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Neurons throughout the neocortex exhibit selective sensitivity to particular features 
of sensory input patterns. According to the prevailing views, cortical strategy 
is to choose features that exhibit predictable relationship to their spatial and/
or temporal context. Such contextually predictable features likely make explicit 
the causal factors operating in the environment and thus they are likely to have 
perceptual/behavioral utility. The known details of functional architecture of 
cortical columns suggest that cortical extraction of such features is a modular 
nonlinear operation, in which the input layer, layer 4, performs initial nonlinear 
input transform generating proto-features, followed by their linear integration 
into output features by the basal dendrites of pyramidal cells in the upper layers. 
Tuning of pyramidal cells to contextually predictable features is guided by the 
contextual inputs their apical dendrites receive from other cortical columns via 
long-range horizontal or feedback connections. Our implementation of this strategy 
in a model of prototypical V1 cortical column, trained on natural images, reveals 
the presence of a limited number of contextually predictable orthogonal basis 
features in the image patterns appearing in the column’s receptive field. Upper-
layer cells generate an overcomplete Hadamard-like representation of these basis 
features: i.e., each cell carries information about all basis features, but with each 
basis feature contributing either positively or negatively in the pattern unique to 
that cell. In tuning selectively to contextually predictable features, upper layers 
perform selective filtering of the information they receive from layer 4, emphasizing 
information about orderly aspects of the sensed environment and downplaying 
local, likely to be insignificant or distracting, information. Altogether, the upper-layer 
output preserves fine discrimination capabilities while acquiring novel higher-order 
categorization abilities to cluster together input patterns that are different but, in 
some way, environmentally related. We find that to be fully effective, our feature 
tuning operation requires collective participation of cells across 7 minicolumns, 
together making up a functionally defined 150 μm diameter “mesocolumn.” Similarly 
to real V1 cortex, 80% of model upper-layer cells acquire complex-cell receptive 
field properties while 20% acquire simple-cell properties. Overall, the design of the 
model and its emergent properties are fully consistent with the known properties 
of cortical organization. Thus, in conclusion, our feature-extracting circuit might 
capture the core operation performed by cortical columns in their feedforward 
extraction of perceptually and behaviorally significant information.
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1 Introduction

In artificial intelligence, to quote Ritter (2003), “A first and very 
important step in many pattern recognition and information 
processing tasks is the identification or construction of a reasonably 
small set of important features in which the essential information for 
the task is concentrated.” The concept of stimulus feature tuning is also 
fundamental to neuroscience. It is widely accepted that neurons 
throughout the cerebral cortex exhibit highly selective sensitivity to 
particular features of peripheral stimuli and such tuning defines 
neurons’ information representational identities (DiCarlo and Cox, 
2007). Across cortical areas, neurons tune to stimulus features that 
vary greatly in their complexity. Starting from the primary sensory 
cortical areas and up each stream of successive areas, neurons 
gradually increase their receptive field sizes, become more selective to 
spatiotemporal stimulus patterns in their receptive fields (RFs), and 
also develop selective invariances (Felleman and Van Essen, 1991; 
Riesenhuber and Poggio, 1999).

A generally supported Mountcastle’s (1978) conjecture is that such 
progressive elaboration of feature tuning properties is accomplished 
by recursive application of essentially the same computational 
operation, performed by series of cortical columns on their afferent 
inputs (Phillips and Singer, 1997). However, the nature of this 
hypothesized operation, as well as the nature of the extracted features 
are poorly understood. Neurons acquire their mature feature-tuning 
properties to a large degree by learning from experience, using lower-
level features provided by their afferent inputs to build higher-level 
ones. Technically, a feature is a mathematical transfer function over a 
set of afferent inputs to a neuron (or to a node in an artificial neural 
network). Each neuron has to select (learn) some useful transfer 
function. However, this can be  a challenging task. In high-level 
cortical areas that are closely engaged in shaping the behavior, the 
neurons’ tuning to stimulus features can, in principle, be  guided 
directly by their more or less obvious behavioral utility. But for early 
sensory areas, the identity of low-level stimulus features that would 
be behaviorally useful – as building blocks enabling the construction 
of high-level behaviorally significant features  – and thus worth 
extracting is far from clear. Such low-level features might be too far 
removed from actual behavior for a criterion of “behavioral 
usefulness” being of practical use in their selection, at least initially 
during early postnatal cortical development. Instead, selection of such 
features would have to rely on some local signs promising their 
eventual usefulness.

The prevailing consensus, which emerged in the 1990s, is that 
such local signs of tentative features’ potential usefulness can come 
from the spatial and/or temporal context in which these features occur 
(Barlow, 1992; Becker and Hinton, 1992; Becker, 1996; Stone, 1996; de 
Sa and Ballard, 1998; Phillips and Singer, 1997; Hawkins and Blakeslee, 
2004; Favorov and Ryder, 2004). According to this idea, local but 
ultimately behaviorally useful features should be the ones that can 
be  predictably related to other such features, either preceding or 
following them in time or taking place side-by-side with them. Thus, 
neurons should choose features for their ability to predict and 
be  predictable from other such features. Predictive relations exist 
among features extracted from non-overlapping sensory inputs 
because they do reflect order present in the environment. Thus, 
contextually predictable features are signatures of causal factors 
operating in the individual’s environment, which might be relevant to 

the individual’s interactions with its environment and therefore worth 
tuning to Phillips and Singer (1997), Ryder and Favorov (2001), 
Favorov and Ryder (2004), and Ryder (2004).

While this proposal is straightforward at the conceptual level, its 
actual algorithmic and neural implementational details  – which 
ultimately establish its biological feasibility – are lacking and need 
fleshing out. In Section 2 of this paper, we use the known details of 
cortical functional architecture as guiding constraints to formulate a 
biologically realistic, algorithmically explicit computational model for 
contextually guided feature tuning in cortical columns. This model 
allows us to devise a version of multi-view canonical correlation 
analysis to explicitly extract shared contextual information from 
neighboring cortical columns, estimate its dimensionality, and 
compute the principal axes (basis vectors) of the space of contextually 
predictable features of input patterns occurring in a cortical column’s 
RF. In Section 3, we apply this methodology to natural images to 
reveal the information space of contextually predictable features 
available to a column in the primary visual area, V1. We train our 
cortical model in Section 3 on visual inputs obtained from natural 
images and demonstrate that the model’s neurons are highly capable 
of tuning to contextually predictable nonlinear features despite using 
only Hebbian synaptic plasticity. The model neurons learn close to all 
theoretically available contextually predictable features, and these 
features are found to be similar to those of neurons in the cat V1.

The demonstrated feature tuning effectiveness and biological 
realism of the model suggest that it might capture the core operation 
performed by cortical columns in their feedforward extraction of 
perceptually and behaviorally significant information. In a related 
paper (Kursun et al., 2024), we demonstrate that convolutional neural 
networks (CNN) trained using contextual guidance can perform 
better than deep CNN, which are trained using error-backpropagation, 
on visual and hyperspectral imaging tasks, tactile texture 
discrimination, or text classification.

2 Theoretical model specification

2.1 Contextual guidance in cortical layer 3

Cerebral cortex is a complex dynamical system dominated by 
feedback circuits, but we limit our exploration to the feed-forward 
component of this system, which endows neurons with their identity-
defining so-called “classical” RFs and feature-tuning properties. 
We further confine our exploration to the central pathway in the feed-
forward elaboration of cortical neurons’ properties, which proceeds 
through a repeating sequence of two cortical layers. Cortical layer 4 
(L4) is the principal initial recipient of the feed-forward afferent input 
to a cortical area. L4 converts that input into a new form and sends it, 
in particular, to layer 3 (L3) of the same cortical area for its feature-
extraction operation. The product of that L3 operation is then sent to 
L4 of the next cortical area, where the same two-stage feature-
extracting operation is repeated, but on a higher level, building on the 
advances made by the preceding cortical area (Rockland and Pandya, 
1979; Felleman and Van Essen, 1991; Callaway, 2004).

In addition to their afferent input from L4, L3 neurons receive 
extensive contextual input via long-range horizontal connections from 
surrounding columns up to several millimeters away from their 
resident column (Gilbert and Wiesel, 1983; DeFelipe et al., 1986; Lund 
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et  al., 1993; Burton and Fabri, 1995). These contextual inputs are 
expected to guide L3 neurons to the sources of mutual information in 
these two, afferent and contextual, input sets (Phillips and Singer, 
1997). Two principally different kinds of such sources are possible. 
First, the two input sets might have partially overlapping RFs; in other 
words, they might share some neurons along their afferent pathways in 
common. Such an internal source of mutual information in the two sets 
is trivial and has to be avoided. Second, the afferent and contextual 
input sets might be impacted by the same environmental agent. Such 
an external source of mutual information has the potential of being 
behaviorally significant and therefore worthy of recognition. One way 
to ensure that mutual information in the two input sets comes from 
external sources is to use inputs with non-overlapping RFs. Indeed, 
long-range horizontal connections come from far enough to have 
non-overlapping RFs but are close enough to reflect the same distal 
variables in the engaged environment.

The value of the feature (φ) extracted by the ith L3 cell is computed 
from the afferent inputs to its resident cortical column m, as in 
Equation 1:

	
( )ϕ =


mi mi mf I
	

(1)

where mif  is the chosen feature-specific transfer function, and 


mI  
is a vector of activities of all the afferent axons innervating column m. 
According to the contextual guidance proposal, the function mif  is 
chosen so as to maximize correlation of ϕmi  with the “best” function 

mig  over features extracted in other, surrounding columns and 
delivered via long-range horizontal connections, as in Equation 2:

	
( )( )ϕ ϕ=
argmax ;

mi

mi mi mi context
g

f corr g
	

(2)

where corr is Pearson’s correlation coefficient, and ϕcontext is a 
vector of all available L3 contextual features combined.

Since different neurons in a column should extract different 
features, we  should elaborate the choice of the feature-extracting 
transfer function mif  for a single neuron i in column m: the choice is 
to maximize correlation of ϕmi  with the “best” function mig  over 
features in other columns, subject to the constraint that correlation of 
this feature with features computed by other neurons in the same layer 
in the same column should not be excessive.

