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Feedforward extraction of
behaviorally significant
information by neocortical
columns

Oleg V. Favorov! and Olcay Kursun®*

!Lampe Joint Department of Biomedical Engineering, North Carolina State University (in collaboration
with University of North Carolina at Chapel Hill), Raleigh, NC, United States, 2Department of
Computer Science and Computer Information Systems, Auburn University at Montgomery,
Montgomery, AL, United States

Neurons throughout the neocortex exhibit selective sensitivity to particular features
of sensory input patterns. According to the prevailing views, cortical strategy
is to choose features that exhibit predictable relationship to their spatial and/
or temporal context. Such contextually predictable features likely make explicit
the causal factors operating in the environment and thus they are likely to have
perceptual/behavioral utility. The known details of functional architecture of
cortical columns suggest that cortical extraction of such features is a modular
nonlinear operation, in which the input layer, layer 4, performs initial nonlinear
input transform generating proto-features, followed by their linear integration
into output features by the basal dendrites of pyramidal cells in the upper layers.
Tuning of pyramidal cells to contextually predictable features is guided by the
contextual inputs their apical dendrites receive from other cortical columns via
long-range horizontal or feedback connections. Our implementation of this strategy
in a model of prototypical V1 cortical column, trained on natural images, reveals
the presence of a limited number of contextually predictable orthogonal basis
features in the image patterns appearing in the column’s receptive field. Upper-
layer cells generate an overcomplete Hadamard-like representation of these basis
features: i.e., each cell carries information about all basis features, but with each
basis feature contributing either positively or negatively in the pattern unique to
that cell. In tuning selectively to contextually predictable features, upper layers
perform selective filtering of the information they receive from layer 4, emphasizing
information about orderly aspects of the sensed environment and downplaying
local, likely to be insignificant or distracting, information. Altogether, the upper-layer
output preserves fine discrimination capabilities while acquiring novel higher-order
categorization abilities to cluster together input patterns that are different but, in
some way, environmentally related. We find that to be fully effective, our feature
tuning operation requires collective participation of cells across 7 minicolumns,
together making up a functionally defined 150 pm diameter “mesocolumn.” Similarly
to real V1 cortex, 80% of model upper-layer cells acquire complex-cell receptive
field properties while 20% acquire simple-cell properties. Overall, the design of the
model and its emergent properties are fully consistent with the known properties
of cortical organization. Thus, in conclusion, our feature-extracting circuit might
capture the core operation performed by cortical columns in their feedforward
extraction of perceptually and behaviorally significant information.
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Favorov and Kursun

1 Introduction

In artificial intelligence, to quote Ritter (2003), “A first and very
important step in many pattern recognition and information
processing tasks is the identification or construction of a reasonably
small set of important features in which the essential information for
the task is concentrated” The concept of stimulus feature tuning is also
fundamental to neuroscience. It is widely accepted that neurons
throughout the cerebral cortex exhibit highly selective sensitivity to
particular features of peripheral stimuli and such tuning defines
neurons information representational identities (DiCarlo and Cox,
2007). Across cortical areas, neurons tune to stimulus features that
vary greatly in their complexity. Starting from the primary sensory
cortical areas and up each stream of successive areas, neurons
gradually increase their receptive field sizes, become more selective to
spatiotemporal stimulus patterns in their receptive fields (RFs), and
also develop selective invariances (Felleman and Van Essen, 1991;
Riesenhuber and Poggio, 1999).

A generally supported Mountcastle’s (1978) conjecture is that such
progressive elaboration of feature tuning properties is accomplished
by recursive application of essentially the same computational
operation, performed by series of cortical columns on their afferent
inputs (Phillips and Singer, 1997). However, the nature of this
hypothesized operation, as well as the nature of the extracted features
are poorly understood. Neurons acquire their mature feature-tuning
properties to a large degree by learning from experience, using lower-
level features provided by their afferent inputs to build higher-level
ones. Technically, a feature is a mathematical transfer function over a
set of afferent inputs to a neuron (or to a node in an artificial neural
network). Each neuron has to select (learn) some useful transfer
function. However, this can be a challenging task. In high-level
cortical areas that are closely engaged in shaping the behavior, the
neurons tuning to stimulus features can, in principle, be guided
directly by their more or less obvious behavioral utility. But for early
sensory areas, the identity of low-level stimulus features that would
be behaviorally useful - as building blocks enabling the construction
of high-level behaviorally significant features — and thus worth
extracting is far from clear. Such low-level features might be too far
removed from actual behavior for a criterion of “behavioral
usefulness” being of practical use in their selection, at least initially
during early postnatal cortical development. Instead, selection of such
features would have to rely on some local signs promising their
eventual usefulness.

The prevailing consensus, which emerged in the 1990s, is that
such local signs of tentative features’ potential usefulness can come
from the spatial and/or temporal context in which these features occur
(Barlow, 1992; Becker and Hinton, 1992; Becker, 1996; Stone, 1996; de
Sa and Ballard, 1998; Phillips and Singer, 1997; Hawkins and Blakeslee,
2004; Favorov and Ryder, 2004). According to this idea, local but
ultimately behaviorally useful features should be the ones that can
be predictably related to other such features, either preceding or
following them in time or taking place side-by-side with them. Thus,
neurons should choose features for their ability to predict and
be predictable from other such features. Predictive relations exist
among features extracted from non-overlapping sensory inputs
because they do reflect order present in the environment. Thus,
contextually predictable features are signatures of causal factors
operating in the individual’s environment, which might be relevant to
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the individual’s interactions with its environment and therefore worth
tuning to Phillips and Singer (1997), Ryder and Favorov (2001),
Favorov and Ryder (2004), and Ryder (2004).

While this proposal is straightforward at the conceptual level, its
actual algorithmic and neural implementational details — which
ultimately establish its biological feasibility — are lacking and need
fleshing out. In Section 2 of this paper, we use the known details of
cortical functional architecture as guiding constraints to formulate a
biologically realistic, algorithmically explicit computational model for
contextually guided feature tuning in cortical columns. This model
allows us to devise a version of multi-view canonical correlation
analysis to explicitly extract shared contextual information from
neighboring cortical columns, estimate its dimensionality, and
compute the principal axes (basis vectors) of the space of contextually
predictable features of input patterns occurring in a cortical column’s
RE In Section 3, we apply this methodology to natural images to
reveal the information space of contextually predictable features
available to a column in the primary visual area, V1. We train our
cortical model in Section 3 on visual inputs obtained from natural
images and demonstrate that the model’s neurons are highly capable
of tuning to contextually predictable nonlinear features despite using
only Hebbian synaptic plasticity. The model neurons learn close to all
theoretically available contextually predictable features, and these
features are found to be similar to those of neurons in the cat V1.

