
assess muscle control. They recorded EMG from the Tibialis Anterior 
(TA), Lateral Gastrocnemius (LG), and Medial Gastrocnemius (MG) 
muscles during a static ankle dorsiflexion task. Stroke patients had 
significantly lower mean beta and gamma CMC values compared to 
healthy controls. While healthy controls showed significant coherence 
in the central cortex, stroke patients did not. The authors suggest that 
CMC is impaired in stroke patients compared to healthy individuals, 
indicating reduced connectivity between the brain and lower limb 
muscles during ankle dorsiflexion. Moreover, they found a significant 
correlation between CMC and lower limb FMA scores, which implies 
that higher CMC is associated with better motor function in the lower 
limbs. In addition, they also found that results from the multiple linear 
regression model between CMC and lower limb FMA were significant, 
indicating that CMC could be used to predict lower limb FMA. In this 
sense, administering a clinical scale such as the FMA may indeed 
be more feasible, given its strong correlation with CMC. FMA is easier 
to administer, requiring no specialized equipment or additional cost. 
However, CMC provides more informative data and represents an 
assessment that is not solely based on clinical observation. In fact, the 
CMC is considered a marker of the corticospinal pathway based on 
the functional coupling between oscillatory signals from the brain and 
active muscles (Conway et al., 1995). This indicates that CMC may 
serve as a valuable biomarker for assessing motor control and recovery 
in stroke patients.

Bao et al. (2021) investigated the directional changes in cortico-
muscular interactions after repetitive rehabilitation training with 
neuromuscular electrical stimulation by measuring EEG and 
EMG. This kind of rehabilitation treatment has been widely used for 
motor restoration following a stroke. However, its effects on the 
closed-loop sensorimotor control process are not well understood. 
These authors assessed lower limb isometric contractions of both 
affected and not sides before and after the entire neuromuscular ES 
session. The analysis focused on CMC and generalized partial directed 
coherence (GPDC) values between eight selected EEG channels in the 
central primary motor cortex and the EMG channels. The results 
showed that rehabilitation training significantly strengthened 
corticomuscular interactions between the ipsilesional cortex and 
paretic lower limb muscles. Furthermore, both the descending and 
ascending cortico-muscular pathways were modified following the 
training, suggesting that EEG and EMG can be valuable tools for 
understanding neuromuscular changes during the post-stroke motor 
rehabilitation process.

Moreover, Short et al. (2020) used EEG during treadmill walking 
to explore the cortical mechanisms underlying gait in children with 
and without cerebral palsy (CP). The authors collected lower limb 
sEMG data and analyzed muscle synergies to assess motor output. 
EEG data were recorded during a standing baseline and while walking 
on a treadmill. In particular, they found that the CP group showed 
greater cortical activation during walking, indicated by increased mu- 
and beta- event-related desynchronizations in motor and parietal 
regions, as well as elevated low gamma activity in frontal and parietal 
areas. Additionally, gamma-band EEG–EMG coherence with the 
hallucis longus muscle was significantly higher bilaterally in the CP 

group compared to controls. Overall, the findings suggest that 
increased cortical activation in children with CP may relate to 
differences in motor control on the more affected side, highlighting 
the need for strategies that reduce cortical activation while improving 
motor control.

Other authors investigated the fatigability in the lower limbs in 
patients with CP. Particularly, Forman et al. (2022) compared changes 
in corticospinal drive following sustained muscle contraction in adults 
with CP and healthy controls. They administered a 1-min static 
dorsiflexion at 30% of MVC before and after a submaximal contraction 
at 60% MVC. In addition, they registered EEG and EMG from TA and 
quantified the coupling expressed as CMC. Patients with CP exhibited 
lower MVCs compared to their peers but demonstrated similar times 
to exhaustion during a fatigue trial at a relative load. Both groups 
experienced changes in EMG median frequency and amplitude related 
to fatigability. Before experiencing fatigue, the CP group had lower 
CMC in the beta band; however, both groups showed a decrease in 
beta band CMC after fatigue was induced. A linear correlation was 
found between the reduction in beta band CMC and the increase in 
EMG associated with fatigability. The decrease in beta band CMC after 
static contraction until failure was linked to fatigability in both healthy 
adults and adults with CP. The results indicate that both groups rely 
on compensatory mechanisms to cope with fatigue, with similar 
influences on corticospinal drive.

5 Neurobiomechanical assessment 
approach in patients affected by 
neurodegenerative disorders

Neurodegenerative disorders are a heterogeneous group of 
pathologies that have in common a progression of neuronal loss, 
neuron structure, and/or their functions (Lamptey et al., 2022). The 
most common neurodegenerative diseases are Parkinson’s disease 
(PD), multiple sclerosis (MS), Alzheimer’s disease (AD), 
spinocerebellar ataxia (SCA) and amyotrophic lateral sclerosis (ALS). 
However, in this review, we included studies on PD, MS, SCA, and 
ALS, as shown in Table 2, since these neurodegenerative disorders are 
typically associated with prominent motor impairments. These 
disorders tend to cause a constant worsening of postural control, gait 
functions, and manual abilities, even in the very early stages of the 
disease. In contrast, AD is primarily characterized by cognitive 
decline, and motor symptoms, when present, tend to appear only in 
the later stages of the disease. In this way, some specific features of 
movement patterns can occur for each pathology, and clinicians 
should consider them during the rehabilitation process because they 
could require different types of motor training.

5.1 Upper limb functions in 
neurodegenerative diseases

Zokaei et al. (2021) studied the changes in CMC in individuals 
with PD, comparing them to healthy controls with matched grip 
strength. The PD group showed a significant reduction in beta CMC, 
despite having similar grip strength to controls. In addition, PD 
patients showed significant reductions in power in the alpha (6–8 Hz) 
and beta (15.5–37 Hz) bands compared to healthy controls. The 
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TABLE 2 Summary of the selected studies on PD, MS, SCA and ALS.

First author 
and year of 
publication

Function/
body target

Study population 
and sample 
characteristics

Assessment 
methodologies

Parameters analyzed

Neurophysiological Biomechanics

Caviness et al. (2006) Posture/postural 

tremor.

51 participants, divided into 

four groups: 14 healthy 

subjects without postural 

tremor, 8 healthy subjects 

with small-amplitude 

postural tremor (mean age 

of approximately 79 years) 

(±9 years for the group 

without tremor and 

±8.9 years for the group with 

tremor), 10 PD with a mean 

age of 74.5 years (±10.2) for 

the group with tremor and 

79.1 years (±8.4) for the 

group without tremor.

 • EMG, including the 

deltoid, biceps, triceps, 

wrist flexors and 

extensors, abductor 

pollicis brevis, first dorsal 

interosseous, and 

abductor digiti minimi.

 • EEG.

 • Accelerometer (Kistler 

A250) was applied to the 

dorsum of the right hand, 

just proximal to the third 

metacarpophalangeal 

joint, to detect movement 

along the vertical axis.

 • CMC.  • Postural tremor.

Roeder et al. (2020) Lower limb/gait 

function.