It should be noted that features extracted by cortical neurons – 
especially in high-level cortical areas  – are highly nonlinear 
functions of peripheral patterns of receptor activations. No 
recursive application of linear transform functions would be able 
on its own to produce such features. Cortical neurons must be able 
to use nonlinear transfer functions. However, experience-driven 
learning of nonlinear transfer functions in neural networks can 
be  highly problematic, unless a kernel-based strategy is used. 
Kernel methods, popular in machine learning, offer a highly 
effective strategy for dealing with nonlinear problems by 
transforming the input space into a new “feature” space where a 
nonlinear problem becomes linear and thus more tractable with 
efficient linear techniques (Schölkopf and Smola, 2002). According 
to Favorov and Kursun (2011), such a kernel-based function 
linearization strategy happens to be used in the neocortex in its 
principal input layer, layer 4. This insight suggests that cortical 

columns first perform a nonlinear function-linearization transform 
of their afferent inputs in L4 and then learn linear transform 
functions in L3.

2.2 Layer 4 pluripotent function 
linearization

An important feature of L4 functional architecture is the presence 
of untuned feed-forward inhibition, which reflects the overall strength 
of the stimulus activating a local L4 network but is insensitive  – 
invariant – to spatial details of the stimulus patterns (Kyriazi et al., 
1996; Bruno and Simons, 2002; Swadlow, 2003; Hirsch et al., 2003; Sun 
et  al., 2006; Cruikshank et  al., 2007). Favorov and Kursun (2011) 
showed that the presence of such untuned feed-forward inhibition 
converts a conventional neural network into a functional analog of 
Radial Basis Function (RBF) networks (Lowe, 2003), which are well 
known for their universal function approximation and linearization 
capabilities (Park and Sandberg, 1991; Kurková, 2003). Input 
transforms performed by such networks automatically linearize a 
broad repertoire of nonlinear functions over the afferent inputs. This 
capacity for pluripotent function linearization suggests that L4 can 
contribute importantly to cortical feature extraction by performing 
such a transform of afferent inputs to a cortical column that makes 
possible for neurons in the other layers of the column, including L3, 
to extract nonlinear features of afferent inputs using mostly 
linear operations.

A biologically realistic and highly effective pluripotent function 
linearizer has the following ingredients (Equation 3): (1) activity of 
each excitatory L4 cell is computed, in part, as a weighted sum of its 
afferent inputs, which are Hebbian; (2) lateral interconnections among 
L4 cells are used to diversify the afferent connectional patterns among 
L4 cells in a cortical column and give them a rich variety of RF 
properties; and (3) feed-forward inhibition makes L4 cells behave 
similarly to RBF units and is principally responsible for function 
linearization capabilities. Following Favorov and Kursun (2011), 
we describe L4 operation as:

	

( )λ ρ θ

+
 
 = + − −
 
 
∑ ∑ ∑ 

2
4 , , 4i kL i j j i k L j

j k j
F w a F a

	

(3)

where 4iLF is the activity of L4 neuron i; aj is the activity of afferent 
input neuron j; wi,j is the weight, or efficacy, of the excitatory synaptic 
connection from afferent neuron j to L4 neuron i; λ is a lateral 
connection scaling constant; 4kLF is the activity of a neighboring L4 
neuron k; ρ ,i k is the correlation coefficient between activities of L4 
neurons i and k; θ is a feed-forward inhibition scaling constant; and 
[·]+ indicates that if the quantity in the brackets is negative, the value 
is to be taken as zero.

In the presence of both feed-forward inhibition and plastic lateral 
connections, which are unique to L4  in that higher correlation in 
firings of the pre- and post-synaptic cells leads to decrease – rather 
than increase  – of synaptic strength (Egger et  al., 1999; Sáez and 
Friedlander, 2009), a modeled network of L4 neurons, trained on 
visual inputs, develops biologically accurate diversity of multi-subfield 
RFs and acquires orientation tuning matching in sharpness that of real 
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L4 neurons, as well as a host of other real L4 functional properties 
(Favorov and Kursun, 2011).

In the above L4 model, neurons accomplish their pluripotent 
function linearization by acting in  local groups. To explain, 
consider a local group of L4 neurons that are innervated by a 
common set of afferent neurons. Together, such a set of N 
convergent afferent neurons can be viewed as defining an abstract 
N-dimensional afferent input state space, each dimension 
corresponding to one of the constituent afferent neurons. A targeted 
L4 neuron i takes a particular direction in this afferent space 
(defined by the vector of its afferent connection weights iw  in 
Equation 3) as its conic RBF center. Neighboring L4 neurons 
innervated by the same set of afferent neurons chose different RBF 
centers (i.e., different w) in their common afferent space, influenced 
in their choices by lateral interactions with each other. Together, a 
local group of L4 neurons will spread their RBF centers evenly 
throughout their common afferent space so as to map it most 
efficiently, with more active regions of that space mapped at higher 
resolution (Deco and Obradovic, 1995). A wide range of nonlinear 
functions defined over this space – including transfer functions that 
can extract contextually predictable features  – can be  then 
approximated by weighted sums of the activities of the mapping 
L4 neurons.

What is the size of such RBF-network-like local groups of L4 
neurons that together can perform pluripotent function linearizations? 
Although it is limited, anatomical evidence based on typical sizes of 
afferent axon arborizations in L4 and the lateral spread of dendrites 
and axon collaterals of L4 cells within the confines of L4 suggests that 
such groups should be  larger than a minicolumn (i.e., >50 μm in 
diameter) but smaller than a macrocolumn (i.e., <500 μm). We will 
refer to such intermediate-size function-linearizing columns in this 
paper as mesocolumns.

Structurally, minicolumns are the radially oriented cords of 
neuronal cell bodies evident in Nissl-stained sections of the cerebral 
cortex (Mountcastle, 1978; Buxhoeveden and Casanova, 2002). They 
are the narrowest (~50 μm diameter) columnar aggregates of neurons 
in the neocortex (Favorov and Diamond, 1990; Tommerdahl et al., 
1993) and thus can be viewed as the smallest building blocks of cortical 
columnar organization (Mountcastle, 1978). Published estimates of L4 
cell densities in visual and somatosensory cortical areas (Beaulieu and 
Colonnier, 1983; Budd, 2000; Markram et al., 2015; Meyer et al., 2010) 
suggest that a single minicolumn has between 30 and 60 excitatory L4 
neurons. Such a number is clearly not enough for a functionally useful 
RBF mapping of a minicolumn’s afferent space.

Minicolumns are packed together in the cortex in an essentially 
hexagonal pattern. From a geometric perspective, the next larger-size 
columnar entity to consider is a group of 7 minicolumns, one 
surrounded by 6 others. Such columns will be 3 minicolumns wide 
and thus ~150 μm in diameter. They will have between 200 and 400 
excitatory L4 neurons. In Section 3 we will show that such numbers 
of L4 neurons are sufficient for the purposes of contextually 
predictable feature extraction in L3. We propose that, based on the 
available evidence, such groupings of 7 minicolumns are the most 
plausible candidates for the role of function-linearizing mesocolumns 
(Figure 1). A group of 7 such mesocolumns, in turn, make the next 
larger-size columnar entity ~450 μm in diameter, corresponding in 
size to the well-known macrocolumns (Mountcastle, 1997).

2.3 Layer 3 extraction of contextually 
predictable features

The lateral spread of axonal projections of L4 cells in L3 and the 
lateral spread of basal dendrites of pyramidal cells in L3 indicate that 
L4 neurons send their output to L3 neurons not only in their own 
mesocolumn but also in the 6 surrounding mesocolumns (Lubke 
et al., 2003; da Costa and Martin, 2010). Consequently, the “classical” 
RFs and feature-tuning properties of L3 neurons in a given 
mesocolumn are, essentially, the product of weighted summation of 
output activities of L4 neurons of the same and 6 surrounding 
mesocolumns (Figure 1):

	

ϕ
= =

= ∑ ∑ 

47

, 4
1 1

L mc

mj

N

i i mj L
m j

u F

	
(4)

where ϕi is the feature-expressing activity of L3 neuron i in the 
central mesocolumn; NL4mc is the number of L4 cells in a mesocolumn; 

4mjLF is the activity of an L4 neuron j in mesocolumn m; and ui,mj is the 
strength of their connection.

In L3, the afferent inputs from L4 target basal dendrites of 
pyramidal cells, whereas the contextual inputs from surrounding 
cortical territories target their apical dendrites (Gilbert and Wiesel, 
1983; Kisvardy et al., 1986; Lubke et al., 2003; Petreanu et al., 2009). 
Synaptic inputs to basal dendrites are integrated in the soma, leading 
to spike generation in the initial axon segment. But the apical dendrite, 
including its terminal tuft extension in layer 1, has its own site of 
synaptic input integration and is able to generate its own spikes 
(Bernander et al., 1994; Cauller and Connors, 1994; Schiller et al., 
1997; Stuart and Spruston, 1998; Larkum et al., 1999, 2007). Output 
activity of the apical dendrite in the ith L3 cell is, essentially, the 
product of weighted summation of output activities of L3 neurons of 
surrounding columns:

	
,i i c c

c C
A v ϕ•

∈

∝ ∑
	

(5)

where C is the set of all the L3 neurons in surrounding 
columns that contribute contextual input to cell i; ,i cv  is the 
strength of connection to cell i from contextual cell c; and ϕc  is 
basal dendrite output of cell c (Equation 4). With such separate 
contextual input integration, the apical dendrite can guide basal 
dendrites in their selection of afferent connectional patterns (and 
vice versa) so that they will maximize covariance of the cell’s 
apical and basal outputs Ai and ϕi , as was proposed and 
successfully demonstrated in a basic model by Kording and 
Konig (2000).

The number of excitatory cells in L3 is approximately the same as 
in L4 (Markram et al., 2015; Meyer et al., 2010), suggesting that the L3 
compartment of a mesocolumn contains between 200 and 400 
pyramidal neurons. Under mutual competitive pressure to diversify 
their RF tuning properties, similar to plastic local lateral connections 
among neighboring L4 cells driving them to select different features, 
these 200–400 neurons in a mesocolumn will compete in their search 
for contextually predictable features. Together, they will find and tune 
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to all the different contextually predictable features present in their 
shared afferent input from L4 (Equation 4).

In geometric terms, together the 1,400–2,800 L4 cells in 7 
mesocolumns that provide afferent input to the L3 compartment of a 
central mesocolumn create that mesocolumn’s high-dimensional state 
space. Since we are concerned with L3 features that are computed 
linearly in that state space (Equation 4), such features correspond to 
particular directions in the mesocolumn’s L3 state space: for a given 
L3 neuron i, its afferent connectional vector iu  determines that 
neuron’s preferred direction in its mesocolumn’s L3 state space and 
thus its preferred feature.