The demonstrated feature tuning effectiveness and biological
realism of the model suggest that it might capture the core operation
performed by cortical columns in their feedforward extraction of
perceptually and behaviorally significant information. In a related
paper (Kursun et al., 2024), we demonstrate that convolutional neural
networks (CNN) trained using contextual guidance can perform
better than deep CNN, which are trained using error-backpropagation,
on visual and hyperspectral imaging tasks, tactile texture
discrimination, or text classification.

2 Theoretical model specification
2.1 Contextual guidance in cortical layer 3

Cerebral cortex is a complex dynamical system dominated by
feedback circuits, but we limit our exploration to the feed-forward
component of this system, which endows neurons with their identity-
defining so-called “classical” RFs and feature-tuning properties.
We further confine our exploration to the central pathway in the feed-
forward elaboration of cortical neurons’ properties, which proceeds
through a repeating sequence of two cortical layers. Cortical layer 4
(L4) is the principal initial recipient of the feed-forward afferent input
to a cortical area. L4 converts that input into a new form and sends it,
in particular, to layer 3 (L3) of the same cortical area for its feature-
extraction operation. The product of that L3 operation is then sent to
L4 of the next cortical area, where the same two-stage feature-
extracting operation is repeated, but on a higher level, building on the
advances made by the preceding cortical area (Rockland and Pandya,
1979; Felleman and Van Essen, 1991; Callaway, 2004).

In addition to their afferent input from L4, L3 neurons receive
extensive contextual input via long-range horizontal connections from
surrounding columns up to several millimeters away from their
resident column (Gilbert and Wiesel, 1983; DeFelipe et al., 1986; Lund
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et al,, 1993; Burton and Fabri, 1995). These contextual inputs are
expected to guide L3 neurons to the sources of mutual information in
these two, afferent and contextual, input sets (Phillips and Singer,
1997). Two principally different kinds of such sources are possible.
First, the two input sets might have partially overlapping RFs; in other
words, they might share some neurons along their afferent pathways in
common. Such an internal source of mutual information in the two sets
is trivial and has to be avoided. Second, the afferent and contextual
input sets might be impacted by the same environmental agent. Such
an external source of mutual information has the potential of being
behaviorally significant and therefore worthy of recognition. One way
to ensure that mutual information in the two input sets comes from
external sources is to use inputs with non-overlapping RFs. Indeed,
long-range horizontal connections come from far enough to have
non-overlapping RFs but are close enough to reflect the same distal
variables in the engaged environment.

The value of the feature (¢) extracted by the i* L3 cell is computed
from the afferent inputs to its resident cortical column m, as in
Equation 1:

@i = fi (Im) (1)

where f,,,; is the chosen feature-specific transfer function, and H
is a vector of activities of all the afferent axons innervating column .
According to the contextual guidance proposal, the function f,,; is
chosen so as to maximize correlation of ¢,,,; with the “best” function
gmi over features extracted in other, surrounding columns and
delivered via long-range horizontal connections, as in Equation 2:

fmi =argmax CO”((ﬂmi; Emi (@context )) 2)

mi

where corr is Pearson’s correlation coefficient, and @qg,pexs is @
vector of all available L3 contextual features combined.

Since different neurons in a column should extract different
features, we should elaborate the choice of the feature-extracting
transfer function f,,; for a single neuron i in column m: the choice is
to maximize correlation of ¢,,; with the “best” function g,,; over
features in other columns, subject to the constraint that correlation of
this feature with features computed by other neurons in the same layer
in the same column should not be excessive.

It should be noted that features extracted by cortical neurons —
especially in high-level cortical areas - are highly nonlinear
functions of peripheral patterns of receptor activations. No
recursive application of linear transform functions would be able
on its own to produce such features. Cortical neurons must be able
to use nonlinear transfer functions. However, experience-driven
learning of nonlinear transfer functions in neural networks can
be highly problematic, unless a kernel-based strategy is used.
Kernel methods, popular in machine learning, offer a highly
effective strategy for dealing with nonlinear problems by
transforming the input space into a new “feature” space where a
nonlinear problem becomes linear and thus more tractable with
efficient linear techniques (Scholkopf and Smola, 2002). According
to Favorov and Kursun (2011), such a kernel-based function
linearization strategy happens to be used in the neocortex in its
principal input layer, layer 4. This insight suggests that cortical
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columns first perform a nonlinear function-linearization transform
of their afferent inputs in L4 and then learn linear transform
functions in L3.

2.2 Layer 4 pluripotent function
linearization

An important feature of L4 functional architecture is the presence
of untuned feed-forward inhibition, which reflects the overall strength
of the stimulus activating a local L4 network but is insensitive —
invariant - to spatial details of the stimulus patterns (Kyriazi et al.,
1996; Bruno and Simons, 2002; Swadlow, 2003; Hirsch et al., 2003; Sun
et al., 2006; Cruikshank et al., 2007). Favorov and Kursun (2011)
showed that the presence of such untuned feed-forward inhibition
converts a conventional neural network into a functional analog of
Radial Basis Function (RBF) networks (Lowe, 2003), which are well
known for their universal function approximation and linearization
capabilities (Park and Sandberg, 1991; Kurkovd, 2003). Input
transforms performed by such networks automatically linearize a
broad repertoire of nonlinear functions over the afferent inputs. This
capacity for pluripotent function linearization suggests that L4 can
contribute importantly to cortical feature extraction by performing
such a transform of afferent inputs to a cortical column that makes
possible for neurons in the other layers of the column, including L3,
to extract nonlinear features of afferent inputs using mostly
linear operations.