22 healthy young 

participants (with a mean 

age of 25.9 years), 24 old 

healthy participants (with a 

mean age of 65.1 years). 20 

PD patients (with a mean 

age of 67.4 years), (50% 

male in the older and 60% 

in the PD group). PD 

participants were in the 

early stages of the disease 

(Hoehn & Yahr score 1.3) 

and had an average MDS-

UPDRS score of 38.8.

 • EEG (32 channels) 

during walking.

 • EMG recordings from 

bilateral TA muscles, to 

measure muscle activity 

during the phases of the 

gait cycle.

 • Plantar switches 

(footswitches) placed 

under the heel and big 

toe of both feet were used 

to identify kinematic 

events such as heel 

contact and toe release.

 • CMC.

 • EEG spectral power.

 • EMG power and EMG 

amplitude (specific times).

 • Spectral parameters (EEG 

power, EMG and coherence).

 • Gait spatial-temporal 

kinematics.

Yokoyama et al. 

(2020)

Lower limb/gait 

function.

34 males with PD, 1) 10 

individuals with PD 

[61.6 ± 6.3 (means ± SD) 

yr]. 2) 9 age-matched 

healthy older adults 

(64.9 ± 6.3 yr). 3) 15 

healthy young adults 

(26.7 ± 7.5 yr).

 • EEG.

 • EMG from: TA, MG.

 • Optical motion capture 

system (Vicon Motion 

Systems, UK) with 9 

cameras and retro-

reflective markers.

 • Markers positioned 

according to the Plug-In 

Gait set to detect 

kinematic parameters.

 • CMC.

 • EEG spectral power related to 

motor control.

 • Gait spatial-temporal 

kinematics.

Zokaei et al. (2021) Upper limb/grip 

task.

17 PD and 17 healthy 

controls.

 • MEG, Elekta Neuromag 

system with 

306 channels.

 • Used to measure cortical 

neural activity during the 

grip task.

 • EMG from superficial 

flexor muscle of the 

fingers with reference on 

the lateral epicondyle.

 • Force sensors (Gripper), 

MEG-compatible devices 

based on optical fibers.

 • CMC.

 • Variability in EMG signals (as 

an indicator of tremor and 

muscle instability).

 • Grip Force was 

measured using 

MEG-compatible force 

sensors (grippers).

 • Main parameter: 

magnitude of force 

exerted during the 

gripping task.

(Continued)
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TABLE 2 (Continued)

First author 
and year of 
publication

Function/
body target

Study population 
and sample 
characteristics

Assessment 
methodologies

Parameters analyzed

Neurophysiological Biomechanics

De Sanctis et al. 

(2020)

Lower limb/dual 

task during walking.

13 RRMS, (10 F and 3 M, 

with a mean age of 

34.9 years), and 15 healthy 

controls (9 F and 6 M, with 

a mean age of 34.6 years).

 • MoBI: EEG system a 

64-channel setup 

(BioSemi ActiveTwo).

 • 3 pressure sensors were 

placed on each foot at 

key points: the heel, the 

base of the big toe, and 

the longitudinal arch.

 • Kinematic data were 

acquired using a 3D 

motion capture system, 

which allowed for a 

detailed study of gait 

dynamics during the 

execution of the 

dual task.

 • The modulation of the N2 wave 

during the Go/NoGo task was 

analyzed.

 • The average walking 

speed, stride time 

during the dual task.

 • Kinetic parameters 

(Forces and 

Interactions with the 

Ground) were analyzed 

using three pressure 

sensors to monitor the 

distribution of forces at 

the following points on 

the foot: heel, base of 

the big toe, and 

longitudinal arch. 

Specific data on force 

peaks or other 

measures of contact 

forces between the foot 

and the ground were 

not detailed in the 

document.

Tomasevic et al. 

(2013)

Upper limb/

handgrip task.

20 RRMS patients (13 F 

and 7 M with a mean age 

of 37.2 years ± 6.1).

 • 23-channel 

EEG recordings

 • EMG recordings from 

the right and left 

opponens 

pollicis muscles.

 • ECG was also performed 

to monitor the heart 

rhythm during the 

motor task.

 • MRI scanner: 1.5 T 

(Achieva, Philips 

Medical Systems).

 • The InPresS pressure 

device measured the 

applied force, providing 

visual feedback to 

monitor performance.

 • CMC.

 • Spectral analysis.

 • Movement accuracy.

Proudfoot et al. (2018) Upper limb. ALS (N = 17 with a mean 

age of 62.6 ± 9.4, 12 M and 

5 F) and healthy controls 

(N = 11, with a mean age of 

60.2 ± 12.5, 8 M and 3 F)

 • MEG data were acquired 

on an Elekta Neuromag 

306 channel scanner at 

the OHBA.

 • Blinks and saccades were 

monitored continuously 

using a combination of 

surface electro-

oculography and 

infra-red eyetracker.

 • ECG was monitored at 

the wrists.

 • Surface EMG from flexor 

digitorum superficialis.

 • CMC.  • Grip strength was 

recorded via a fiber-

optic auxotonic-force 

response device 

(resistance increasing 

linearly with 

displacement) 

optimized for use in a 

scanning environment 

(Current 

Designs, USA).

 • Infra-red eyetracker.

(Continued)
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spatial distribution of CMC revealed that the coupling between cortex 
and muscles was localized to specific motor regions, but the magnitude 
of coherence was lower in patients with PD. Despite the reduction in 
CMC in the beta frequency, PD patients showed force stability in the 
grasping task. However, this result may be  attributed to greater 
variability in EMG signals, likely reflecting tremor-related fluctuations 
in muscle activity.

In patients affected by MS, fatigue is a prevalent symptom 
that severely affects the quality of life. Previous research 
indicating altered connectivity patterns suggested that 
disruptions within the brain-muscle circuit may play an essential 
pathogenic role in MS-related fatigue. In the study of Tomasevic 
et al. (2013), the authors used structural measures (MRI to assess 
thalamic volume and cortical thickness in primary sensorimotor 
areas) and functional measures, such as CMC, from simultaneous 
EEG and sEMG recordings during a light handgrip task. CMC in 
the beta band (16–30 Hz), fatigued patients showed higher 
frequency CMC than non-fatigued patients, indicative of an 
increase in functional communication between the primary 
motor cortex (M1) and muscles during the motor task. The 
frequency of CMC explained 67% of the variance in the Modified 
Fatigue Impact Scale (MFIS) scores, making it a sensitive marker 
of fatigue. The changes observed in the CMC between 
non-fatigued and fatigued patients suggest an alteration in the 
quality of the functional connection, rather than in the power of 
isolated brain activity. Functional communication between the 
motor cortex and muscle was impaired in fatigued patients, 
highlighting an overload of the cortical system to maintain motor 
performance similar to non-fatigued patients. The differences in 
CMC were independent of EEG or EMG amplitude, suggesting 
that the impairment lies in the quality of the functional 

connection between brain and muscle. The accuracy of the hand 
grip task was comparable between fatigued and non-fatigued 
patients, despite differences in correction frequency.