Any arbitrary direction in the L3 state space will express some 
feature of input patterns taking place in the mesocolumn’s 
RF. However, most of such arbitrarily chosen features will not 
be perceptually significant. Contextually predictable features occupy 
a lower-dimensional subspace of the L3 state space. The size and 
contents of this contextually predictable subspace have never been 
revealed before, even for the primary sensory cortical areas. In the 
next section (Section 2.4), we derive a computational algorithm for 
estimating the principal axes (basis vectors) of this subspace, and in 
Section 3 we apply this algorithm to natural images in an attempt to 
reveal the contextually predictable subspace of a mesocolumn in the 
primary visual area, V1. Also in Section 3 we investigate what features 

(i.e., directions in the mesocolumn’s L3 state space) individual L3 
cells will choose if they are modeled as comprising two dendritic 
compartments – basal and apical, each receiving Hebbian connections 
from either L4 of its own macrocolumn or from L3 of surrounding 
macrocolumns, respectively – and are trained on natural images. 
We show that such modeled L3 cells do indeed select features in the 
mesocolumn’s contextually predictable subspace.

2.4 Extraction of the contextually 
predictable feature subspace of a cortical 
mesocolumn

We begin by formalizing terminology to be used in the rest of 
this paper:

	•	 The state space of a mesocolumn is created by 1,400–2,800 L4 
cells that provide afferent input to its L3 compartment 
(Equation 4). Stimulus patterns activating that mesocolumn’s RF 
are represented as points in the state space and can 
be characterized in an infinite number of ways by projecting 
these points onto any particular vector in the state space. Any 
such projection vector can be considered a “feature,” and the 

FIGURE 1

Mesocolumn-based feature extraction in the neocortex. (A) Connectional diagram. (B) Minicolumnar composition and RF of a mesocolumn. 
(C) Mesocolumnar composition and RF of a macrocolumn. The smallest structural units of neocortical columnar organization are minicolumns, 
comprising neurons whose bodies line up in ⁓50 μm diameter radially oriented stacks separated by radially oriented bundles of axons and apical 
dendrites. Neurons residing in neighboring minicolumns are not functionally isolated but make up larger-size functional aggregates. This paper 
explores the feature extracting capabilities of aggregates that span local groups of 7 minicolumns, referred to as mesocolumns. The L4 and L3 
compartments of three such mesocolumns, taken from monkey somatosensory cortex, are shown in panel (A), each revealing multiple vertical stacks 
of Nissl-stained neurons. Neighboring mesocolumns receive their input 



a from partially overlapping sets of afferent neurons and thus from partially 
overlapping RFs. In panel (B), a mesocolumn is shown schematically as a hexagonally packed group of 7 minicolumns (black filled circles). It is 
estimated to contain 200–400 excitatory cells in each of its L4 and L3 compartments. In the primary visual cortex, a mesocolumn’s RF in natural 
images would correspond to an approximately 16 pixel diameter circle (Favorov and Kursun, 2011). L4 cells in a mesocolumn act together as a group in 
performing pluripotent function linearizing transform of their RF input patterns. Neurons in the L3 compartment of a mesocolumn receive their 
afferent input from L4 cells residing not only in their own but also neighboring mesocolumns (A). Such a larger group of 7 mesocolumns, feeding 
central mesocolumn’s L3 neurons, is shown in panel (C) schematically as an ⁓450 μm diameter macrocolumn. Since RFs of L4 compartments of these 
7 mesocolumns are partially shifted (as shown), the overall RF of a mesocolumn’s L3 compartment is expanded to an approximately 21 pixel diameter 
circle. L3 neurons in a mesocolumn respond to diverse features of input patterns appearing in their mesocolumn’s RF, together converting the 
mesocolumn’s afferent input vector 



a to the mesocolumn’s output feature vector ϕ.
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entire state space of a mesocolumn is the space of possible 
features, or the feature space. Thus, we can refer to a mesocolumn’s 
state space as its feature space to emphasize its feature content.

	•	 We search for contextually predictable features because such 
features reflect orderly aspects of the environment. To emphasize 
their orderly nature, we will follow Hotelling (1936) and call 
them canonical features (from the Greek word kanonikotita, 
κανονικότητα, which means “regularity,” “predictable 
recurrence”). The contextually predictable subspace of a 
mesocolumn’s state space, comprising all the canonical features, 
then is the canonical feature subspace.

	•	 Our explicit task is to extract the canonical feature subspace from 
the mesocolumn’s state space by finding all of its principal axes 
(basis vectors). This set of orthogonal vectors in the state space, 
enclosing the canonical feature subspace, will be called canonical 
variates (Hotelling, 1936).

We formulate our approach based on the following considerations. 
We define the 1st axis of the canonical feature subspace (i.e., the 1st 
canonical variate) to be the basis vector with the maximal correlation 
with the contextual input, the second axis (i.e., the 2nd canonical 
variate) to be the basis vector with the second largest correlation with 
the contextual input, and so on until the last axis. In the cortex, 
different mesocolumns develop their own sets of afferent, lateral, and 
contextual connections based on their particular histories of sensory 
experiences. However, since neighboring mesocolumns will end up 
being exposed to and being shaped by the same regularities in their 
sensory experiences, any emergent differences among them will not 
be functionally significant. Thus, in deriving our algorithm, we can 
make an assumption that all the neighboring mesocolumns involved 
in contextual guidance will have the same matrices of L3 afferent [ui,mj] 
and contextual   ,i cv  connections (Equations 4, 5) and also identical 
sets of canonical variates.

To quantify the correlation of a canonical variate with the 
contextual input, we use the mean of pairwise correlations of that 
variate in the central mesocolumn and the same variate in each of the 
neighboring mesocolumns that contribute the contextual input. If 
we label the direction of a canonical variate in the L3 state space as 



b  
(b stands for “basis”), then we define the contextual correlation of this 
variate as in Equation 6:

	
( )0
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1 corr ,
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where Nm is the number of mesocolumns contributing contextual 
input. 



0affF  and 


maffF are the afferent inputs to the L3 compartment of 
the central (0th) mesocolumn and the mth neighboring mesocolumn, 
respectively, from their flattened × 47 L mcN  dimensional vectors of the 
outputs of L4 neurons of the same and 6 immediately 
surrounding mesocolumns:
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(7)

Our objective function for the ith canonical variate is to find such 
a direction 



ib  in the L3 state space that will maximize its contextual 

correlation ir  (subject to the constraint that ⊥
 

i jb b  for all < )j i . Our 
objective function is designed to maximize the canonical correlation 
of the ith component, concurrently ensuring orthogonality with all 
previously computed components. This methodology, which 
constructs orthogonal vectors sequentially, beginning with the first, 
systematically generates a series of orthogonal vectors. Each vector 
maximizes the variance subject to the orthogonality constraints 
imposed by its predecessors.

Continuing with our assumption that different mesocolumns in a 
contextually related cortical territory have the same internal 
connectivities, we also assume that all Nm mesocolumns in our model 
have the same means and covariance matrices of the afferent inputs to 
their L3 compartments:

	
( )( )µ µ µ  = = − −    
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(8)

Then, we can write our objective function as:
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(9)

Thus, the objective function in Lagrangian formulation is 
given by:
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(10)

The optimization task specified in Equation 10 has a well-
structured generalized eigenproblem and can be efficiently solved 
using established numerical algorithms (Hotelling, 1936; Hardoon 
et al., 2004; Kursun et al., 2011; Golub and Van Loan, 2013; Alpaydin, 
2014), in which the eigenvector having the largest eigenvalue giving 
us the first canonical variate 



1b , the eigenvector having the second 
largest eigenvalue giving us the second variate 



2b , and so on:

	
= λ

 

cross autoi ib bK K
	 (11)

where crossK  is the cross-covariance matrix (Hotelling, 1936; 
Kursun et al., 2011):

	
( ) ( )µ µ

=
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(12)

3 Model simulations

For model simulations, we sought to emulate the primary visual 
cortical area (V1) and so applied our L4–L3 feature-extracting model 
to natural images, setting the afferent inputs of the modeled 
mesocolumns to approximate thalamic inputs to V1 from the lateral 
geniculate nucleus. The aim of simulations was to develop contextually 
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predictable features that can be expected to be found in a representative 
V1 mesocolumn. Visual input patterns and the L4 compartments of 
modeled mesocolumns were reproduced, with a few minor differences, 
from Favorov and Kursun (2011) and that paper should be consulted 
for their complete descriptions.

3.1 Methods

3.1.1 Visual input patterns to the L4 compartment 
of a mesocolumn

Biologically realistic visual afferent inputs, delivered to L4 via the 
lateral geniculate nucleus (LGN), were simulated based on the retinal/
LGN model of Somers et  al. (1995). RFs of LGN neurons were 
modeled as a difference of the “central” and the “surround” 
two-dimensional Gaussians, with a common space constant σ for 
both dimensions:

	 ( ) ( )σ σπσ πσ− −= −
2 2 2 2/2 /22 21/2 1/2xy center xy surrD D

xy center surrR e e
	

(13)

where σcenter = 0.8833 and σsurr = 2.6499 (Figure  2A). Dxy is the 
Euclidean distance between a pixel at the (x, y) location in the image 
and the (x0, y0) image location of the RF center. If Dxy > 8, Rxy = 0 (i.e., 
the RF diameter is restricted to 16 pixels). Thus, the activity of an 
ON-center LGN neuron with the RF center at the (x0, y0) location in 
the image was computed as:

	

+
 
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  
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y x

a R I
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where Ixy is the grayscale intensity of the pixel at (x, y) location in 
the image (0 ≤ Ixy ≤ 1). The activity of an OFF-center LGN neuron was 
computed as:

	

+
 
 = −
  

∑∑ 0.1OFF xy xy
y x

a R I

	
(15)

Each mesocolumn in the model was set to receive its afferent 
input from 91 LGN neurons with retinotopically arranged ON-center 
RFs and 91 neurons with retinotopically arranged OFF-center RFs 
(Figure 2B). RF centers of ON-center LGN neurons were arranged in 
a hexagonal pattern, spaced one pixel apart, and RF centers of 
OFF-center LGN neurons coincided with the RF centers of the 
ON-center LGN neurons. Together, these 182 LGN neurons created a 
hexagonally shaped viewing window onto visual images (Figure 2B).