A biologically realistic and highly effective pluripotent function
linearizer has the following ingredients (Equation 3): (1) activity of
each excitatory L4 cell is computed, in part, as a weighted sum of its
afferent inputs, which are Hebbian; (2) lateral interconnections among
L4 cells are used to diversify the afferent connectional patterns among
L4 cells in a cortical column and give them a rich variety of RF
properties; and (3) feed-forward inhibition makes L4 cells behave
similarly to RBF units and is principally responsible for function
linearization capabilities. Following Favorov and Kursun (2011),
we describe L4 operation as:

+

Fg =| D wijeaj+2> (-pik)*Fra, —0 /zajz' (3)
j k j

J

where Fy 4 is the activity of L4 neuron i g; is the activity of afferent
input neuron j; w;; is the weight, or efficacy, of the excitatory synaptic
connection from afferent neuron j to L4 neuron i A is a lateral
connection scaling constant; Fy 4 is the activity of a neighboring L4
neuron k; p; i is the correlation coefficient between activities of L4
neurons i and k; 6 is a feed-forward inhibition scaling constant; and
[-]* indicates that if the quantity in the brackets is negative, the value
is to be taken as zero.

In the presence of both feed-forward inhibition and plastic lateral
connections, which are unique to L4 in that higher correlation in
firings of the pre- and post-synaptic cells leads to decrease - rather
than increase - of synaptic strength (Egger et al., 1999; Sdez and
Friedlander, 2009), a modeled network of L4 neurons, trained on
visual inputs, develops biologically accurate diversity of multi-subfield
RFs and acquires orientation tuning matching in sharpness that of real
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L4 neurons, as well as a host of other real L4 functional properties
(Favorov and Kursun, 2011).

In the above L4 model, neurons accomplish their pluripotent
function linearization by acting in local groups. To explain,
consider a local group of L4 neurons that are innervated by a
common set of afferent neurons. Together, such a set of N
convergent afferent neurons can be viewed as defining an abstract
N-dimensional afferent input state space, each dimension
corresponding to one of the constituent afferent neurons. A targeted
L4 neuron i takes a particular direction in this afferent space
(defined by the vector of its afferent connection weights w; in
Equation 3) as its conic RBF center. Neighboring L4 neurons
innervated by the same set of afferent neurons chose different RBF
centers (i.e., different w) in their common afferent space, influenced
in their choices by lateral interactions with each other. Together, a
local group of L4 neurons will spread their RBF centers evenly
throughout their common afferent space so as to map it most
efficiently, with more active regions of that space mapped at higher
resolution (Deco and Obradovic, 1995). A wide range of nonlinear
functions defined over this space - including transfer functions that
can extract contextually predictable features — can be then
approximated by weighted sums of the activities of the mapping
L4 neurons.

What is the size of such RBF-network-like local groups of L4
neurons that together can perform pluripotent function linearizations?
Although it is limited, anatomical evidence based on typical sizes of
afferent axon arborizations in L4 and the lateral spread of dendrites
and axon collaterals of L4 cells within the confines of L4 suggests that
such groups should be larger than a minicolumn (i.e., >50 pm in
diameter) but smaller than a macrocolumn (i.e., <500 pm). We will
refer to such intermediate-size function-linearizing columns in this
paper as mesocolumns.

Structurally, minicolumns are the radially oriented cords of
neuronal cell bodies evident in Nissl-stained sections of the cerebral
cortex (Mountcastle, 1978; Buxhoeveden and Casanova, 2002). They
are the narrowest (~50 pm diameter) columnar aggregates of neurons
in the neocortex (Favorov and Diamond, 1990; Tommerdahl et al.,
1993) and thus can be viewed as the smallest building blocks of cortical
columnar organization (Mountcastle, 1978). Published estimates of L4
cell densities in visual and somatosensory cortical areas (Beaulieu and
Colonnier, 1983; Budd, 2000; Markram et al., 2015; Meyer et al., 2010)
suggest that a single minicolumn has between 30 and 60 excitatory L4
neurons. Such a number is clearly not enough for a functionally useful
RBF mapping of a minicolumn’s afferent space.

Minicolumns are packed together in the cortex in an essentially
hexagonal pattern. From a geometric perspective, the next larger-size
columnar entity to consider is a group of 7 minicolumns, one
surrounded by 6 others. Such columns will be 3 minicolumns wide
and thus ~150 pm in diameter. They will have between 200 and 400
excitatory L4 neurons. In Section 3 we will show that such numbers
of L4 neurons are sufficient for the purposes of contextually
predictable feature extraction in L3. We propose that, based on the
available evidence, such groupings of 7 minicolumns are the most
plausible candidates for the role of function-linearizing mesocolumns
(Figure 1). A group of 7 such mesocolumns, in turn, make the next
larger-size columnar entity ~450 um in diameter, corresponding in
size to the well-known macrocolumns (Mountcastle, 1997).
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2.3 Layer 3 extraction of contextually
predictable features

The lateral spread of axonal projections of L4 cells in L3 and the
lateral spread of basal dendrites of pyramidal cells in L3 indicate that
L4 neurons send their output to L3 neurons not only in their own
mesocolumn but also in the 6 surrounding mesocolumns (Lubke
etal,, 2003; da Costa and Martin, 2010). Consequently, the “classical”
RFs and feature-tuning properties of L3 neurons in a given
mesocolumn are, essentially, the product of weighted summation of
output activities of L4 neurons of the same and 6 surrounding
mesocolumns (Figure 1):

7 NLJm(

(D IDY

m=1 j=1

Uimi-Fra,, (4)

where ¢; is the feature-expressing activity of L3 neuron i in the
central mesocolumn; N, 4, is the number of L4 cells in a mesocolumn;
Fr4,, is the activity of an L4 neuron j in mesocolumn m; and u;,,; is the
strength of their connection.

In L3, the afferent inputs from L4 target basal dendrites of
pyramidal cells, whereas the contextual inputs from surrounding
cortical territories target their apical dendrites (Gilbert and Wiesel,
1983; Kisvardy et al., 1986; Lubke et al., 2003; Petreanu et al., 2009).
Synaptic inputs to basal dendrites are integrated in the soma, leading
to spike generation in the initial axon segment. But the apical dendrite,
including its terminal tuft extension in layer 1, has its own site of
synaptic input integration and is able to generate its own spikes
(Bernander et al., 1994; Cauller and Connors, 1994; Schiller et al.,
1997; Stuart and Spruston, 1998; Larkum et al., 1999, 2007). Output
activity of the apical dendrite in the i" L3 cell is, essentially, the
product of weighted summation of output activities of L3 neurons of
surrounding columns:

Aj Zvi,c *Pc (5)
ceC

where C is the set of all the L3 neurons in surrounding
columns that contribute contextual input to cell i; v; . is the
strength of connection to cell i from contextual cell ¢; and ¢, is
basal dendrite output of cell ¢ (Equation 4). With such separate
contextual input integration, the apical dendrite can guide basal
dendrites in their selection of afferent connectional patterns (and
vice versa) so that they will maximize covariance of the cell’s
apical and basal outputs A; and ¢;, as was proposed and
successfully demonstrated in a basic model by Kording and
Konig (2000).