Other authors (Proudfoot et  al., 2018) investigated the use of 
CMC to assess oscillatory interactions between cortical areas and 
muscles during motor tasks in primary lateral sclerosis, which is a 
neurodegenerative disorder of upper and lower motoneurons, as well 
as to explore the relationship between CMC and clinical impairment 
levels. In particular, they recorded EEG and EMG data from hand 
muscles while performing a pincer grip task. They found that CMC 
was elevated over contralateral-M1 (in alpha- and gamma-bands) and 
ipsilateral-M1 (in the beta-band) compared to controls. Correlation 
analyses showed that greater clinical impairment was linked to lower 
CMC in the contralateral-M1/frontal areas, higher CMC in the 
parietal region, and mixed CMC levels (both increased and decreased) 
in different frequency bands over ipsilateral-M1. These findings 
suggest unusual involvement of both contralateral and ipsilateral M1 
during motor tasks in primary lateral sclerosis, pointing to possible 
harmful or compensatory changes in brain activity. The findings 
underscore the potential of CMC as a marker for identifying 
sensorimotor network dysfunction in this patient population.

5.2 Trunk and lower limb in 
neurodegenerative disease

Changes in human gait due to aging or neurodegenerative 
diseases are influenced by multiple factors. For example, Roeder 
et al. (2020) evaluated the impact of age and PD on corticospinal 
activity during treadmill and overground walking. EEG data were 
recorded from 10 electrodes, and EMG signals were acquired 

TABLE 2 (Continued)

First author 
and year of 
publication

Function/
body target

Study population 
and sample 
characteristics

Assessment 
methodologies

Parameters analyzed

Neurophysiological Biomechanics

Velázquez-Pérez et al. 

(2017)

Upper limbs/fingers 

and wrist flexion 

movements.

Lower limbs/foot 

dorsal extension 

movements.

19 SCA2 patients (7 M, 12 

F, with a mean age 

45.21 ± 9.83 years).

24 healthy non-paid 

volunteers (10 males, 14 F 

with a mean age 

43.83 ± 10.39 years).

 • EEG.

 • EMG from FDS muscles 

of the right upper limb 

and in the TA of the right 

lower limb.

 • Manual digital 

dynamometer used to 

measure the level of 

MVC during motor tasks 

of the upper limbs.

 • TMS used to determine 

CMCT in the muscles of 

the hand and right leg, 

assessing the integrity of 

the corticospinal tract.

 • CMC.

 • CMC inversely correlated 

with CMCT.

 • EMG activity during isometric 

muscle contractions at 30% of 

the MVC level.

 • MVC during motor 

tasks of the 

upper limbs.

The table reports the characteristics of the included sample, target function, technological equipment for the neurobiomechanical assessment, and neurophysiological and biomechanical 
parameters.
M (Male), F (Female), Electroencephalography (EEG); Electromyography (EMG); CMC cortico-muscular coherence, magnetencephalography (MEG), Parkinson’s disease (PD), Unified 
Parkinson’s Disease Rating Scale (UPDRS), MS (multiple sclerosis); Co-contraction Index (CI); electrical stimulation (ES); Fugl-Meyer (FMA); healthy controls (HC); Plantar switches 
(footswitches); typical development (TD); Magnetic resonance imaging (MRI); Spinocerebellar ataxia type 2 (SCA2); Transcranial Magnetic Stimulation (TMS); central motor conduction time 
(CMCT); Direct cortico-muscular coherence (dCMC); transcranial magnetic stimulation (TMS); somatosensory evoked potentials (SEPs); Electro-oculography (EOG); Tibialis Anterior (TA); 
Gastrocnemius medialis (GM); Mobile Brain/Body Imaging (MoBI); Relapsing remitting multiple sclerosis (RRMS); InPresS (Interactive Pressure Sensor); Electrocardiogram (ECG); Oxford 
Center for Human Brain Activity (OHBA); flexor digitorum superficialis (FDS); Maximum voluntary contraction (MVC).
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from bilateral TA muscles. Event-related power, CMC, and inter-
trial coherence were analyzed for EEG data from bilateral 
sensorimotor cortices and EMG during the double-support phase 
of the gait cycle. The results indicated a significant reduction in 
CMC and EMG power at low beta frequencies (13–21 Hz) in 
older adults and those with PD compared to younger individuals, 
with no significant difference between the older and PD groups. 
Additionally, both older and PD participants spent less time in 
the swing phase of gait compared to young adults. These findings 
suggest that aging affects the temporal coordination of gait. The 
observed decrease in low-beta CMC implies diminished cortical 
input to spinal motor neurons in older individuals during the 
double-support phase. These authors also noted various changes 
in electrophysiological measures at low-gamma frequencies 
between treadmill and overground walking, indicating task-
dependent differences in corticospinal locomotor control. 
Spectral parameters (EEG power, EMG and coherence) were 
generally reduced during treadmill walking compared to walking 
on natural terrain, suggesting a different neurophysiological 
control between the two walking modes. Regarding biomechanical 
findings, older PD patients showed reduced time in the swing 
phase single support compared to young participants, while the 
duration of the double support time was similar between the two 
groups. EMG power showed an overall reduction in elderly and 
Parkinson’s subjects, suggesting changes in muscle activation and 
motor modulation during the gait cycle.

Similarly, Yokoyama et al. (2020) assessed the influence of PD 
and aging on CMC during walking by recording EEG and EMG 
signals. They measured CMC between the motor cortex and two 
lower leg muscles, TA and MG, during walking. Healthy controls 
(both older and younger groups) showed distinct muscle 
activation peaks at specific gait phases, while the PD group 
displayed prolonged activation patterns. CMC was lower in the 
PD group than in healthy older adults in the alpha-band 
(8–12 Hz) for both muscles and in the beta-band (16–32 Hz) for 
the TA. The reduced CMC suggests impaired cortico-muscular 
communication, likely resulting from dysfunctions in motor 
control and sensory integration processes. Patients with PD 
showed a marked reduction in CMC in the alpha band, indicating 
a possible deficit in sensory feedback management during 
walking. The elderly had CMC similar to the young, suggesting 
that the deficit observed in PD patients was disease-specific and 
not age-related. In particular, CMC was analyzed during different 
phases of the gait cycle: initial load and foot strike and during the 
terminal stance, and pre-swing. In PD patients, the EMG peaks 
registered during the gait analysis were attenuated, reflecting a 
weaker synchronization between the motor cortex and muscles. 
The direction of the CMC was predominantly downward (from 
cortex to muscles) in the alpha and beta bands. In Parkinson’s 
patients, this preferential direction was absent, indicating a loss 
of effective cortical motor control. These alterations detected at 
the neurophysiological level (EEG–EMG) also have repercussions 
at the biomechanical level. For example, these authors found that 
patients with PD had a significantly shorter stride length than 
healthy controls. The stride time showed no significant 
differences between the groups, indicating that the patients 
compensated for the reduced stride length by maintaining a 
similar cadence.