In this study, the visual inputs to the LGN layer were drawn from 
a set of 100 grayscale photographs (320 × 320 pixels) selected from the 
IAPR TC-12 benchmark dataset (Grubinger et al., 2006), containing 
texture-rich natural images of surfaces, grass, bushes, landscapes, 
human and animal figures, and Brodatz (1966) dataset of textures 
(Figure 2C). Since this is a relatively small set of images, selected for 
their detail-rich spatial contextual information, an additional much 

larger and more diverse image dataset was also used to confirm the 
model findings made on the IAPR TC-12 dataset. This was a widely 
used Common Objects in Context (COCO) dataset of images of 
complex everyday scenes containing common objects in their natural 
context (Lin et al., 2015). In particular, we used 5,000 images of the 
2017 validation set.1 The photographs were not preprocessed, except 
for contrast enhancement using histogram equalization. To generate 
a particular visual input pattern, the LGN viewing window was placed 
over a particular location in one of the photographs. The intensities of 
the pixels within the viewing window were then convolved with the 
RF profiles of the LGN neurons (Equations 13–15). All computational 
procedures were implemented using MATLAB (2023).

3.1.2 Output of the L4 compartment of a 
mesocolumn

The L4 compartment of each mesocolumn was modeled as a 
group of NL4mc neurons of the type described above by Equation 3. The 
temporal behavior of each neuron, modeled as a leaky integrator, is 
described by the following differential equation:
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(16)

where τ  is a time constant; 4iLF and 4kLF  are the output activities 
of L4 neurons i and k in the computed mesocolumn, respectively; aj is 
the activity of the jth among the 182 LGN neurons innervating the 
computed mesocolumn; wi,j is the strength of the afferent connection 
from LGN neuron j to L4 neuron i; zi,k is the strength of the connection 
to L4 neuron i from L4 neuron k residing in the same mesocolumn; θ 
and λ are feed-forward and lateral connection scaling constants, 
respectively. This differential equation was solved numerically using 
Euler updates with a step size ∆ t = 1 ms. Explicitly, the Euler update 
for an equation ( ) ( )τ = − +/ .d dt x x g x  is 
( ) ( ) ( ) ( ) ( )τ τ+ ∆ ≈ −∆ + ∆ 1 / /x t t t x t t g x . Time constant τ  was set 

to 4 ms, θ = 0.65 and λ = 3. The response of the L4 network to a given 
afferent input pattern was computed in 20 time steps.

3.1.3 Hebbian development of afferent and lateral 
connections in the L4 compartment of a 
mesocolumn

The complete set of instructions and explanations offered in 
Favorov and Kursun (2011) should be  followed in growing L4 
connections. Partially repeated here, those connections were driven 
to their final state by modifying them iteratively over 20 update steps. 
At each step, the L4 compartment of a mesocolumn was stimulated 
with 1,000 visual input patterns, which were produced by placing the 
LGN viewing window in random locations in any of the 100 database 
images. Output activities of the 182 LGN cells and NL4mc L4 cells in 
response to these 1,000 visual patterns were used to compute 
correlation coefficients between all pairs of LGN-L4 and L4–L4 

1  http://images.cocodataset.org/zips/val2017.zip
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neurons, and those correlations were used to update the afferent and 
lateral connections.

At update step s, the strength of the afferent connection from LGN 
cell k to L4 cell i was updated based positively on correlation ( )ρik s  of 
their outputs during step s as, as given in Equations 17, 18:

	
( ) ( ) ( ) ++

=
  =    ∑ 

182
1/ik ik ijjw s w s w s

	
(17)

where:

	
( ) ( ) ( ) ( )η η ρ= − − + 

 1 1ik aff ik aff ikw s w s s
	 (18)

The weight of the lateral connection between L4 cells i and k was 
updated based negatively (according to Egger et al., 1999; Sáez and 
Friedlander, 2009) on correlation ( )ρik s  of their outputs during step 
s, as in Equation 19:

	 ( ) ( ) ( ) ( )η η ρ= − − − 1 1ik lat ik lat ikz s z s s
	 (19)

Adjustment rate constants ηaff = 0.01 and ηlat= 0.1 produced the 
fastest convergence of connection strengths to stable values.

3.1.4 Afferent and contextual inputs to the L3 
compartment of a mesocolumn

The L3 compartment of a mesocolumn in the model was set to 
receive afferent input from its own L4 compartment as well as from L4 
compartments of six immediately adjacent mesocolumns (Equation 4). 
The LGN viewing windows of these six surrounding mesocolumns are 
shifted by 3 pixels relative to the LGN window of the central 
mesocolumn in six evenly spaced directions (Figure  1C). 
Consequently, the viewing window of the L3 compartment of a 

mesocolumn (which we consider to be its classic RF) is increased to 
21 pixels.

In the real cortex, L4 compartments of different mesocolumns 
develop their own sets of LGN and lateral connections based on their 
visual experiences. However, since visual experiences of 7 neighboring 
mesocolumns are essentially the same, any emergent connectional 
differences among them will not be  functionally significant. This 
allows us to greatly reduce the computational effort in developing the 
model’s L4 connectivity by developing LGN and lateral connections 
of just one mesocolumn and then use these patterns of connections 
(i.e., the [wij] and [zik] matrices in Equation 16) in all the mesocolumns 
making up the model.

Our definition of the mesocolumn in Section 2.2 as a local group 
of 7 minicolumns, L4 cells of which together perform pluripotent 
function linearization transform of their shared afferent input, leads 
us to treat mesocolumns in this modeling effort as discrete entities 
packed in the cortex as a honeycomb-like mosaic. We  also treat 
macrocolumns as discrete entities comprising 7 mesocolumns 
(Figure 3). However, this might be oversimplification. While discrete 
macrocolumns do exist  – at least in the somatosensory cortex 
(Favorov and Diamond, 1990; Favorov et al., 2015) – experimental 
evidence of discrete mesocolumnar structures in L4 is lacking. It is 
possible that discrete mesocolumns, while appealing in their 
conceptual simplicity, are not necessary, and L4 function linearization 
transform can be  successfully performed by a field of partially 
overlapping mesocolumns (making a mesocolumn a functional, 
rather than structural, entity). We  will leave exploration of this 
possibility for future studies.

Thus, for model simulations, the afferent input to the L3 
compartment of the central mesocolumn is a flattened × 47 L mcN  
dimensional vector of the outputs of L4 neurons of the same and 6 
surrounding mesocolumns (Equation 7). The contextual input to the 
L3 compartment of the central mesocolumn in the model was set to 
come from L3 compartments of two concentric rings of distant 
mesocolumns: the inner ring of 6 mesocolumns and the outer ring of 

FIGURE 2

LGN layer model. (A) RF profiles of ON-center and OFF-center model LGN cells. (B) The map of the RF centers (little white boxes) of the 91 ON-center 
cells of the LGN layer innervating a single mesocolumn. Note that RF centers are arranged in a hexagonal pattern. RF centers are shown superimposed 
on a 13 × 13-pixel field, in which each pixel is shown as a black-edged gray square. RF centers of the 91 OFF-center LGN cells match the RF centers of 
the ON-center cells. (C) Four exemplary 320 × 320-pixel natural images that were used to activate the LGN layer. Reproduced with permission from 
Favorov and Kursun (2011).
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12 mesocolumns (Figure 3A). RFs of the outer ring mesocolumns are 
shifted by 18 pixels relative to the RF of the central/recipient 
mesocolumn (Figure 3B). RFs of the inner ring mesocolumns are 
shifted by half of this distance; i.e., by 9 pixels.

3.1.5 Algorithmic extraction of canonical variates
Canonical variates are the principal axes of the canonical feature 

subspace. To find their directions ( )ib  in the L3 state space 
(Equations 9–11), the modeled field of L3 compartments of 19 
mesocolumns, each receiving afferent input from L4 compartments of 
its own and 6 surrounding mesocolumns (Figure 3), was stimulated 
with 5,000 visual input patterns, which were obtained by placing the 
LGN viewing window in random locations in any of the 100 database 
images. For each visual pattern, the afferent input to the L3 
compartment of each of the 19 mesocolumns in the field ( )

iaffF  was 
written as a flattened vector of output activities of cells in L4 
compartments of its own and its 6 surrounding mesocolumns 
(Equation 7). 



ib  vectors of the first 20 canonical variates were extracted 
from the 5,000 sets of afferent input vectors of the central and 18 
surrounding mesocolumns …

  

0 1 18
,aff aff affF F F  according to 

Equations 8, 11, 12. Using 


b  vectors, magnitudes of canonical variates 
of L3 afferent input patterns can be computed as:

	 ( )µΦ = −






, m

T
m i i affb F

	 (20)

where Φ ,m i  is the projection of the L3 afferent input vector of the 
mth mesocolumn onto the ith canonical variate.

3.1.6 Hebbian tuning of L3 cells to canonical 
features

The central thesis of this paper is that pyramidal neurons in L3 
should tune to contextually predictable, canonical, features, and they 

accomplish it by adjusting the weights of L4 connections to their basal 
dendrites under guidance from their apical dendrites, which receive 
contextual inputs from the surrounding cortical territory (Section 
2.3). To explore what features might be thus selected by L3 cells in a 
V1 mesocolumn, we  gave the L3 compartment of the central 
mesocolumn the same number of cells as in its L4 compartment (i.e., 
NL3mc = NL4mc) and trained their L4 input connections using an 
approach adapted from Kording and Konig (2000). For contextual 
guidance, we  used canonical variates in the surrounding 18 
mesocolumns (black shaded mesocolumns in Figure 3A).

Thus, the LGN viewing window was placed in 5000 random 
locations in the 100 database images, and for each image location 
we computed afferent input vectors to L3 compartments of the central 
and 18 surrounding mesocolumns …

  

0 1 18
,aff aff affF F F  as well as the 

responses of canonical variates Φ ,m i  to these input vectors 
(Equation 20). These responses were autoscaled to zero mean and 
unit variance.

The feature-expressing basal outputs of L3 cells in the central 
mesocolumn in response to images were computed according to 
Equation 4 while the contextual inputs to the apical dendrites of the 
same L3 cells were computed as:

	

18 20

, , ,
1 1

i i m j m j
m j

I v
= =

= Φ∑∑ 

	
(21)

where Ii is the net contextual input to the apical dendrite of the ith 
L3 cell, ,m jΦ  is the response of the jth canonical variate in the mth 
surrounding mesocolumn, and , ,i m jv  is the strength of their 
connection. Both basal outputs of L3 cells and net inputs to their 
apical dendrites were autoscaled to zero mean and unit variance.