The number of excitatory cells in L3 is approximately the same as
in L4 (Markram et al., 2015; Meyer et al., 2010), suggesting that the L3
compartment of a mesocolumn contains between 200 and 400
pyramidal neurons. Under mutual competitive pressure to diversify
their RF tuning properties, similar to plastic local lateral connections
among neighboring L4 cells driving them to select different features,
these 200-400 neurons in a mesocolumn will compete in their search
for contextually predictable features. Together, they will find and tune
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FIGURE 1

Mesocolumn-based feature extraction in the neocortex. (A) Connectional diagram. (B) Minicolumnar composition and RF of a mesocolumn.

(C) Mesocolumnar composition and RF of a macrocolumn. The smallest structural units of neocortical columnar organization are minicolumns,
comprising neurons whose bodies line up in ~50 um diameter radially oriented stacks separated by radially oriented bundles of axons and apical
dendrites. Neurons residing in neighboring minicolumns are not functionally isolated but make up larger-size functional aggregates. This paper
explores the feature extracting capabilities of aggregates that span local groups of 7 minicolumns, referred to as mesocolumns. The L4 and L3
compartments of three such mesocolumns, taken from monkey somatosensory cortex, are shown in panel (A), each revealing multiple vertical stacks
of Nissl-stained neurons. Neighboring mesocolumns receive their input @ from partially overlapping sets of afferent neurons and thus from partially
overlapping RFs. In panel (B), a mesocolumn is shown schematically as a hexagonally packed group of 7 minicolumns (black filled circles). It is
estimated to contain 200—-400 excitatory cells in each of its L4 and L3 compartments. In the primary visual cortex, a mesocolumn'’s RF in natural
images would correspond to an approximately 16 pixel diameter circle (Favorov and Kursun, 2011). L4 cells in a mesocolumn act together as a group in
performing pluripotent function linearizing transform of their RF input patterns. Neurons in the L3 compartment of a mesocolumn receive their
afferent input from L4 cells residing not only in their own but also neighboring mesocolumns (A). Such a larger group of 7 mesocolumns, feeding
central mesocolumn’s L3 neurons, is shown in panel (C) schematically as an ~450 um diameter macrocolumn. Since RFs of L4 compartments of these
7 mesocolumns are partially shifted (as shown), the overall RF of a mesocolumn’s L3 compartment is expanded to an approximately 21 pixel diameter
circle. L3 neurons in a mesocolumn respond to diverse features of input patterns appearing in their mesocolumn’s RF, together converting the
mesocolumn'’s afferent input vector & to the mesocolumn’s output feature vector @.

B 10
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0
-10 0 10
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to all the different contextually predictable features present in their
shared afferent input from L4 (Equation 4).

In geometric terms, together the 1,400-2,800 L4 cells in 7
mesocolumns that provide afferent input to the L3 compartment of a
central mesocolumn create that mesocolumn’s high-dimensional state
space. Since we are concerned with L3 features that are computed
linearly in that state space (Equation 4), such features correspond to
particular directions in the mesocolumn’s L3 state space: for a given
L3 neuron i, its afferent connectional vector % determines that
neurons preferred direction in its mesocolumn’s L3 state space and
thus its preferred feature.

Any arbitrary direction in the L3 state space will express some
feature of input patterns taking place in the mesocolumn’s
RE. However, most of such arbitrarily chosen features will not
be perceptually significant. Contextually predictable features occupy
a lower-dimensional subspace of the L3 state space. The size and
contents of this contextually predictable subspace have never been
revealed before, even for the primary sensory cortical areas. In the
next section (Section 2.4), we derive a computational algorithm for
estimating the principal axes (basis vectors) of this subspace, and in
Section 3 we apply this algorithm to natural images in an attempt to
reveal the contextually predictable subspace of a mesocolumn in the
primary visual area, V1. Also in Section 3 we investigate what features
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(i.e., directions in the mesocolumn’s L3 state space) individual L3
cells will choose if they are modeled as comprising two dendritic
compartments — basal and apical, each receiving Hebbian connections
from either L4 of its own macrocolumn or from L3 of surrounding
macrocolumns, respectively — and are trained on natural images.
We show that such modeled L3 cells do indeed select features in the
mesocolumn’s contextually predictable subspace.

2.4 Extraction of the contextually
predictable feature subspace of a cortical
mesocolumn

We begin by formalizing terminology to be used in the rest of
this paper:

« The state space of a mesocolumn is created by 1,400-2,800 L4
cells that provide afferent input to its L3 compartment
(Equation 4). Stimulus patterns activating that mesocolumn’s RF
are represented as points in the state space and can
be characterized in an infinite number of ways by projecting
these points onto any particular vector in the state space. Any
such projection vector can be considered a “feature;” and the
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entire state space of a mesocolumn is the space of possible
features, or the feature space. Thus, we can refer to a mesocolumn’s
state space as its feature space to emphasize its feature content.

o We search for contextually predictable features because such
features reflect orderly aspects of the environment. To emphasize
their orderly nature, we will follow Hotelling (1936) and call
them canonical features (from the Greek word kanonikotita,
kovovikotnTa, which means “regularity,y “predictable
recurrence”). The contextually predictable subspace of a
mesocolumn’s state space, comprising all the canonical features,
then is the canonical feature subspace.

o Our explicit task is to extract the canonical feature subspace from
the mesocolumn’s state space by finding all of its principal axes
(basis vectors). This set of orthogonal vectors in the state space,
enclosing the canonical feature subspace, will be called canonical

variates (Hotelling, 1936).

We formulate our approach based on the following considerations.
We define the 1st axis of the canonical feature subspace (i.e., the Ist
canonical variate) to be the basis vector with the maximal correlation
with the contextual input, the second axis (i.e., the 2nd canonical
variate) to be the basis vector with the second largest correlation with
the contextual input, and so on until the last axis. In the cortex,
different mesocolumns develop their own sets of afferent, lateral, and
contextual connections based on their particular histories of sensory
experiences. However, since neighboring mesocolumns will end up
being exposed to and being shaped by the same regularities in their
sensory experiences, any emergent differences among them will not
be functionally significant. Thus, in deriving our algorithm, we can
make an assumption that all the neighboring mesocolumns involved
in contextual guidance will have the same matrices of L3 afferent [u;,,,]
and contextual [v,-’cj connections (Equations 4, 5) and also identical
sets of canonical variates.