Other studies analyzed the CMC in PD patients to assess 
neuromuscular patterns of tremor. Nowadays, the exact mechanisms 
and electrophysiological features of postural tremor in PD remain 
unclear. It was hypothesized that individuals with PD who exhibit 
small amplitude postural tremor would demonstrate heightened 
CMC at specific frequencies compared to those without visible 
tremor. In the study of Caviness et  al. (2006), four participant 
groups were examined: (1) Controls without postural tremor, (2) 
Controls with small amplitude postural tremor, (3) PD patients 
without postural tremor, and (4) PD patients with small amplitude 
postural tremor. The authors recorded data from accelerometers 
along with EEG–EMG fast-Fourier transform and CMC spectra. 
The frequency band between 5 and 8 Hz was associated with the 
mechanical components of the tremor, reflecting muscle oscillations 
related to the physical movements of the tremor itself. The 8–12 Hz 
range is particularly relevant for tremors associated with PD, 
indicating specific brain activity related to the condition. Another 
band of significant interest is 12–18 Hz, which showed a marked 
increase in CMC in patients with small-amplitude postural tremor, 
suggesting greater involvement of the sensorimotor cortex in 
generating the tremor. Finally, the 18–30 Hz band was used to 
examine cortical activity during motor tasks, allowing for a better 
understanding of how the brain manages the control of muscle 
movements. The observed increase in corticomuscular coupling 
highlights cortical involvement in PD’s small amplitude 
postural tremor.

On the other hand, patients with spinocerebellar ataxia type 2 
(SCA2) often manifest corticospinal tract dysfunction. In the study of 
Velázquez-Pérez et al. (2017), corticospinal tract dysfunction in SCA2 
patients was assessed with CMC as a measurement tool. In SCA2 
patients, CMC was significantly reduced in the lower limbs (TA 
muscle), but not in the upper limbs. Interestingly, reduction of CMC 
was also present in patients without clinical signs of corticospinal tract 
dysfunction. An inverse correlation emerged between CMC for the 
lower limbs and central motor conduction times to the TA muscle. 
Lower CMC is associated with longer central motor conduction time, 
indicating a link between corticospinal tract degeneration and 
reduced corticomuscular synchronization. The EEG showed that 
oscillations in the beta band (15–30 Hz) were significantly less 
synchronized with EMG signals in patients than in healthy controls. 
On the other side, EMG showed electrical activity during isometric 
muscle contractions at 30% of the maximum voluntary level.

Other authors studied the neural mechanisms underlying dual-
task walking in patients with MS (De Sanctis et  al., 2020). They 
recorded event-related potentials (ERPs) in individuals with MS and 
healthy controls during a Go/NoGo task, either while seated (single 
task) or walking (dual-task). The study assessed how brain response 
modulation related to task demands impacted performance. The 
authors found that in the Go/NoGo task, individuals with MS 
experienced a performance decline during dual-task walking, whereas 
healthy controls exhibited a performance improvement. Additionally, 
healthy controls showed task load-dependent modulation of brain 
responses, a pattern not observed in the MS group. Analysis of the 
combined sample indicated a positive correlation between ERP 
changes associated with task load and dual-task performance. In this 
way, the results provided by the authors could aid in identifying 
objective brain measures for real-world challenges, potentially 
enhancing MS assessment approaches.
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6 Computational simulation 
approaches in neurobiomechanical 
assessment

Recent literature highlights the emerging role of computational 
strategies in advancing neurobiomechanical assessment and 
rehabilitation. Instead of providing an exhaustive list of simulation 
platforms, recent studies focus on methodological innovations and 
their translational potential. These computational approaches aim to 
bridge the gap between neurophysiological understanding and clinical 
application by integrating neural control models, biomechanical 
analysis, and patient-specific data.

De Groote and Falisse (2021) provide a foundational perspective 
on musculoskeletal modeling for predictive simulations of human 
gait. Their work illustrates how simulations can elucidate altered 
movement patterns associated with neurological disorders and offers 
a framework to assess therapeutic strategies in silico. In the domain of 
neurodegenerative disease, Elias et  al. (2018) explore how 
neuromusculoskeletal modeling helps investigate disruptions in 
sensorimotor control, focusing on the interaction between cortical 
command and muscular execution.

Innovative signal processing methods also contribute to 
computational neurobiomechanics. Borzelli et al. (2025) introduce the 
pooled scalogram, a wavelet-based technique designed to detect 
muscle co-activation patterns in the time-frequency domain, which 
may be  instrumental in characterizing compensatory strategies in 
motor-impaired patients.

Wearable and real-time modeling technologies further extend 
clinical applicability. Simonetti et  al. (2022) integrate rapid 
musculoskeletal modeling with smart garments, enabling dynamic 
assessments that support neuromechanical decision-making in 
rehabilitation contexts. Similarly, Garro et al. (2021) advocate for the 
identification of neuromechanical biomarkers to guide robotic 
neurorehabilitation interventions.

Direct clinical applications are also documented. Romanato et al. 
(2022) employed biomechanical modeling in a randomized trial to 
assess the impact of exoskeleton training in Parkinson’s disease, 
providing an example of simulation tools used for outcome 
quantification in a clinical setting. Gogeascoechea et al. (2020) show 
how modeling neural interfaces can optimize stimulation parameters 
in spinal cord injury rehabilitation.

Additional evidence from Norton and Gorassini (2006) 
demonstrates that changes in IMC reflect functional motor 
improvements in incomplete spinal cord injury, reinforcing the value 
of computational coherence analysis. Finally, Kizyte (2025) presents a 
high-density EMG-informed framework for assessing muscle control 
integrity, offering a promising path toward individualized 
biomechanical modeling.

7 Discussion

This review comprehensively explored the neurobiomechanical 
assessment in specific neurological conditions, including acquired 
brain injury (e.g., stroke, cerebral palsy) and neurodegenerative 
disorders (e.g., MS, PD, and SCA). The integration of 
neurophysiological tools, such as EEG and EMG, with biomechanical 
assessment provides valuable insights into movement, spanning from 

cortical activity to muscular and joint function. Combining multiple 
sources of information can uncover specific causes of impairment that 
may not be evident through clinical scales alone. Although techniques 
such as EMG, EEG, and MoCaps are not yet widely adopted in clinical 
settings, multi-parameter assessments show promise in detecting 
motor improvements that could be  overlooked when clinical 
evaluations are limited to a single domain (Scano et  al., 2023). A 
potential limitation of clinical scales is that they may be too qualitative 
and might miss specific patients’ needs. For example, single-item 
scales, though easy for clinicians to understand and communicate 
(e.g., Expanded Disability Status Scale – EDSS scores), are scientifically 
limited (Hobart et al., 2007). These tools often lack reliability, validity, 
and responsiveness due to random error, ambiguity, and overly broad 
scoring categories (Hobart et al., 2007). In contrast, multiple-item 
scales (e.g., Fugl-Meyer) combine responses from several items, which 
improves reliability (by reducing random error), validity, and 
responsiveness by allowing a more granular and accurate 
representation of complex variables (Hobart et al., 2007). However, 
such scales may still fail to capture movement quality and are often 
insensitive to distinguishing whether improvements result from true 
motor recovery or compensatory strategies (Kwakkel et al., 2019). As 
proposed by Kwakkel et al. (2017), the use of technologies that enable 
objective measurement of movement kinematics and kinetics 
represents the most promising approach to address this limitation. In 
this sense, future studies could integrate a neurobiomechanical 
assessment as a potential approach for individualized assessment, 
registering the specific neurophysiological and biomechanical activity. 
On the other hand, clinical scales often do not allow this degree of 
personalization, and they are difficult to adapt to each patient. 
Nonetheless, clinical scales retain practical advantages: they require 
no specialized equipment like MoCap or EMG/EEG systems, making 
them more accessible and cost-effective for routine clinical use. 
However, a multi-domain assessment approach could offer a more 
comprehensive understanding of the mechanisms underlying the 
relearning process and the specific level (neural or muscular) at which 
it occurs after rehabilitation.