The L3 network has to have a mechanism for diversifying feature 
tuning properties of cells residing in the same mesocolumn. The 

FIGURE 3

Afferent and contextual inputs to the model mesocolumn’s L3 compartment. (A) The central macrocolumn (blue shaded) surrounded by two 
concentric rings of 6 and 12 macrocolumns (gray shaded) carrying contextual information. In the cortex, these rings would be ⁓0.5 and ⁓1.0 mm away 
from the central macrocolumn. In the model simulations, image-response activities were computed for L4 cells in all 7 mesocolumns in each of the 19 
macrocolumns but, to reduce the amount of computation, responses of L3 canonical variates were computed only for the central mesocolumn in 
each macrocolumn. They were used as the contextual input to the L3 cells in the central macrocolumn’s central mesocolumn (red shaded). (B) RF 
outlines of the central and 12 outermost surrounding macrocolumns, showing very limited overlap. RFs of the inner and outer rings are shifted by 9 
and 18 pixels, respectively, relative to the RF of the central macrocolumn.
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presence of such mechanism is indicated by the fact that in the real 
cortex, while neighboring neurons do share some of their RF and 
feature tuning properties in common, when all of these properties are 
considered in toto, neighboring neurons are very distinct and are 
highly decorrelated in their responses to the full repertoire of natural 
stimuli (Favorov and Kelly, 1996a,b; Vinje and Gallant, 2000). The 
nature of this diversifying mechanism has not been established yet, 
but it must involve individual L3 cells in a mesocolumn influencing 
(likely “pushing” via lateral inhibition subserved by double-bouquet 
(DeFelipe et  al., 2006) and/or Martinotti cells (Silberberg and 
Markram, 2007)) each other to select features different from their 
own. In the absence of the established mechanism, we chose to achieve 
its effect by using the same diversifying mechanism we (Favorov and 
Kursun, 2011) proposed to operate in L4.

Thus, to promote tuning of L3 cells in the mesocolumn to different 
canonical features, the contextual inputs to their apical dendrites were 
modified by the basal outputs of all the other L3 cells in the 
mesocolumn, as well as by the output of the mesocolumn’s L3 feed-
forward inhibitory cell. That is, the output of the apical dendrite of the 
ith L3 cell in the mesocolumn was computed as in Equation 22:

	
θ ρ λ ρ ϕ

= ≠
= − − ∑   

3

,3 3
1,

L mc

i i k

N

i i L FF FF L BB k
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where θ 3L  and λ 3L  are feed-forward and lateral scaling constants; 
ϕk  is the basal output of the kth L3 cell and ρ

,i kBB  is the correlation 
between ϕi and ϕk  over the training set of images; FFF is the output of 
the L3 feed-forward cell and ρ

iFF  is the correlation between ϕi  and 
FFF. FFF was computed as the sum of outputs of all L4 cells in the 
central macrocolumn. It was autoscaled to zero mean and unit 
variance over the training set of images. The values of θ 3L  and λ 3L  
scaling constants were tested systematically for their feature 
diversification effect on L3 cells by measuring cross-correlations 
between basal outputs of different L3 cells in the mesocolumn. 
Gradually increasing the values of these constants leads to gradual 
reduction of cross-correlations, starting from very high values to 
eventually very low, which indicate that different L3 cells tuned to 
different features. Based on this empirical search, the optimal settings 
of θ =3 0.01L  and λ =3 0.03L  were chosen, because under them L3 cells 
tune to the most diverse set of canonical features.

Hebbian connections of the basal and apical dendrites of L3 cells 
were developed gradually by modifying them iteratively over 1,000 
update steps. At each update step, the modeled field of 19 
macrocolumns was stimulated with 5,000 visual input patterns, which 
were obtained by placing the LGN viewing window in random 
locations in any of the 100 database images. Output activities of L4 
and L3 cells and canonical variates in response to these 5,000 visual 
patterns were used to compute correlation coefficients of L3 cells with 
L4 cells and with canonical variates, and those correlations were used 
to update the afferent and contextual L3 connections.

At update step s, the strength of the afferent connection from the 
jth L4 cell to the basal dendrite of the ith L3 cell was updated based on 
correlation of the L4 cell with the apical output, ( )ρ =, 4 ,

ji j L icorr F A , 
during 5,000 step s trials, as given in Equations 23, 24:
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where:

	
( ) ( ) ( ) ( )η η ρ ρ= − − +  



0.5
, 3 , 3 , ,1 1 sgni j L i j L i j i ju s u s

	 (24)

The strength of the contextual connection from the jth canonical 
variate to the apical dendrite of the ith L3 cell was updated based on 
correlation of the variate with the basal output, ( )ρ ϕ= Φ, ,i j j icorr , 
during 5,000 step s trials, as given in Equations 25, 26:
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where:
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Adjustment rate constant ηL3 = 0.01 produced the fastest 
convergence of connection strengths to stable values.

3.1.7 No-context L3 model
As an alternative to our contextually guided model of L3 feature 

tuning, we also tested a no-context model, in which the apical dendrite 
of each L3 cell was given exactly the same afferent input as its basal 
dendrite; i.e., instead of using Equation 21 to compute Ii, we used 

ϕ= .i iI  That is, instead of receiving contextual input from surrounding 
columns, apical dendrites received their input from L4 cells of their 
own macrocolumn. Features developed by L3 cells in this essentially 
generic self-organizing neural network offer us a benchmark against 
which to judge the benefits of using contextual guidance in 
feature selection.

4 Results

4.1 Layer 3 canonical variates

According to our proposed division of tasks between L4 and L3 – 
with the L4 mesocolumnar network linearizing feature-extracting 
functions that will be computed by L3 cells – the first step in estimating 
L3 canonical variates is to develop RF and functional properties of 
cells in the L4 compartment of mesocolumns. This is done by 
repeatedly exposing L4 cells to images and adjusting the weights of 
their Hebbian input and intrinsic connections, gradually driving them 
into stable connectional patterns. The emergent functional RF 
properties of the model L4 cells, which come to closely resemble those 
of simple cells in cat V1, are comprehensively described in Favorov 
and Kursun (2011), and for brevity we omit their description here.

On their own, the trained L4 cells have very low pairwise 
contextual correlations with L4 cells in surrounding macrocolumns. 
This is shown in Figure 4A by plotting the distribution of maximal 
correlations of coincident activities of individual L4 cells in the central 
macrocolumn and L4 cells in the first and second rings of surrounding 
macrocolumns. However, our expectation is that optimally chosen 
weighted sums of multiple L4 cells will have much higher contextual 
correlations with surrounding macrocolumns. In Section 2.4 
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we  introduced a particular algorithm for finding such optimal 
weighted sums, giving us the axes of the canonical feature subspace, 
i.e., canonical variates. We apply this algorithm to the outputs of L4 
cells in the modeled field of 19 macrocolumns to obtain canonical 
variates. We  test the strength of their contextual correlations by 
introducing a third ring of 12 mesocolumns, chosen to be at a such 
distance from the central mesocolumn that any mutual information 
they might have in their RFs will have to come from the environmental 
sources rather than from sharing any pixels in common. To compute 
their contextual correlations, we used responses Φ (Equation 20) of 
the canonical variates in the central and these 12 distant surrounding 
mesocolumns to 1,000 image patches taken at random in the 100 
dataset images. For each canonical variate, its contextual correlation 
is expressed by Pearson correlation coefficient computed between the 
1,000 responses of that variate in the central mesocolumn and the 
1,000 averages of responses of that variate in the 12 distant 
mesocolumns. The magnitudes of the computed contextual 

correlations are plotted in Figure  4B (white bars) for the first 20 
canonical variates. The first 7 variates have particularly high 
correlations (r2 ≥ 0.1). Correlations of the 8th to 15th variates, 
although low, are nevertheless statistically significant (at α = 0.05 with 
Bonferroni correction), suggesting that even these canonical variates 
might reflect some causally significant factors in the environment.

To demonstrate the necessity of the L4 function-linearization 
operation for maximizing contextual correlations, we also developed 
canonical variates directly from the LGN afferent inputs to the L4 
compartments of the central and 6 surrounding mesocolumns 
(together constituting a macrocolumn) rather than using L4 outputs 
of these 7 mesocolumns. Unlike the L4-based variates, all but the first 
of the LGN-based variates showed no statistically significant 
contextual correlations (black bars in Figure 4B).

To test generalizable nature of the canonical variates extracted 
from the 100 IARP TC-12 images, canonical variates were also 
extracted from the 5,000 COCO images. The magnitudes of their 

FIGURE 4

Contextual correlations between the central and surrounding macrocolumns. (A) Contextual correlations among cells in the input layer, L4. Plotted is 
the histogram of the highest correlation of stimulus-evoked responses that each L4 cell in the central macrocolumn had with L4 cells in the 2 rings of 
surrounding macrocolumns, revealing that at the level of L4, individual cells in neighboring macrocolumns were essentially uncorrelated. Each 
mesocolumn had 150 L4 cells. (B) Contextual correlations between the first 20 canonical variates of the central mesocolumn and the surrounding 
mesocolumns with nonoverlapping RFs. For each canonical variate, correlation was computed between its value in the central mesocolumn and the 
mean of its values in the surrounding mesocolumns. Training of L4 cells and extraction of canonical variates to find their contextual correlations was 
repeated 10 times, using different randomly chosen sets of training image patches taken from the 100 images of the IARP TR-12 and Brodatz datasets. 
Shown in the plot are squared correlation averages and their SEM (white bars), indicating that macrocolumnar RFs possess up to 15 canonical variates 
with contextually significant information. Also shown in the plot are squared correlation averages and their SEM of canonical variates extracted from 
LGN afferent inputs to macrocolumns (black bars), indicating that only the first LGN-based variate has significant contextual information. 
(C) Contextual correlations between the first 40 canonical variates extracted from the 5,000 images of the COCO dataset (black bars). Shown in the 
plot are squared correlation averages and their SEM (n = 10). For comparison, also plotted superimposed are the first 40 canonical variates extracted 
from the 100 images of the IARP & Brodatz datasets (white bars), revealing close similarity between them. (D) Canonical Correlation Analysis (CCA) of 
overlap between canonical feature subspaces extracted by the first 15 canonical variates in the IARP & Brodatz vs. COCO datasets (details in the main 
text). Plotted are squared canonical correlations of the 15 CCA variates, averaged over doing CCA 10 times.
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contextual correlations, shown for the first 40 variates, are plotted as 
black bars in Figure  4C, superimposed on the first 40 canonical 
variates extracted from IARP images (plotted as white bars). As 
Figure  4C shows, although they come from different sources, 
magnitudes of the two sets of canonical variates are very similar, with 
the first 15 variates having statistically significant contextual 
correlations. But how similar are the features extracted from the two 
image sources? As basis vectors, the first 15 contextually predictable 
canonical variates enclose the canonical feature subspace of the 
mesocolumn’s entire feature space (as defined in Section 2.4). To 
determine how much the IARP and COCO canonical feature 
subspaces overlap, we  performed Canonical Correlation Analysis 
(CCA; Hotelling, 1936), in which we treated the first 15 IARP and first 
15 COCO canonical variates as 2 sets of input variables and used 5,000 
training image patches, taken at random from the COCO dataset, to 
compute their loadings. Next, we used these loadings to compute 15 
canonical correlations of the two sets of variables over a different set 
of randomly picked 1,000 COCO image patches. If the two feature 
subspaces, enclosed by the 15 IARP and 15 COCO canonical variates, 
match closely, the 15 canonical correlations would all be close to 1. On 
the other hand, if the two subspaces do not overlap at all, the 15 
canonical correlations would all be close to zero. The actual computed 
correlations are plotted in Figure 4D, revealing that the first 6 CCA 
variates had very high correlations, whereas the last 5 CCA variates 
had very low correlations. Thus, we  can conclude that canonical 

feature subspaces extracted from the IARP and COCO datasets mostly 
overlap, albeit not completely.