To quantify the correlation of a canonical variate with the
contextual input, we use the mean of pairwise correlations of that
variate in the central mesocolumn and the same variate in each of the
neighboring mesocolumns that contribute the contextual input. If
we label the direction of a canonical variate in the L3 state space as b
(b stands for “basis”), then we define the contextual correlation of this
variate as in Equation 6:

N
1 N e o
v Zcorr(bT «Ey BT E, ) (6)

m m=1

where N,, is the number of mesocolumns contributing contextual
input. Faffo and Fujf,,, are the afferent inputs to the L3 compartment of
the central (0") mesocolumn and the m™ neighboring mesocolumn,
respectively, from their flattened 7 x N 4,,, dimensional vectors of the
outputs of L4 neurons of the same and 6 immediately
surrounding mesocolumns:

- —r—1 —11"
Faﬁt = FL4O’FL41 ""FL46 (7)

Our objective function for the i canonical variate is to find such
a direction b; in the L3 state space that will maximize its contextual
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correlation 7; (subject to the constraint that b; 1 Ej for all j <i). Our
objective function is designed to maximize the canonical correlation
of the i component, concurrently ensuring orthogonality with all
previously computed components. This methodology, which
constructs orthogonal vectors sequentially, beginning with the first,
systematically generates a series of orthogonal vectors. Each vector
maximizes the variance subject to the orthogonality constraints
imposed by its predecessors.

Continuing with our assumption that different mesocolumns in a
contextually related cortical territory have the same internal
connectivities, we also assume that all N,, mesocolumns in our model
have the same means and covariance matrices of the afferent inputs to
their L3 compartments:

- - - RV \T
ﬂ:E[Faﬁ‘OJ KautozE[(Fafﬁ, _ﬂ)(Faﬂo _,u) :l ®)
Then, we can write our objective function as:

B 6% (o ~)(Fop. ~7)' 6

E[ETKauto BJ

N,
b =argmax » "

©)

Thus, the objective function in Lagrangian formulation is
given by:

bi :argr}’]ax ZZZIET'E[(Fan’ _ﬁ)(ﬁaﬂm _ﬁ)T:|'h

7x.(%TKaum 1371) (10)

The optimization task specified in Equation 10 has a well-
structured generalized eigenproblem and can be efficiently solved
using established numerical algorithms (Hotelling, 1936; Hardoon
etal,, 2004; Kursun et al., 2011; Golub and Van Loan, 2013; Alpaydin,
2014), in which the eigenvector having the largest eigenvalue giving
us the first canonical variate by, the eigenvector having the second
largest eigenvalue giving us the second variate b, and so on:

Keross bi =X Kauto bi (11)

where Kcross is the cross-covariance matrix (Hotelling, 1936;
Kursun et al., 2011):

Keross :E|:(Faﬁ0 _ﬁ)zlr:il(ﬁa)f,, _ﬁ)T:| (12)

3 Model simulations

For model simulations, we sought to emulate the primary visual
cortical area (V1) and so applied our L4-L3 feature-extracting model
to natural images, setting the afferent inputs of the modeled
mesocolumns to approximate thalamic inputs to V1 from the lateral
geniculate nucleus. The aim of simulations was to develop contextually
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predictable features that can be expected to be found in a representative
V1 mesocolumn. Visual input patterns and the L4 compartments of
modeled mesocolumns were reproduced, with a few minor differences,
from Favorov and Kursun (2011) and that paper should be consulted
for their complete descriptions.

3.1 Methods

3.1.1 Visual input patterns to the L4 compartment
of a mesocolumn

Biologically realistic visual afferent inputs, delivered to L4 via the
lateral geniculate nucleus (LGN), were simulated based on the retinal/
LGN model of Somers et al. (1995). RFs of LGN neurons were
modeled as a difference of the “central” and the “surround”
two-dimensional Gaussians, with a common space constant ¢ for
both dimensions:

2 2
=D, 120,

-D}, /202, _( (13)

Ry = (1 / 27zaczemer )e 1/ ZEUSZLW ) e

where 6., = 0.8833 and o, = 2.6499 (Figure 2A). D,, is the
Euclidean distance between a pixel at the (x, ) location in the image
and the (x;, y) image location of the RF center. If D,, > 8, R,, = 0 (i.e.,
the RF diameter is restricted to 16 pixels). Thus, the activity of an
ON-center LGN neuron with the RF center at the (x, y,) location in
the image was computed as:

aon =| 0.1+ D > Ry, - I, (14)
y X

where I, is the grayscale intensity of the pixel at (x, y) location in
the image (0 < I,, < 1). The activity of an OFF-center LGN neuron was
computed as:

AOFF = O-I_ZZny'Ixy (15)
y x

Each mesocolumn in the model was set to receive its afferent
input from 91 LGN neurons with retinotopically arranged ON-center
RFs and 91 neurons with retinotopically arranged OFF-center RFs
(Figure 2B). RF centers of ON-center LGN neurons were arranged in
a hexagonal pattern, spaced one pixel apart, and RF centers of
OFF-center LGN neurons coincided with the RF centers of the
ON-center LGN neurons. Together, these 182 LGN neurons created a
hexagonally shaped viewing window onto visual images (Figure 2B).

In this study, the visual inputs to the LGN layer were drawn from
a set of 100 grayscale photographs (320 x 320 pixels) selected from the
IAPR TC-12 benchmark dataset (Grubinger et al., 2006), containing
texture-rich natural images of surfaces, grass, bushes, landscapes,
human and animal figures, and Brodatz (1966) dataset of textures
(Figure 2C). Since this is a relatively small set of images, selected for
their detail-rich spatial contextual information, an additional much
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larger and more diverse image dataset was also used to confirm the
model findings made on the IAPR TC-12 dataset. This was a widely
used Common Objects in Context (COCO) dataset of images of
complex everyday scenes containing common objects in their natural
context (Lin et al., 2015). In particular, we used 5,000 images of the
2017 validation set.! The photographs were not preprocessed, except
for contrast enhancement using histogram equalization. To generate
a particular visual input pattern, the LGN viewing window was placed
over a particular location in one of the photographs. The intensities of
the pixels within the viewing window were then convolved with the
RF profiles of the LGN neurons (Equations 13-15). All computational
procedures were implemented using MATLAB (2023).