In this review, we  tried to answer three questions: “Which 
technologies can perform a neurobiomechanical assessment in 
neurological patients?,” “What are the key neurophysiological and 
biomechanical parameters?,” “How can we translate this approach 
from research to clinical practice?”

7.1 Which technologies can perform a 
neurobiomechanical assessment in 
neurological patients?

The collected evidence suggests that neurobiomechanical 
assessment does not depend on a single instrument but rather on a 
combination of systems (e.g., EEG, EMG, MoCap, WS, and force 
sensors) that collectively capture distinct aspects of human movement. 
In particular, the most commonly used technologies in the 
neurophysiological field include 64-channel EEG and surface EMG, 
while biomechanical assessments often incorporate force sensors to 
measure grip strength and MVC, along with MoCap systems for 
detailed kinematic analysis.

Additionally, some researchers have incorporated neuroimaging 
techniques, such as MRI, with neurophysiological methods (e.g., 

https://doi.org/10.3389/fncir.2025.1608328
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Bonanno et al. 10.3389/fncir.2025.1608328

Frontiers in Neural Circuits 19 frontiersin.org

MEG/EEG) to further enhance the assessment of the complexity of 
human movements in patients affected by neurological disorders.

Each tool, device, or sensor used alone provides valuable 
information within its specific domain, but provides only a partial 
view of the patient’s motor function. A more comprehensive patient 
assessment, which considers multiple aspects of movements (e.g., 
neural and muscle activity, biomechanics), is essential for 
understanding the peculiar features of movement, as each pathology 
affects individuals differently. Multi-domain approaches enable the 
evaluation of neuromotor organization at various levels, facilitating 
personalized therapy adjustments (Scano et  al., 2023). In this 
context, integrating MoBI technologies enables assessments during 
dynamic, real-world tasks, offering insights into multitasking and 
postural control in natural settings (Delaux et al., 2021). De Sanctis 
et al. demonstrated the usefulness of this approach for identifying 
EEG-based neuromarkers during a dual-task paradigm, where 
individuals with MS walked while performing a concurrent cognitive 
task (Go/NoGo). It is worth noting that neuroimaging methods (e.g., 
fMRI) can be  combined with MoCap systems to obtain further 
valuable insights into the understanding of human movement 
control as well as pathological mechanisms (e.g., bradykinesia) 
(Sarasso et al., 2024). However, this approach has some limitations, 
such as the physical restrictions inside the scanner (e.g., lying down, 
limited space), which alter natural movement patterns; movements 
inside the MRI may not reflect real-life or outside-the-scanner 
performance. In addition, another key limitation of combining fMRI 
with kinematics is the mismatch in sampling rates, while MoCap 
systems record data at high frequencies (e.g., 60 Hz), fMRI captures 
brain activity more slowly (every 1–3 s), making precise alignment 
difficult and risking loss of movement detail. To integrate the two, 
kinematic data are often down-sampled, which can distort repetitive 
or fast motions and misrepresent motor activity (Belkacemi 
et al., 2025).

In other studies (Fang et al., 2009; Belardinelli et al., 2017; Guo 
et al., 2020; Zhou et al., 2021), multi-parameter assessments have been 
performed by robotic devices used in rehabilitation settings. These 
devices are equipped with sensors, measuring biomechanical 
parameters such as kinematics and force data, enhancing objectivity, 
repeatability, precision, and ease of use. This integration allows for 
real-time adaptation of rehabilitation strategies based on motor 
performance, which can be  promptly and accurately analyzed by 
embedded sensors (Bonanno and Calabrò, 2023). This approach has 
been primarily applied to the upper limb in neurological patients 
(Fang et al., 2009; Belardinelli et al., 2017; Guo et al., 2020; Zhou et al., 
2021). However, it could also be extended to the lower limb using 
devices like the Lokomat, as demonstrated by Artoni et al. (2023) in 
healthy subjects. In this sense, future studies should integrate robotic 
devices, such as Lokomat, for neurobiomechanical assessment of gait 
functions, especially for patients with severe impairments where gross 
motor movements are not easily observable. A key consideration is 
that robotic devices, such as Lokomat, often involve lengthy setup 
procedures and typically require the assistance of technical personnel. 
In clinical environments, physiotherapists usually have only 
30–60 min per session per patient, which may further limit the 
practicality of integrating robotics into routine care. Moreover, robotic 
systems, particularly exoskeletons, need to be precisely aligned with 
the user’s joints to prevent the generation of unintended interaction 
forces. If these forces become excessive, they can compromise both 

comfort and safety during use. To mitigate joint misalignment, soft 
exoskeletons made of flexible textiles or elastomers have been 
proposed, as they offer improved adaptability and comfort compared 
to rigid robotic orthoses. Despite their potential, robotic devices 
remain inaccessible in many rehabilitation centers due to high costs, 
ongoing maintenance demands, and the requirement for specialized 
staff. These factors likely contribute to the limited adoption of robot-
based assessments in everyday clinical practice (Bonanno and 
Calabrò, 2023).

Despite these limitations, a previous study (Calabrò et al., 2017) 
has proven that EEG during Lokomat training sessions is feasible for 
post-stroke patients, finding significant brain activation (mu/beta 
event-related spectral perturbations - ERSPs) during robotic therapy 
plus virtual reality. Another advantage of using multidomain 
instrumental evaluation is that it allows for a deeper understanding of 
the mechanisms underlying clinical improvements observed in 
patients. By analyzing neural, biomechanical, and physiological 
changes, this approach helps identify the specific processes 
contributing to motor recovery, enabling more targeted and effective 
rehabilitation strategies.

Despite these advantages, multi-domain instrumental approaches 
face several limitations that prevent their widespread use in clinical 
practice. One major disadvantage is the need for patients to wear 
multiple systems simultaneously (e.g., EEG headsets, surface EMG 
electrodes, and motion capture devices, both MoCap and WS), which 
can restrict natural movement expression and compromise assessment 
accuracy. Additionally, the setup requires significant preparation time, 
making it impractical for routine clinical assessments where time is 
limited. The high cost of these technologies further challenges their 
accessibility to many facilities. Moreover, the use of multiple sensors 
and cables can lead to technical issues such as interference, sensor 
displacement, and motion artifacts potentially affecting data reliability. 
In addition, another limitation of using multiple systems 
simultaneously is the need for device integration and synchronization 
among acquiring systems, which are not always provided as an option 
by manufacturers and can be  challenging to implement without 
specialized engineering expertise. From a patient perspective, wearing 
numerous devices may cause discomfort, influence psychological 
state, and alter movement performance, reducing the overall 
transparency and effectiveness of the assessment (Scano et al., 2023). 
In future studies, it is essential not only to develop compact and user-
friendly tools but also to ensure that these tools facilitate 
synchronization processes across different devices. These new 
solutions should be designed to enhance efficiency, accessibility, and 
sustainability while addressing the limitations identified in the 
selected evidence discussed in this review. By integrating innovative 
approaches, these tools can contribute to reducing resource 
consumption, optimizing performance, and facilitating broader 
adoption across various applications.