Going back to Figure 4B, as it shows, only the first canonical 
variate does not depend on L4 function-linearization preprocessing. 
The reason is that it reflects the overall magnitude of activity evoked 
in the macrocolumn’s L4 compartment (Figure  5A) and thus the 
overall stimulation intensity of the macrocolumn’s RF. Since the other 
canonical variates depend on L4 function-linearization preprocessing, 
they must be tuned to various structural features of the image patterns 
occurring in the mesocolumn’s RF. What these features are, either in 
our model canonical variates or in real L3 neurons, is not obvious but 
some insight is traditionally gained in V1 studies by characterizing 
responses of V1 neurons to moving grating images of various 
orientations and spatial frequencies. Figure 5B shows orientation and 
positional tuning of the statistically significant first 15 canonical 
variates, revealing that variates 8 through 11 are sensitive to both 
orientation and position while others are sensitive to grating 
orientation but not its position in the RF (translational invariance), 
thus falling into the categories of the simple and complex cells, 
respectively (Hubel and Wiesel, 1962). With real V1 neurons 
exhibiting diversity in the degrees of their orientation and grating 
phase tuning, the standard metric used to place any given V1 cell on 
the simple vs. complex cell spectrum is the F1/F0 ratio, which is the 
ratio of the 1st and 0th Fourier harmonics of a neuron’s activity during 
stimulation of its RF with an optimal sinewave moving grating 

FIGURE 5

Feature tuning of canonical variates. (A) Tuning of the 1st canonical variate to the overall intensity of RF stimulation. The variate’s response magnitude is 
plotted as a function of the average of the stimulus-evoked activities of all the L4 cells in the macrocolumn, showing linear dependency. (B) Tuning of 
the first 15 canonical variates to the orientation and spatial phase of sinewave grating images. (C) F1/F0 scores of canonical variates 2–15, showing 
clear separation of these variates into the simple and complex cell classes.
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(Skottun et al., 1991; Ringach et al., 2002). V1 cells with F1/F0 > 1 are 
classified as simple and cells with F1/F0 < 1 are classified as complex. 
Figure 5C shows F1/F0 scores of the statistically significant canonical 
variates 2–15, showing that 70 and 30% of variates fall into the 
complex cell and simple cell categories, respectively.

In principle, function-linearization capabilities of mesocolumns’ 
L4 compartment depend on the number of cells they employ (Favorov 
and Kursun, 2011): the larger the number of L4 cells in a mesocolumn, 
the broader the repertoire of nonlinear functions it can linearize. This 
is shown in Figure 6, in which the total contextual correlation of the 
first 20 canonical variates, computed as the sum of squared contextual 
correlations of individual variates (Watanabe, 1960), is plotted as a 
function of the number of cells in each mesocolumn’s L4 compartment. 
Significantly, there is little further gain in total correlation after the 
number of L4 cells in mesocolumns is increased beyond 150–200, 
which suggests that they linearize all the contextually predictable 
features available for extraction in the mesocolumn’s RF.

4.2 Canonical features of L3 cells

L3 cells are expected to be driven by their apical dendrites to tune 
to contextually predictable – canonical, according to our terminology – 
features. Such features occupy a particular subspace in the 
mesocolumn’s state/feature space, and the extracted canonical variates 
give us the principal axes of this canonical feature subspace. In 
choosing their features, L3 cells should be attracted to the canonical 

variates according to their contextual predictability. We explored this 
feature-selecting mechanism in our extended field of 19 macrocolumns 
(Figure  3A) by providing the L3 compartment of the central 
mesocolumn (red-shaded in Figure 3A) with 150 cells, each modeled 
as a pair of basal and apical dendrites. In each L3 cell, its basal dendrite 
was given afferent input from 1,050 L4 cells of its own and 6 
immediately adjacent mesocolumns (150 L4 cells per mesocolumn), 
which together make up a macrocolumn (blue-shaded in Figure 3A). 
The vector of the weights of these L4 connections to the cell’s basal 
dendrite (u  in Equation 4) determines that dendrite’s preferred 
direction in the mesocolumn’s L3 state space and thus that cell’s 
preferred feature. The apical dendrite of each L3 cell was given 
contextual input from the 18 more distant mesocolumns (black-
shaded in Figure 3A) in the form of their 15 statistically significant 
canonical variates (for further details, see Methods section 3.1.6). The 
apical dendrite learns to produce output that best matches the output 
of the basal dendrite and vice versa.

Feature selectivities of L3 cells were developed by repeatedly 
exposing the model to randomly picked dataset images and adjusting 
the weights of the Hebbian basal and apical connections of L3 cells, 
gradually driving them into stable connectional patterns (Figure 7). 
After such training, the apical and basal dendrites of L3 cells developed 
prominent correlations in their responses to image patches 
(Figure 8A), demonstrating that all 150 L3 cells succeeded in tuning 
to contextually predictable features. Furthermore, Figure 8B shows 
that cross-correlations between basal outputs of different L3 cells 
residing in the same mesocolumn are low, indicating that these cells 
tuned to diverse canonical features.

Figure 8C provides some insight into the nature of the features 
chosen by the 150 L3 cells. It plots correlations of the basal dendrite 
of each L3 cell in the central mesocolumn with each of the first 15 
canonical variates computed for that mesocolumn. The plot shows 
that each L3 cell developed either positive or negative sensitivity to 
each of the first 11 canonical variates, declining gradually from the 
first to the last variate. Combined with information in Figure 8B, this 
indicates that L3 cells picked different mixes of positive and negative 
sensitivities to the 11 variates. If we view the canonical feature space 
defined by the first 11 variates as an 11-dimensional hypercube, 
Figures 8B,C indicate that L3 cells picked different corners of this 
hypercube. Unlike L3 cells, L4 cells do not have any preferential 
sensitivity to the canonical variates (compare white- and black-shaded 
bars in Figure 8D). The prominent preferential sensitivity of L3 cells 
is the product of L3 self-organization. As our no-context L3 model 
shows, L3 self-organization without contextual guidance from 
surrounding columns also can to some degree enhance cells’ sensitivity 
to canonical variates (compare black- and gray-shaded bars in 
Figure 8D), but much less than under contextual guidance.

When evaluated by their responses to moving images of sinewave 
gratings, 80% of L3 cells fall in the complex-cell category, whereas 20% 
of L3 cells fall in the simple-cell category (Figure 9A). This suggests 
that as a group, L3 cells in a mesocolumn should be able to represent 
both the orientation and position of grating images in their output 
activity vector ϕ (Equation 4). To show how well they can do it, 
we expose the RF of the central mesocolumn to a grating pattern of 
randomly selected orientation, spatial frequency, and position in the 
RF, and compute the 0ϕ



 response it evokes in the 150 L3 cells in the 
central mesocolumn. We then rotate the grating pattern by a randomly 
chosen angle α, compute the new αϕ



 response of L3 cells, and 

FIGURE 6

The dependence of the amount of contextually predictable 
information extracted by canonical variates on the number of L4 
cells in the mesocolumn (NL4mc). The amount of contextual 
information extracted by the first 20 canonical variates was 
estimated by their total contextual correlation, which was computed 
as the sum of squared (with sign preserved) correlations of the 20 
variates in the central mesocolumn and their averages among the 12 
surrounding mesocolumns with abutting RFs. Total correlation was 
computed 10 times, each time using different randomly chosen sets 
of image patches to train a particular number of L4 cells per 
mesocolumn and to extract canonical variates. Plotted are the 
means and standard deviations of the total correlation estimated for 
the number of L4 cells per mesocolumn ranging from 1 to 240. The 
plot suggests that having around 150 L4 cells per mesocolumn 
might be enough to extract most of the contextually predictable 
information in mesocolumns’ RFs.
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FIGURE 7

Time-course of L3 cells’ development of feature selectivities. Hebbian connections of the basal and apical dendrites of L3 cells were developed by 
modifying them iteratively over 1,000 steps based on pre- and post-synaptic activity correlations computed in response to 5,000 visual input patterns. 
To see how quickly the cells converge to their final connectional patterns, responses of each cell to a particular set of test input patterns were obtained 
after completion of 1,000 connection updates, and these responses were correlated with responses to the same test set obtained after each 
connection update prior to the final one, thus using the correlation coefficient to express the similarity of the cell’s tuning at each update step to its 
final tuning. The plot shows superimposed the progressions of these correlation coefficients of all 150 L3 cells, from the first update to the last, 
revealing fast convergence to the final state without any meandering around.