3.1.2 Output of the L4 compartment of a
mesocolumn

The L4 compartment of each mesocolumn was modeled as a
group of Ny, neurons of the type described above by Equation 3. The
temporal behavior of each neuron, modeled as a leaky integrator, is
described by the following differential equation:

d 1|82 182 Ny i
TEFL4l =_FL4- +ﬁ Zwi,j-aj—H Za] +A Z Zik -FL4k (16)
j=1 j=1

k=1,k=#i

where 7 is a time constant; Fy 4 and Fy4,_are the output activities
of L4 neurons i and k in the computed mesocolumn, respectively; g; is
the activity of the j* among the 182 LGN neurons innervating the
computed mesocolumn; w;; is the strength of the afferent connection
from LGN neuron j to L4 neuron i; z; is the strength of the connection
to L4 neuron i from L4 neuron k residing in the same mesocolumn; 0
and A are feed-forward and lateral connection scaling constants,
respectively. This differential equation was solved numerically using
Euler updates with a step size A t =1 ms. Explicitly, the Euler update
for an equation T(d/dt)x:—x+g(x.) is
x(t + At) ~ (1 —At/ 'fcg'x(t) + (At / T)-g(x). Time constant 7 was set
to 4 ms, € = 0.65 and A = 3. The response of the L4 network to a given
afferent input pattern was computed in 20 time steps.

3.1.3 Hebbian development of afferent and lateral
connections in the L4 compartment of a
mesocolumn

The complete set of instructions and explanations offered in
Favorov and Kursun (2011) should be followed in growing L4
connections. Partially repeated here, those connections were driven
to their final state by modifying them iteratively over 20 update steps.
At each step, the L4 compartment of a mesocolumn was stimulated
with 1,000 visual input patterns, which were produced by placing the
LGN viewing window in random locations in any of the 100 database
images. Output activities of the 182 LGN cells and Ny, L4 cells in
response to these 1,000 visual patterns were used to compute
correlation coefficients between all pairs of LGN-L4 and L4-14

1 http://images.cocodataset.org/zips/val2017.zip

frontiersin.org


https://doi.org/10.3389/fncir.2025.1615232
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
http://images.cocodataset.org/zips/val2017.zip

Favorov and Kursun

10.3389/fncir.2025.1615232

LGN layer model. (A) RF profiles of ON-center and OFF-center model LGN cells. (B) The map of the RF centers (little white boxes) of the 91 ON-center
cells of the LGN layer innervating a single mesocolumn. Note that RF centers are arranged in a hexagonal pattern. RF centers are shown superimposed
on a 13 x 13-pixel field, in which each pixel is shown as a black-edged gray square. RF centers of the 91 OFF-center LGN cells match the RF centers of
the ON-center cells. (C) Four exemplary 320 x 320-pixel natural images that were used to activate the LGN layer. Reproduced with permission from
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FIGURE 2
Favorov and Kursun (2011).

neurons, and those correlations were used to update the afferent and
lateral connections.

At update step s, the strength of the afferent connection from LGN
cell k to L4 cell i was updated based positively on correlation pj; (s) of
their outputs during step s as, as given in Equations 17, 18:

17)

i (5)= [ (] L ()]

where:

Wik (S)Z(I_Uaﬂ )-Wik (5_1)+77aﬁ"pik(5) (18)

The weight of the lateral connection between L4 cells i and k was
updated based negatively (according to Egger et al., 1999; Sdez and
Friedlander, 2009) on correlation pj (s) of their outputs during step
s, as in Equation 19:

Zik (S)=(1—771az )-Zik(s—l)—mat-pik(s) (19)

Adjustment rate constants 77,¢= 0.01 and 77;,,= 0.1 produced the
fastest convergence of connection strengths to stable values.

3.1.4 Afferent and contextual inputs to the L3
compartment of a mesocolumn

The L3 compartment of a mesocolumn in the model was set to
receive afferent input from its own L4 compartment as well as from L4
compartments of six immediately adjacent mesocolumns (Equation 4).
The LGN viewing windows of these six surrounding mesocolumns are
shifted by 3 pixels relative to the LGN window of the central
1C).
Consequently, the viewing window of the L3 compartment of a

mesocolumn in six evenly spaced directions (Figure
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mesocolumn (which we consider to be its classic RF) is increased to
21 pixels.

In the real cortex, L4 compartments of different mesocolumns
develop their own sets of LGN and lateral connections based on their
visual experiences. However, since visual experiences of 7 neighboring
mesocolumns are essentially the same, any emergent connectional
differences among them will not be functionally significant. This
allows us to greatly reduce the computational effort in developing the
model’s L4 connectivity by developing LGN and lateral connections
of just one mesocolumn and then use these patterns of connections
(i.e., the [w;] and [z,] matrices in Equation 16) in all the mesocolumns
making up the model.

Our definition of the mesocolumn in Section 2.2 as a local group
of 7 minicolumns, L4 cells of which together perform pluripotent
function linearization transform of their shared afferent input, leads
us to treat mesocolumns in this modeling effort as discrete entities
packed in the cortex as a honeycomb-like mosaic. We also treat
macrocolumns as discrete entities comprising 7 mesocolumns
(Figure 3). However, this might be oversimplification. While discrete
macrocolumns do exist — at least in the somatosensory cortex
(Favorov and Diamond, 1990; Favorov et al., 2015) — experimental
evidence of discrete mesocolumnar structures in L4 is lacking. It is
possible that discrete mesocolumns, while appealing in their
conceptual simplicity, are not necessary, and L4 function linearization
transform can be successfully performed by a field of partially
overlapping mesocolumns (making a mesocolumn a functional,
rather than structural, entity). We will leave exploration of this
possibility for future studies.

Thus, for model simulations, the afferent input to the L3
compartment of the central mesocolumn is a flattened 7x N 4,
dimensional vector of the outputs of L4 neurons of the same and 6
surrounding mesocolumns (Equation 7). The contextual input to the
L3 compartment of the central mesocolumn in the model was set to
come from L3 compartments of two concentric rings of distant
mesocolumns: the inner ring of 6 mesocolumns and the outer ring of
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Cortical field

FIGURE 3

and 18 pixels, respectively, relative to the RF of the central macrocolumn.