7.2 What are the key neurophysiological 
and biomechanical parameters?

According to the selected evidence, CMC can be considered a key 
parameter for understanding the functional connection between the 
brain and muscles. Through EEG and EMG techniques, CMC has 
emerged as a tool to assess this interaction by examining neural 
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oscillations in the cortex and muscles. Motor impairments in stroke 
patients are primarily caused by disrupted transmission of neural 
oscillations, which compromises connectivity along the corticospinal 
pathway and weakens cortical control over muscle function (Wang 
and Choi, 2020). On the other hand, biomechanical spatial-temporal 
parameters (e.g., stride time, cadence, speed, stride length) to assess 
gait functions as well as MVC for grip force were commonly extracted 
from the selected evidence. In addition, the measurement of torque 
was considered crucial by some authors (Forman et al., 2022) for 
assessing muscle capacity (MVC) and fatigability during the 60% 
MVC contraction test. Torque provides a direct indication of muscle 
capacity and the effect of fatigue on performance. Regarding the 
biomechanics of upper limb movements, several studies have 
highlighted alterations in kinematic parameters such as angular 
velocity, movement smoothness, and joint coordination in individuals 
with neurological disorders, particularly post-stroke. For instance, 
Hogan and Krebs (2004) developed robotic assessments to quantify 
upper limb impairment through kinematic indices, such as 
smoothness and speed, offering objective measures of motor recovery. 
Similarly, Krakauer et al. (2000) demonstrated that early post-stroke 
arm reaching is characterized by decreased peak velocity and 
increased movement variability. Lin et al. (2019) analyzed velocity 
profiles and joint trajectories to assess motor planning deficits in 
stroke survivors. From a motor control perspective, d’Avella and Bizzi 
(2005) and Santello et al. (2013) investigated the modular organization 
of movement, proposing that impaired synergies may underlie 
dysfunctional coordination post-lesion. Furthermore, Raghavan 
(2015) emphasized the role of abnormal joint torque coupling and 
reduced inter-joint coordination in upper limb hemiparesis.

Other authors (Krauth et al., 2019; Xu et al., 2023) used clinical 
scales in addition to neurophysiological evaluation. Although clinical 
scales, such as Fugl-Meyer, may be useful to assess motor impairment 
and recovery, they are not able to measure brain-muscle interaction. 
For instance, a significant CMC may indicate corticospinal pathway 
use, while a lack of CMC may suggest diverse neural oscillation 
strategies rather than corticospinal pathway non-utilization. CMC is 
thus valuable for studying abnormal neural transmission in stroke 
patients, potentially pointing out the progression of patients over time, 
during rehabilitation (Gao et al., 2024). In this sense, the beta band 
was particularly highlighted in the selected evidence, as it is strongly 
associated with motor control and neuroplasticity. However, in the 
study by Xu et  al., the authors found a correlation between FMA 
scores and CMC in post-stroke patients, suggesting that higher CMC 
values were associated with better motor performance as measured by 
the FMA. In this vein, one might argue that administering a clinical 
scale could be a more practical and less resource-intensive option than 
using an EEG–EMG setup. Nevertheless, it is important to note that 
clinical scales like the FMA may not be sufficient to distinguish true 
behavioral restitution from compensatory strategies following stroke. 
Brain–muscle functional connectivity, as measured by EEG, shows 
changes in beta and low gamma band activity, frequencies associated 
with motor control, suggesting neuroplastic adaptations during 
rehabilitation. Analyzing the power density of these cortical rhythms 
offers new insights into the understanding and management of 
neurological diseases (Bao et al., 2021). The beta band may reflect the 
involvement of mechanisms controlling voluntary motor activity 
through the corticospinal system and appears to undergo 
modifications after a stroke (Delcamp et al., 2023). A study conducted 

over post-stroke patients reveals that event-related desynchronization 
in the beta band was highest among bilateral sensorimotor areas, 
during elbow extension movement. As a result, the higher CMC 
during the acceleration phase suggests the loss of motor command 
following stroke (Fauvet et  al., 2021). From a biomechanical 
perspective, post-stroke patients showed a significant reduction in 
elbow range of motion and peak angular velocity compared to healthy 
individuals. This suggests that post-stroke patients move more slowly 
with less amplitude of movements. Additionally, movement 
smoothness was impaired, particularly during the deceleration phase, 
with a significant increase in acceleration peaks, indicating less 
fluid motion.

Interestingly, in another study conducted by Krauth and 
colleagues, the authors reported that CMC changed over time. Patients 
were instructed to do wrist extension during three sessions, 
accompanied by rest, monitored by EEG-64 channels and 
EMG. During these movements, it was highlighted that the peak of 
beta coherence increased over ipsilateral and contralateral M1 during 
the third session compared to the first and second. Meanwhile, 
coherence between the first and the second session has low 
significance. On the other hand, healthy subjects, performing 
movements only in one session, showed EEG–EMG coherence in the 
beta band localized over M1 across the contralateral hemisphere 
(Krauth et al., 2019). These results exhibit how motor neurons of 
cortical areas near the lesioned regions may compensate for motor 
function losses. The presence of the beta band is associated with 
submaximal, isometric contractions, although it has also been 
observed in patients recovering from stroke involving dynamic muscle 
contraction (Krauth et al., 2019). Some studies (Fang et al., 2009; 
Tomasevic et al., 2013; Lai et al., 2016; Roeder et al., 2020; Yokoyama 
et  al., 2020; Forman et  al., 2022) also explore the gamma band, 
revealing its role in sensory integration and motor planning, especially 
post-intervention. For example, Lai and colleagues found that 
applying peripheral ES to the paretic upper limb enhanced cortico-
spinal coherence, indicating neuroplastic changes in the sensorimotor 
control loop. They also observed an increase in gamma band activity, 
which is associated with sensorimotor integration, motor planning, 
cognition, and attention (Lai et al., 2016).

Fatigability was also explored in patients with CP, showing a linear 
correlation between a decrease in beta-band CMC (Forman et al., 
2022). On the other hand, the alpha and gamma bands showed less 
relevant correlations with motor tasks and fatigue-induced changes. 
In another study, event-related desynchronizations in the beta and mu 
(8–13 Hz) bands in CP children reported that CMC was greater on 
motor and parietal regions (Short et al., 2020). This is because the beta 
band is closely associated with the motor control of static and 
submaximal contractions and was sensitive to fatigue-induced 
changes in both groups (CP and neurologically intact individuals). 
Based on neurophysiological results, the advantage of matching EEG–
EMG is that it allows for better understanding of the connection 
between neurons in a particular brain region and different muscular 
districts, with real-time measurement, and it can predict motor 
recovery (Krauth et al., 2019; Xu et al., 2023).