FIGURE 8

Successful tuning of L3 cells to contextually predictable features. (A) Uniformly high correlation (squared) of outputs of the apical and basal dendrites 
of the 150 cells in the mesocolumn’s L3 compartment. (B) Distribution of pairwise correlations (squared, keeping the sign) of outputs of basal dendrites 
of all 150 L3 cells, revealing their low similarity. (C) Basal dendrite correlations (squared, keeping the sign) of all L3 cells with each of the first 15 
canonical variates (horizontal tick marks), showing that each L3 cell acquired gradually declining sensitivity to each of the first 11 variates. (D) Average 
magnitude of correlations (squared) of canonical variates with outputs of the 150 L4 cells in the mesocolumn (black bars) and outputs of basal 
dendrites of the 150 L3 cells (white bars), revealing complete insensitivity of L4 cells to canonical variates. Also plotted are the average correlations of 
canonical variates with 150 L3 cells in the no-context L3 model (gray bars). Development of feature selectivities of L3 cells was repeated 10 times, each 
time starting by assigning initial connection weights to L4 cells at random and training them on a different randomly selected sequence of image 
patches, then extracting canonical variates using another randomly selected set of image patches, followed by the same in L3. The bars in the plot 
show the means and SEM of the average correlations determined in the 10 runs. In all runs, L3 cells developed similar feature selectivities.

https://doi.org/10.3389/fncir.2025.1615232
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Favorov and Kursun� 10.3389/fncir.2025.1615232

Frontiers in Neural Circuits 15 frontiersin.org

measure the angle between the two L3 output vectors ϕ


0  and αϕ


. 
Figure 9B plots the average L3 angle as a function of the angle between 
the two gratings (gray curve). For a comparison, we also plot the 
average angle computed for the output vectors of the 150 L4 cells in 
the central mesocolumn (black curve). In Figure  9C, instead of 
rotating, we  translate the grating pattern by a randomly chosen 
fraction (phase) of the grating’s period, compute the new response of 
L4 and L3 cells, and measure the angle between the two L3 output 
vectors and between the two L4 output vectors. Figure 9C plots the 
average L3 (gray) and L4 (black) angles as a function of the phase shift 
between the two gratings. The plots show that both L4 and L3 output 
vectors can discriminate even small differences in gratings’ orientation 
or position in the RF. It is interesting to note that even at the maximal 
orientation (90°) or spatial phase (180°) differences between two 
gratings, L3 output vectors show less than maximal (90°) separation, 
reflecting the fact that other than for their orientation or phase, the 
two gratings are the same.

Figure 10 demonstrates the importance of contextual guidance for 
the development of biologically realistic feature properties in L3 cells. 
To test orientation tuning of L4 and L3 cells in the model, each cell was 
stimulated with moving grating patterns of the optimal spatial 
frequency and the full 180° range of orientations. The tightness of the 
cell’s orientation tuning was expressed by the standard half-width and 
half-height (HWHH) of the orientation tuning curve. Figure 10 plots 
the F1/F0 ratio determined for each cell against its HWHH. The 
model’s L4 cells are shown as blue circles, L3 cells as red dots, and L3 
cells of the no-context model as green dots, revealing that all L4 cells 
are most tuned to orientation (average HWHH = 18°, matching real 
cat V1) and belong to the simple-cell category, L3 cells are also well-
tuned to orientation and have biologically accurate proportion of 
simple- and complex cell categories, whereas L3 cells in the no-context 
model fail do develop translational invariance and have poor 
orientation tuning.

4.3 L3 emergent properties

In the real cortex, long-range horizontal connections link cortical 
columns separated by up to several millimeters in a cortical area. They 
preferentially link cortical sites that share similar functional properties 

FIGURE 9

Responses of L3 cells to grating patterns. (A) F1/F0 scores of the 150 cells in the mesocolumn’s L3 compartment, spanning the range from clearly 
simple-cell (> 1) to clearly complex-cell (<1) categories. This distribution of ratios resembles that found in the upper layers in the real V1 cortex 
(Figure 1A; Kim and Freeman, 2016). (B) Discrimination of the grating orientations by the output vector of the 150 cells in the mesocolumn’s L4 
compartment (black curve) and the 150 cells in the mesocolumn’s L3 compartment (gray curve). The average angle between two L4 or L3 output 
vectors is plotted as a function of the angle between orientations of the two compared gratings. (C) Discrimination of the grating placements by the 
output vector of the 150 cells in the mesocolumn’s L4 compartment (black curve) and the 150 cells in the mesocolumn’s L3 compartment (gray curve). 
The average angle between two L4 or L3 output vectors is plotted as a function of the phase shift of the two compared gratings. Vertical bars are 
standard deviations.

FIGURE 10

Importance of contextual guidance for the development of 
biologically realistic feature properties in L3 cells. Plotted against 
each other are the F1/F0 ratio and half-width at half-height (HWHH) 
of orientation tuning of the model’s L4 cells (blue circles) and 
contextually guided L3 cells (red dots), as well as L3 cells of the no-
context model (green dots), showing that L4 cells and contextually 
guided L3 cells acquire biologically correct orientation tuning and 
translational invariance properties, whereas in the absence of 
contextual guidance L3 cells fail to do so.
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but have non-overlapping RFs (Gilbert and Wiesel, 1983; DeFelipe 
et al., 1986; Lund et al., 1993; Burton and Fabri, 1995; Bosking et al., 
1997). The fact that input patterns encountered by mesocolumns in 
their RFs possess contextually predictable features makes it possible 
for such long-range horizontal connections to establish Hebbian links 
between distant cortical columns even though they have 
non-overlapping RFs. When L3 cells tune to contextually predictable 
features, they become correlated with similar L3 cells in surrounding 
columns in their stimulation-evoked activities. Figure 11 shows the 
magnitude of such correlations between L3 cells in the central 
mesocolumn and functionally identical L3 cells in the first and second 
ring of surrounding mesocolumns. For a comparison, Figure 11 also 
shows that even in the first ring of mesocolumns, functionally 
identical L4 cells have very low correlations, which means that they 
would not be able to establish lateral Hebbian connections.

Canonical features learned by L3 cells characterize input patterns 
in many different ways that reflect the orderly aspects of the sensed 
outside world. This makes it possible for different input patterns, 
which are in some way objectively related, to be preferentially clustered 
in the L3 output space. We demonstrate this clustering tendency on 
an example of 4 different 512 × 512 pixel texture images shown in 
Figure 12A. We exposed the field of 19 mesocolumns to 500 randomly 
picked locations in each of the 4 texture images, and for each location 
we averaged the responses of L3 cells tuned to the same feature across 
19 mesocolumns, resulting in a 150-dimensional feature vector 
representation of the imaged texture field. We  next did Principal 
Component Analysis (PCA) on the 500 × 4 feature vectors. In 
Figure  12B, we  plot the computed scores of the first 3 principal 
components, color-coding them according to the texture images from 
which they originated. This 3-D plot reveals that L3 responses to the 
4 different textures occupy non-overlapping regions in the principal 
components space. For a comparison, Figure 12C shows the same plot 
for responses of thalamic LGN cells, which provided the input to the 
19 cortical mesocolumns. As expected, LGN responses to the 4 
different textures show no sign of preferential clustering.

We expressed the similarity of L3 output vectors evoked in 
response to different randomly picked locations in the same texture 

image by computing correlations between pairs of such vectors. 
Figure 13 plots average correlations (squared, keeping the sign) for 
each of the 13 texture images in the Brodatz (1966) database. Also 
plotted are average correlations computed for the L4 response vectors 
and vectors of 15 significant canonical variates. As the plot shows, 
unlike L4 vectors, both L3 cell and canonical variate vectors evoked 
by different views of the same texture show substantial similarity. Also 
noticeable is that L3 cells consistently show greater similarity than 
canonical variates (compare red and green bars), demonstrating the 
advantages of the overcomplete representation of the mesocolumn’s 
15-D canonical feature space by 150 L3 cells.

5 Discussion

5.1 Model accomplishments

The results of our cortical model simulations support biological 
plausibility of the proposed mechanism of cortical feature tuning and 
offer new insights into the nature of information extraction by 
neocortical networks. While potential usefulness of contextual 
guidance for feature tuning has long been recognized (see 
Introduction), so far it has only been explored at an abstract level or 
using greatly reduced “toy” models. In this paper we explore actual 
biological means by which neocortex tunes its neurons to contextually 
predictable features. Such means are likely to be  the backbone of 
functional organization of cortical columns.

The starting point in our biologically grounded exploration was 
consideration that the tuned features have to be  nonlinear. Our 
proposed two-stage solution is that, similar to artificial neural 
networks, feature tuning relies on hidden layer-like preprocessing, 
performed by the afferent input layer L4. That is, a local group of L4 
neurons together perform a nonlinear transform of their thalamic 
inputs, which is akin to a basic RBF transform. Such transform 
accomplishes pluripotent function linearization, thus allowing L3 cells 
in the second stage to extract their features by simple linear summation 
of their L4 inputs.

Simplifying the task of feature tuning to that of linear operation 
over the L4 transform allowed us to determine – using an objective-
function optimizing algorithm derived in Section 2.4 – that an RF of 
a representative V1 cortical column is likely to possess around 15 
independent contextually predictable features, which we  called 
canonical variates (Figure 4B). Furthermore, we determined that the 
transform-performing group of L4 cells will need at least 150 members 
in order to maximize the contextual predictability of all the canonical 
variates in its RF (Figure 6). Such a number is much greater than the 
30–60 excitatory cells found in the L4 compartment of a single 
0.05 mm-diameter cortical minicolumn (which is the narrowest 
columnar entity in the neocortex), but much smaller than the total 
number of excitatory L4 cells in the 0.5 mm-diameter macrocolumn. 
This finding leads us to propose a new class of cortical columns, the 
0.15 mm-diameter mesocolumn. It is estimated to comprise a local 
group of 7 minicolumns, all innervated by the same bundle of afferent 
axons, and to have 200–400 L4 excitatory cells, which together 
perform the pluripotent function linearizing transform of the 
mesocolumn’s afferent input.

Moving to the second stage of cortical feature extraction, which 
takes place in the upper layers, both anatomical evidence and model 

FIGURE 11

Correlations of cells in the central and surrounding macrocolumns in 
response to natural images. Plotted are distributions of magnitudes 
of correlation between functionally identical L4 and L3 cells in the 
central vs. the 1st and 2nd rings of surrounding macrocolumns. 
Substantial correlations at the level of L3 offer a substrate for 
growing Hebbian short- and long-range horizontal connections.
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studies indicate that an L3 pyramidal cell extracts its feature from the 
L4 input it receives from not just its own mesocolumn, but from a 
macrocolumn-size group of 7 mesocolumns. Anatomical segregation 
of the ascending L4 inputs to the basal dendrites and the long-range 
horizontal inputs to the apical dendrites of L3 pyramidal cells, 
combined with their separate spike-generating synaptic input 
integrating centers allows basal and apical dendrites to have separate – 
classical and extra-classical – RFs and develop RF properties that will 
maximize covariance of the cell’s apical and basal outputs (Kording 
and Konig, 2000; Kay and Phillips, 2011). Our model simulations, 
based on Hebbian plasticity of apical and basal synapses, show that 
contextual inputs to the apical dendrites readily drive basal dendrites 
to select contextually predictable (i.e., canonical) features in their 
classical RFs. Similarly to real V1 cortex, 80% of model L3 cells acquire 
complex-cell RF properties while 20% acquire simple-cell properties 
(Gilbert, 1977; Kim and Freeman, 2016). Overall, the design of the 
model and its emergent properties are fully consistent with the known 
properties of cortical organization.