30 20 10 0 10 20 30
Visual field (pixels)

Afferent and contextual inputs to the model mesocolumn’s L3 compartment. (A) The central macrocolumn (blue shaded) surrounded by two
concentric rings of 6 and 12 macrocolumns (gray shaded) carrying contextual information. In the cortex, these rings would be ~0.5 and ~1.0 mm away
from the central macrocolumn. In the model simulations, image-response activities were computed for L4 cells in all 7 mesocolumns in each of the 19
macrocolumns but, to reduce the amount of computation, responses of L3 canonical variates were computed only for the central mesocolumn in
each macrocolumn. They were used as the contextual input to the L3 cells in the central macrocolumn’s central mesocolumn (red shaded). (B) RF
outlines of the central and 12 outermost surrounding macrocolumns, showing very limited overlap. RFs of the inner and outer rings are shifted by 9

12 mesocolumns (Figure 3A). RFs of the outer ring mesocolumns are
shifted by 18 pixels relative to the RF of the central/recipient
mesocolumn (Figure 3B). RFs of the inner ring mesocolumns are
shifted by half of this distance; i.e., by 9 pixels.

3.1.5 Algorithmic extraction of canonical variates

Canonical variates are the principal axes of the canonical feature
subspace. To find their directions ( E,) in the L3 state space
(Equations 9-11), the modeled field of L3 compartments of 19
mesocolumns, each receiving afferent input from L4 compartments of
its own and 6 surrounding mesocolumns (Figure 3), was stimulated
with 5,000 visual input patterns, which were obtained by placing the
LGN viewing window in random locations in any of the 100 database
images. For each visual pattern, the afferent input to the L3
compartment of each of the 19 mesocolumns in the field (Fuff, ) was
written as a flattened vector of output activities of cells in L4
compartments of its own and its 6 surrounding mesocolumns
(Equation 7). E,- vectors of the first 20 canonical variates were extracted
from the 5,000 sets of afferent input vectors of the central and 18
surrounding mesocolur}lns ﬁuﬁ; JE, 1 ...ﬁaﬂcm according  to
Equations 8, 11, 12. Using b vectors, magnitudes of canonical variates
of L3 afferent input patterns can be computed as:

@5 =b} (Fuyy, - i) (20)

where @, ; is the projection of the L3 afferent input vector of the
m™ mesocolumn onto the i canonical variate.

3.1.6 Hebbian tuning of L3 cells to canonical
features

The central thesis of this paper is that pyramidal neurons in L3
should tune to contextually predictable, canonical, features, and they
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accomplish it by adjusting the weights of L4 connections to their basal
dendrites under guidance from their apical dendrites, which receive
contextual inputs from the surrounding cortical territory (Section
2.3). To explore what features might be thus selected by L3 cells in a
V1 mesocolumn, we gave the L3 compartment of the central
mesocolumn the same number of cells as in its L4 compartment (i.e.,
Nisme = Npm) and trained their L4 input connections using an
approach adapted from Kording and Konig (2000). For contextual
guidance, we used canonical variates in the surrounding 18
mesocolumns (black shaded mesocolumns in Figure 3A).

Thus, the LGN viewing window was placed in 5000 random
locations in the 100 database images, and for each image location
we computed afferent input vectors to L3 compartments of the central
and 18 surrounding mesocolumns Fafﬁ, >E1ff, --~ﬁaffm as well as the
responses of canonical variates ®,,; to these input vectors
(Equation 20). These responses were autoscaled to zero mean and
unit variance.

The feature-expressing basal outputs of L3 cells in the central
mesocolumn in response to images were computed according to
Equation 4 while the contextual inputs to the apical dendrites of the
same L3 cells were computed as:

18 20

=22 Vimj-Pm,j

m=1j=1

@1

where I is the net contextual input to the apical dendrite of the i

L3 cell, @, ; is the response of the j* canonical variate in the m"
surrounding mesocolumn, and v;,; is the strength of their
connection. Both basal outputs of L3 cells and net inputs to their
apical dendrites were autoscaled to zero mean and unit variance.

The L3 network has to have a mechanism for diversifying feature

tuning properties of cells residing in the same mesocolumn. The
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presence of such mechanism is indicated by the fact that in the real
cortex, while neighboring neurons do share some of their RF and
feature tuning properties in common, when all of these properties are
considered in foto, neighboring neurons are very distinct and are
highly decorrelated in their responses to the full repertoire of natural
stimuli (Favorov and Kelly, 1996a,b; Vinje and Gallant, 2000). The
nature of this diversifying mechanism has not been established yet,
but it must involve individual L3 cells in a mesocolumn influencing
(likely “pushing” via lateral inhibition subserved by double-bouquet
(DeFelipe et al., 2006) and/or Martinotti cells (Silberberg and
Markram, 2007)) each other to select features different from their
own. In the absence of the established mechanism, we chose to achieve
its effect by using the same diversifying mechanism we (Favorov and
Kursun, 2011) proposed to operate in L4.

Thus, to promote tuning of L3 cells in the mesocolumn to different
canonical features, the contextual inputs to their apical dendrites were
modified by the basal outputs of all the other L3 cells in the
mesocolumn, as well as by the output of the mesocolumn’s L3 feed-
forward inhibitory cell. That is, the output of the apical dendrite of the
i" L3 cell in the mesocolumn was computed as in Equation 22:

NL3mL‘
Aj=1;=013-ppr - Fip =213+ Y. PBB, " Pk
k=1,k=i

(22)

where 6] 3 and 4 ; are feed-forward and lateral scaling constants;
@k is the basal output of the k* L3 cell and ppp  is the correlation
between ¢; and @ over the training set of images; F is the output of
the L3 feed-forward cell and ppg is the correlation between ¢; and
Frr. Frr was computed as the sum of outputs of all L4 cells in the
central macrocolumn. It was autoscaled to zero mean and unit
variance over the training set of images. The values of ;3 and ;3
scaling constants were tested systematically for their feature
diversification effect on L3 cells by measuring cross-correlations
between basal outputs of different L3 cells in the mesocolumn.
Gradually increasing the values of these constants leads to gradual
reduction of cross-correlations, starting from very high values to
eventually very low, which indicate that different L3 cells tuned to
different features. Based on this empirical search, the optimal settings
of @;3 =0.01and Ay 3 =0.03 were chosen, because under them L3 cells
tune to the most diverse set of canonical features.