Regarding neurophysiological parameters in neurodegenerative 
disorders, the beta-band was generally softened when compared to 
healthy controls, because of neurophysiological alterations. 
Interestingly, in the study by Zokaei et al., a reduced CMC in the 
beta band was observed in individuals with PD. However, this 
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reduction did not appear to significantly impair their ability to 
perform a grip task. This raises a critical question: what is the true 
functional role of CMC if motor performance remains preserved 
despite its reduction? In this study, the authors acknowledge this 
ambiguity and correctly avoid overinterpreting causality. However, 
future research should aim to dissect whether CMC reflects a causal 
mechanism of motor control or is merely an epiphenomenon of 
altered cortical communication.

Whereas in small postural tremor, the low-frequency beta-band 
significantly increases, explaining the involvement of the sensorimotor 
cortex (Caviness et al., 2006). It is worth noting that in the study by 
Caviness et  al., the authors support the heterogeneity of the 
pathophysiological mechanisms underlying tremor in PD, ranging 
from central oscillatory processes to peripheral mechanical reflex 
components. In this sense, CMC could give novel insights into the 
understanding of specific motor manifestations (e.g., postural tremor) 
in people with PD.

During walking, other specific neurophysiological parameters 
were found. Although the CMC decreased during walking in people 
with PD, it was not influenced by aging. Conversely, the reduction in 
the alpha band suggests that motor functions are less modulated and 
more desynchronized (Yokoyama et  al., 2020). In particular, the 
marked reduction in alpha band CMC, which is closely associated 
with sensory feedback processing, may indicate impaired sensorimotor 
integration in PD. This aspect aligns with known sensory and 
proprioceptive deficits in PD patients. Interestingly, unlike in the 
studies by Zokaei et al. and Yokoyama et al., no correlation was found 
between CMC and UPDRS scores, which may be due to the bilateral 
nature of gait and the high individual variability in CMC. Notably, 
while Zokaei et al. reported that CMC was related to motor symptoms 
(as measured by UPDRS-III), Yokoyama et al. did not find such an 
association during gait. This discrepancy might be explained by the 
bilateral and automatic nature of walking, which may reduce the 
impact of lateralized symptoms typically captured by UPDRS.

Another study found electrophysiological differences associated 
with gait measures. Specifically, a decrease in low-beta CMC suggests 
a reduction in cortical input to spinal motor neurons, which plays a 
crucial role in controlling gait. Moreover, multiple electrophysiological 
changes were observed at low-gamma frequencies (30–45 Hz) during 
treadmill compared to overground walking, suggesting task-
dependent differences in corticospinal control (Roeder et al., 2020). 
These findings indicate that variations in cortical communication may 
play a role in walking difficulties, particularly in conditions affecting 
motor control (Roeder et al., 2020). Both studies (Roeder et al., 2020; 
Yokoyama et  al., 2020) accompanied the neurophysiological 
evaluation with a biomechanical gait assessment, extrapolating spatial-
temporal gait features. In particular, these authors noticed a reduced 
swing phase and single support time in both elderly individuals and 
people with PD compared to young individuals. In addition, stride 
time showed no significant differences between groups, indicating 
compensatory mechanisms in PD patients to maintain cadence 
despite reduced stride length. These findings were also shown by De 
Pasquale et al. in PD patients with higher levels of perceived fear of 
falls. In particular, factors such as fear of falling may influence muscle 
co-contraction, potentially contributing to the development of 
compensatory muscle patterns, for example, increased proximal 
muscle activity in response to reduced distal muscle function (De 
Pasquale et al., 2025).

Furthermore, a feature that could influence the magnitude of 
CMC is fatigue. Regarding this one, it was highlighted that comparing 
CMC between fatigued patients and non-fatigued beta band increased 
with the result that CMC worked at higher frequencies as fatigue 
increased in individuals with MS (Tomasevic et al., 2013). From a 
biomechanical perspective, fatigued patients showed a higher 
frequency of pressure correction during the gripping task, indicating 
a greater need for adjustments to maintain the required level (5% of 
MVC). Regarding movement accuracy, it was comparable between 
fatigued and non-fatigued patients, despite the differences in 
correction frequency. Moreover, CMC has also been evaluated in 
SCA2, demonstrating a cortico-muscular dysfunction in the lower 
limbs related to a less synchronization of the beta band since the 
central motor conduction is impaired (Velázquez-Pérez et al., 2017). 
These parameters are complemented by biomechanical measures like 
force deviation, co-contraction indices, and kinematic data, which 
provide critical insights into motor performance and recovery.

7.3 How can we translate this approach 
from research to clinical practice?

One of the primary goals of rehabilitation is to maximize the use 
of remaining functional abilities. This can be achieved by analyzing 
cortical pathways (EEG–EMG) to understand the neural control of 
movement, as well as functional motor activity (EMG-movement) to 
evaluate how muscle activation translates into movement execution. 
Examining the entire motor pathway, from cortical activity to final 
movement execution, might provide crucial insights into individual 
patient conditions (Figure 1).

This approach enables the creation of personalized rehabilitation 
protocols tailored to the specific pathology and the patient’s residual 
capabilities. By integrating neurophysiological (EEG–EMG) and 
biomechanical data, a more comprehensive and multidimensional 
assessment becomes possible. However, the greater complexity of 
experimental setups and the need for synchronization across devices 
introduce several practical and analytical challenges, including the 
cost of technology, the need for specialized personnel, difficulties in 
interpreting results, and the potential for movement alterations caused 
by multiple wearable devices. Therefore, an optimal balance between 
data richness and feasibility should be achieved. It is noteworthy that 
while clinical scales remain an essential tool in neurological 
assessment, using them in isolation may result in inaccurate 
evaluations. For instance, Bloem et al. identified several clinical scales 
that can adequately assess gait and balance alterations in patients with 
PD. However, they reported that no existing instrument 
comprehensively and separately evaluates all relevant PD-specific gait 
characteristics with strong clinimetric properties, nor does any scale 
provide distinct scores for gait and balance with adequate content 
validity specific to PD. Therefore, they recommend the development 
of a comprehensive clinical scale capable of evaluating both aspects 
independently. This would be preferable instead of relying on multiple 
existing tools, which may not fully capture the complexity of gait and 
balance impairments in PD (Bloem et  al., 2016). In cases where 
clinical scales suggest a non-pathological condition, multidomain 
assessments may reveal hidden motor impairments. For example, 
mild neurological deficits that are not evident through basic 
observation or single domain assessment may become apparent when 
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analyzing EEG–EMG patterns and detailed movement biomechanics. 
Early detection of these issues allows for timely intervention, 
preventing further deterioration and optimizing rehabilitation 
outcomes. On the other hand, for patients with severe neurological 
conditions, standard clinical evaluations may fail to capture subtle 
motor activity. A simple observation may only determine whether 
movement is present or absent, without explaining the underlying 
mechanisms. By integrating neurophysiological and biomechanical 
assessments, clinicians can better identify whether movement 
limitations arise from cortical dysfunction, impaired neuromuscular 
transmission, or biomechanical constraints. From a clinical 
standpoint, these findings highlight the need for targeted interventions 
to enhance brain-muscle connectivity (Figure 2).