If cells in the mesocolumn’s L3 compartment did not push each 
other to select different features, they would all tune exclusively to the 
first – most predictable and thus most attractive – canonical variate. 
However, diversification pressures drive L3 cells to choose the second 
best solution. Rather than tuning to one or a mix of few of the 
canonical variates, all L3 cells in the mesocolumn become sensitive to 
all first 11 variates. This sensitivity declines gradually from the 1st to 
the 11th variate in all cells (Figure 8C). For each variate, all L3 cells 
develop approximately the same correlation with it but they differ in 

FIGURE 12

Separate clustering of different textures in the L3 output space but not in the L4 input space. (A) Four texture images used for demonstration. The 
viewing window of the central and 2 rings of macrocolumns (Figure 3B) was placed at 500 random locations in each of these images to obtain 
responses of all their L3 cells, yielding a 150-dimensional activity vector for each location. These vectors were converted to principal component 
scores by performing PCA on the 2000 vectors. (B) 3D plot of the scores of the first 3 principal components, color-coding each L3 activity vector by 
the frame color of its source texture image. L3 vectors coming from the same texture image cluster separately from other vectors, reflecting 
prominent visual differences among the 4 textures. (C) 3D scores plot of the afferent input vectors from LGN layer to L4, revealing that these activity 
vectors are all mixed together.

FIGURE 13

Similarity of output activity patterns evoked in L3, but not in L4, by 
different locations in the same texture image, reflecting their shared 
higher-order statistics. Responses of L4 and L3 cells in 19 
mesocolumns, as well as their canonical variates, were obtained for 
200 randomly placed locations in each of the 13 texture images in 
the Brodatz database, similar to Figure 12. Response profiles 
obtained from each texture image were cross-correlated and the 
average of these correlations (and standard deviation) were plotted 
separately for L4 (blue bars), canonical variates (green bars), and L3 
(red bars) responses, showing that L4 responses had little, if any, 
similarity (the average correlation across the 13 images = 0.03), 
whereas L3 responses were more similar than canonical variate 
responses (13-image averages of 0.43 and 0.25, respectively).
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the sign of that correlation. Thus, each L3 cell carries maximal 
information it can about all first 11 variates (rather than emphasizing 
a subset of variates), with each variate contributing either positively or 
negatively in the pattern unique to that cell. As a result, L3 can 
be considered as approximating Hadamard-like domain transform of 
the first 11 canonical variates, decomposing them into a set of 
constituent functions (canonical features) over all variates. The L3 
transform differs from Hadamard transform in that its transform 
functions are not orthogonal, and their number (200–400) greatly 
exceeds the number of variates (11). That is, L3 generates an 
overcomplete representation of canonical variates.

Considered geometrically, diversification pressures among cells in 
the mesocolumn’s L3 compartment drive them to choose different 
preferred directions in the mesocolumn’s canonical feature subspace. 
If we view the canonical feature space defined by the first 11 variates 
as an 11-dimensional hypercube, we find that L3 cells pick different 
corners of this hypercube. Such a hypercube will have 2048 corners to 
choose from. It is intriguing that while 200–400 L3 cells in a 
mesocolumn will not be  able to pick all these corners, the larger 
columnar entity comprising a group of 7 mesocolumns – together 
making up a macrocolumn and sharing L4 input – will have just the 
right number of L3 cells for such a task.

As pointed out in Introduction, the orderly – as evidenced by their 
contextual predictability – nature of canonical features reflects the 
orderly structures in the environment. In tuning selectively to 
canonical features, L3 performs selective filtering of the information 
it receives from L4, emphasizing information about orderly aspects of 
the sensed environment and downplaying local, likely to 
be insignificant or distracting, information. Despite selective filtering 
and overcomplete representation of the canonical feature subspace, L3 
output preserves excellent discrimination capabilities (Figure 9) while 
acquiring novel categorization/abstraction ability to preferentially 
cluster in the L3 output space different input patterns that are in some 
way objectively related (Figure 12). Furthermore, reduced sensitivity 
of L3 output to distracting irrelevant details should help the L4 in the 
next cortical area to minimize the Curse of Dimensionality and to 
succeed in the next round of pluripotent function linearization, and 
for the next L3 to find higher-order canonical features.

5.2 The model’s antecedents

The general idea of using spatiotemporal coherence to discover 
useful regularities in inputs was introduced by Becker and Hinton 
(1992) and later elaborated by Becker (1996). Their IMAX learning 
procedure discovers regularities in multiview inputs by maximizing 
mutual information between outputs of two nonlinear multilayer 
network modules that receive nonoverlapping, but spatially or 
temporally related, input samples, thus tuning to higher-order input 
features reflecting common distal causes in the external world. Details 
of IMAX design, however, make it unsuitable for implementation in 
the cerebral cortex (Becker, 1996). Phillips and Singer (1997) 
suggested a way of making computation of mutual information 
biologically more plausible, and it is one of the cornerstones of their 
Coherent Infomax theory. They consider abstract local processors, 
loosely analogous to unspecified local cortical circuits, that receive 
both the afferent input from their RFs and lateral (contextual field) 
input from other such local processors. The contextual field input 

guides local processors to tune to those stimulus features in their RFs 
that are predictably related to the context in which they occur. 
According to Coherent Infomax, contextual inputs can be used not 
only to guide learning but, importantly, also modulate short-term 
processing of sensory information. Phillips and Singer (1997) derived 
a particular mechanism for how contextually-guided learning might 
be  accomplished. Unfortunately, that mechanism is limited in its 
practical utility due to its inability to search for nonlinear correlations. 
In its later development, Kay and Phillips (2011) showed that Coherent 
Infomax is consistent with a particular Bayesian interpretation for the 
contextual guidance of learning and processing and suggested learning 
rules that are more computationally feasible within systems composed 
of very many local processors.

Rather than invoking abstract local processors, Kording and 
Konig (2000) proposed that contextual guidance of feature tuning is 
implemented in individual pyramidal neurons, in which the apical 
dendrite acts – in addition to the soma – as a second site of integration 
capable of generating action potentials. Synaptic inputs to the soma 
site, coming from the cell’s RF, mainly determine the output activity 
of the post-synaptic neuron. Contextual inputs to the apical site gate 
synaptic plasticity. This separation makes it possible for contextual 
information to avoid confounding the effects of processing and 
learning. In “toy” simulations of such 2-site neurons receiving 
nonoverlapping but correlated inputs to their somata while sending 
their “teaching” outputs to each other’s apical site, cells learned to 
represent only the coherent part of the input, which would be expected 
to be relevant to the processing at higher stages. Kording and Konig 
termed their design Relevant Infomax.

To explain how 2-site pyramidal neurons might be able to tune to 
nonlinear features in their inputs, the challenge which was not 
addressed by the Kording and Konig model, Favorov and Ryder (2004) 
proposed that since dendritic trees are fundamentally nonlinear 
integrators, they might be  able to operate functionally as error 
backpropagating multilayer perceptrons (MLP). In their SINBAD 
(acronym for Set of INteracting BAckpropagating Dendrites) neuron 
model (Ryder and Favorov, 2001), the apical dendrite in each 
pyramidal cell functions as one MLP and the basal dendrites function 
as the second MLP, using each other’s output activities as their 
reciprocal backpropagating teaching signals. While SINBAD cells are 
very powerful in discovering high-order nonlinear regularities hidden 
in multiview sensory inputs, effectively approximating Gebelein’s 
maximal correlation (Kursun and Favorov, 2010), it has become clear 
that they are not biologically feasible because, while action potentials 
do backpropagate from the initial axon segment up the apical dendrite, 
their experimentally observed amplitude modulation is not consistent 
with what would be required in the error signal. Furthermore, this 
design depends on a complete separation of the inputs to the apical 
and basal dendrites, which is not observed in the real cortex. Instead, 
a much more biologically appealing solution for the necessity of 
tuning cells to nonlinear features is to make use of pluripotent 
function linearization in L4 (Favorov and Kursun, 2011), followed by 
linear learning in L3, as is explored in this paper.

5.3 Model limitations

The model of contextual guidance of feature selection explored in 
this paper is not complete. In addition to spatial context, which was 
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investigated here, contextual guidance can come from temporal 
context in which orderly features occur, as well as from higher-level 
understanding of the overall situation. In this paper, we only used 
static images and thus confined ourselves to spatial features of orderly 
structures, leaving temporal features of orderly processes for later 
studies. We  anticipate that studies of feature acquisition under 
temporal contextual guidance and feedback from higher-level cortical 
areas will make it necessary to expand our current L4-L3 model by 
adding deep layers and layer 2, resulting in a cortical column model 
incorporating all cortical layers.

The biological realism of neurons modeled in this paper is not 
complete. Unlike real neurons, which have binary outputs and are 
either excitatory or inhibitory, but not both, the modeled cells have 
outputs that are continuous variables in a negative–positive range and 
have connections that in the process of learning can change their 
sign. Adding this degree of biological realism to the model will 
be insightful, but we do not expect it to negate the lessons learned 
using the current model. Also, some of the mathematical techniques 
used in the model, such as normalization of the connection weights 
in Equations 17, 23, 25, might only approximate the true homeostatic 
mechanisms in the cortex (e.g., Turrigiano et al., 1998) and should 
be investigated further.

Sensory cortical columns are engaged not only in feature 
extraction and sensory information transmission to higher 
cortical areas, but also in other tasks, such as across-column 
binding by selective spike synchronization (Uhlhaas et al., 2009; 
Singer and Lazar, 2016), dynamic contrast enhancement and 
focused attention (Schummers et al., 2005; Tommerdahl et al., 
2010; Tallon-Baudry, 2012), predictive computation (Bubic et al., 
2010; Favorov et  al., 2015; Marvan and Phillips, 2024; George 
et al., 2025), etc. Correspondingly, output of real pyramidal cells 
in L3 is determined not only by synaptic integration of L4 inputs 
by the basal dendrites, as was done in the current paper, but also 
by local excitatory and inhibitory inputs, input from the apical 
dendrite, and other sources (Angelucci and Bressloff, 2006). Our 
current model lacks all this machinery since its sole purpose was 
to investigate mechanisms determining classical RF and feature 
tuning properties of cortical neurons. However, assuming that our 
proposed mesocolumn-based mechanism of 2-stage feature 
extraction is biologically realistic, our current model provides a 
starting point, constraints, and guidance in building a 
progressively more comprehensive model of cortical 
functional organization.
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