The translation of neurobiomechanics from research to clinical 
practice depends not only on experimental validation but increasingly 
on the integration of computational modeling and simulation tools. 
Platforms such as OpenSim, NEURON, Brian, MOtoNMS, and 
emerging frameworks like NEUROiD and NfMBS enable high-
resolution modeling of the neuromechanical system, offering a bridge 
between research and practice. Despite their potential, these tools are 
still underutilized in clinical settings due to technical barriers, lack of 
standardization, and limited accessibility for non-specialists.

To address these limitations, greater integration between clinicians 
and model developers is essential. Simulation tools must become more 
user-friendly, with simplified pipelines (e.g., MOtoNMS for motion/
EMG integration), clearer documentation, and training initiatives 
tailored to healthcare environments. Moreover, clinical studies such 
as those by Romanato et al. (2022) and Gogeascoechea et al. (2020) 

illustrate the feasibility of using these platforms in real-world 
rehabilitation contexts, highlighting their value in patient stratification, 
treatment planning, and outcome prediction.

Computational tools can further enhance the interpretation of 
neurophysiological and biomechanical data. For instance, systems like 
ReMoTo (Cisi and Kohn, 2008) and the pooled scalogram method 
(Borzelli et al., 2025) allow fine-grained analysis of motor neuron 
recruitment and muscle co-activation, especially when linked to 
functional clinical metrics such as gait variability or 
strength asymmetry.

Looking ahead, simulation environments like NEUROiD hold the 
promise of creating patient-specific ‘digital twins’ that could support 
adaptive and predictive rehabilitation planning. Nevertheless, the full 
integration of these tools into standard care will require robust data 
infrastructures, interprofessional collaboration, and regulatory 
pathways for clinical validation. The use of CMC as a biomarker holds 
potential for tracking recovery and tailoring therapies. Actionable 
parameters such as force deviation and co-contraction indices directly 
relate to functional outcomes, though further validation is required to 
establish clinical thresholds. While CMC is key to understanding 
neuroplastic adaptations, pairing it with biomechanical indicators 
such as movement smoothness or torque balance can provide a more 
holistic view of motor recovery. In the study of motor control, 
functional connectivity measures such as corticomuscular coherence 
(CMC), coherence strength correlation (CSC), and intermuscular 
coherence (IMC) provide valuable insights into the neural 
coordination underlying motor tasks. These metrics allow researchers 
to differentiate between neural pathways converging on spinal motor 

FIGURE 1

The figure illustrates the combined analysis of EEG and EMG signals, providing a comprehensive view of the motor pathway quantified by CMC. EEG, 
electroencephalography; EMG, electromyography; CMC, corticomuscular coherence; TA, tibialis anterior; GL, gastrocnemius lateralis; RF, rectus 
femoris; ST, semitendinosus. The coherence maps are taken from Figure 5 of Calabrò et al. (2017).
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neurons and to identify shared neural information across spatially 
distributed muscles (Boonstra et al., 2015). Alongside these coherence-
based approaches, muscle synergy analysis has emerged as a powerful 
tool to explore how the CNS simplifies motor control by activating 
groups of muscles in a coordinated manner. However, muscle 
synergies alone do not fully capture the complexity of the neural 
mechanisms involved in human movement. In fact, the 
synchronization of oscillatory activity within the neuromuscular 
system, quantified through coherence, reflects the functional coupling 
required for effective movement control (Ortega-Auriol et al., 2023). 
Therefore, combining muscle synergy analysis with measures of neural 
connectivity might be beneficial to achieving a more comprehensive 
understanding of motor coordination (Borzelli et al., 2024).

Furthermore, wearable technologies and machine learning could 
refine data collection and analysis, paving the way for personalized 
rehabilitation strategies. This integrated approach represents a 
promising step forward in advancing both the assessment and 
treatment of individuals with neurological impairments. However, 
several challenges remain. Small sample sizes limit the generalizability 
of findings, as recruiting participants with specific conditions is often 
difficult. Additionally, variations in study protocols, such as differences 
in EEG configurations, filtering techniques, and movement tasks, 
complicate cross-study comparisons. Many studies also rely on static 
tasks or isolated movements, which may not fully capture real-world 
motor behaviors. Future research should prioritize standardized 
protocols in terms of technologies and parameters analyzed and larger, 
more diverse cohorts to strengthen conclusions. Moreover, the 
growing interest in artificial intelligence, particularly deep learning, 
within neurorehabilitation holds promise for integrating MMC 
technologies into clinical practice. As highlighted by Lam et al. (2023), 
advances in MMC development enable more cost-effective motion 

capture solutions. These technological improvements may support 
broader clinical adoption and facilitate future research on movement 
patterns and motor function in individuals with 
neurological impairments.

Ultimately, the shift from isolated experimental protocols to 
clinically integrated neurobiomechanical assessments will depend on 
the creation of collaborative ecosystems. These must link clinicians, 
researchers, engineers, and data scientists in co-designing solutions 
that are not only effective and accurate but also feasible and 
interpretable in the clinical environment.

8 Conclusion

In this review, we  examined the technologies and extracted 
parameters used for neurobiomechanical assessments in the context 
of neurological disorders. Although the selection of neurophysiological 
and biomechanical parameters is relatively consistent across the 
collected studies, substantial variations in motor tasks and 
experimental setups make replication challenging. To address this 
limitation, a key objective for future research should be  the 
development of standardized guidelines. Such guidelines would assist 
researchers and clinicians in navigating the complexity of human 
movement in neurological populations, thereby improving 
reproducibility and enhancing cross-study comparability.

Although clinical scales remain widely used in rehabilitation 
settings, technologies that objectively quantify motor 
performance (e.g., MoCap systems, WS, and force platforms) 
provide additional insights often missed by conventional clinical 
assessments. Furthermore, a multidomain assessment based on a 
neurobiomechanical approach allows for the simultaneous 

FIGURE 2

Schematic representation of the implementation of multidomain assessment from research to clinical practice, reporting the challenges and benefits 
of this assessment approach in the context of neurorehabilitation. On the left, a schematic representation illustrates the patient’s medical pathway from 
the onset of the neurological disease to a comprehensive motor evaluation, supporting a deeper understanding of the condition and enabling a more 
tailored rehabilitation approach. On the right, the orange section highlights the main devices (EEG, EMG, MEG, MRI, ERPs) and outcomes (e.g., clinical 
scales) used in research settings for neurobiomechanical assessment (neurophysiological and biomechanical parameters). The blue block summarizes 
the benefits of this approach, as well as the challenges that may hinder its implementation in current clinical practice.
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evaluation of both neurophysiological and biomechanical aspects 
of movement. This could provide new insights not only for 
diagnosis but also for early intervention and preventive care. In 
conclusion, neurobiomechanics could offer a powerful approach 
to capture the complexity of motor impairment. By combining 
experimental approaches with computational modeling and 
clinical insight, this field moves closer to enabling precision 
rehabilitation. Despite these promising preliminary findings, the 
multidomain approach remains largely confined to research 
environments. Its clinical adoption is limited by several 
challenges, including the high cost of technological equipment 
and the need for specialized personnel, not only to set up the 
appropriate instrumentation for each patient but also to analyze 
and interpret the resulting data.
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