Hebbian connections of the basal and apical dendrites of L3 cells
were developed gradually by modifying them iteratively over 1,000
update steps. At each update step, the modeled field of 19
macrocolumns was stimulated with 5,000 visual input patterns, which
were obtained by placing the LGN viewing window in random
locations in any of the 100 database images. Output activities of L4
and L3 cells and canonical variates in response to these 5,000 visual
patterns were used to compute correlation coeflicients of L3 cells with
L4 cells and with canonical variates, and those correlations were used
to update the afferent and contextual L3 connections.

At update step s, the strength of the afferent connection from the
j™ L4 cell to the basal dendrite of the i L3 cell was updated based on
correlation of the 14 cell with the apical output, p;, i= corr(FL4/ A ),
during 5,000 step s trials, as given in Equations 23, 24:

~ XN e ~
wij(s) =i (s) 14> i (s) (23)
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where:

it j(s)=(1=m13)-ui j (s—1)+m13 'Sgn(Pi,j )-|Pi,j|0'5 (24)

The strength of the contextual connection from the j* canonical
variate to the apical dendrite of the i L3 cell was updated based on
correlation of the variate with the basal output, 2i,j = corr(q)j,(o,- ) ,
during 5,000 step s trials, as given in Equations 25, 26:

360
vij(5)=7i(s)/ 2|7 (s)] 25)
k=1
where:
() =(1=ms ) (s =) +mssen () ol 2

Adjustment rate constant #;;=0.01 produced the fastest
convergence of connection strengths to stable values.

3.1.7 No-context L3 model

As an alternative to our contextually guided model of L3 feature
tuning, we also tested a no-context model, in which the apical dendrite
of each L3 cell was given exactly the same afferent input as its basal
dendrite; i.e., instead of using Equation 21 to compute I, we used
I; = ;. That is, instead of receiving contextual input from surrounding
columns, apical dendrites received their input from L4 cells of their
own macrocolumn. Features developed by L3 cells in this essentially
generic self-organizing neural network offer us a benchmark against
which to judge the benefits of using contextual guidance in
feature selection.

4 Results
4.1 Layer 3 canonical variates

According to our proposed division of tasks between L4 and L3 -
with the L4 mesocolumnar network linearizing feature-extracting
functions that will be computed by L3 cells - the first step in estimating
L3 canonical variates is to develop RF and functional properties of
cells in the L4 compartment of mesocolumns. This is done by
repeatedly exposing L4 cells to images and adjusting the weights of
their Hebbian input and intrinsic connections, gradually driving them
into stable connectional patterns. The emergent functional RF
properties of the model L4 cells, which come to closely resemble those
of simple cells in cat V1, are comprehensively described in Favorov
and Kursun (2011), and for brevity we omit their description here.

On their own, the trained L4 cells have very low pairwise
contextual correlations with L4 cells in surrounding macrocolumns.
This is shown in Figure 4A by plotting the distribution of maximal
correlations of coincident activities of individual L4 cells in the central
macrocolumn and L4 cells in the first and second rings of surrounding
macrocolumns. However, our expectation is that optimally chosen
weighted sums of multiple L4 cells will have much higher contextual
correlations with surrounding macrocolumns. In Section 2.4
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FIGURE 4

Contextual correlations between the central and surrounding macrocolumns. (A) Contextual correlations among cells in the input layer, L4. Plotted is
the histogram of the highest correlation of stimulus-evoked responses that each L4 cell in the central macrocolumn had with L4 cells in the 2 rings of
surrounding macrocolumns, revealing that at the level of L4, individual cells in neighboring macrocolumns were essentially uncorrelated. Each
mesocolumn had 150 L4 cells. (B) Contextual correlations between the first 20 canonical variates of the central mesocolumn and the surrounding
mesocolumns with nonoverlapping RFs. For each canonical variate, correlation was computed between its value in the central mesocolumn and the
mean of its values in the surrounding mesocolumns. Training of L4 cells and extraction of canonical variates to find their contextual correlations was
repeated 10 times, using different randomly chosen sets of training image patches taken from the 100 images of the IARP TR-12 and Brodatz datasets.
Shown in the plot are squared correlation averages and their SEM (white bars), indicating that macrocolumnar RFs possess up to 15 canonical variates
with contextually significant information. Also shown in the plot are squared correlation averages and their SEM of canonical variates extracted from
LGN afferent inputs to macrocolumns (black bars), indicating that only the first LGN-based variate has significant contextual information.

(C) Contextual correlations between the first 40 canonical variates extracted from the 5,000 images of the COCO dataset (black bars). Shown in the
plot are squared correlation averages and their SEM (n = 10). For comparison, also plotted superimposed are the first 40 canonical variates extracted
from the 100 images of the IARP & Brodatz datasets (white bars), revealing close similarity between them. (D) Canonical Correlation Analysis (CCA) of
overlap between canonical feature subspaces extracted by the first 15 canonical variates in the IARP & Brodatz vs. COCO datasets (details in the main
text). Plotted are squared canonical correlations of the 15 CCA variates, averaged over doing CCA 10 times.
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we introduced a particular algorithm for finding such optimal
weighted sums, giving us the axes of the canonical feature subspace,
i.e., canonical variates. We apply this algorithm to the outputs of L4
cells in the modeled field of 19 macrocolumns to obtain canonical
variates. We test the strength of their contextual correlations by
introducing a third ring of 12 mesocolumns, chosen to be at a such
distance from the central mesocolumn that any mutual information
they might have in their RFs will have to come from the environmental
sources rather than from sharing any pixels in common. To compute
their contextual correlations, we used responses @ (Equation 20) of
the canonical variates in the central and these 12 distant surrounding
mesocolumns to 1,000 image patches taken at random in the 100
dataset images. For each canonical variate, its contextual correlation
is expressed by Pearson correlation coeflicient computed between the
1,000 responses of that variate in the central mesocolumn and the
1,000 averages of responses of that variate in the 12 distant
mesocolumns. The magnitudes of the computed contextual
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correlations are plotted in Figure 4B (white bars) for the first 20
canonical variates. The first 7 variates have particularly high
correlations (> 0.1). Correlations of the 8th to 15th variates,
although low, are nevertheless statistically significant (at a = 0.05 with
Bonferroni correction), suggesting that even these canonical variates
might reflect some causally significant factors in the environment.

To demonstrate the necessity of the L4 function-linearization
operation for maximizing contextual correlations, we also developed
canonical variates directly from the LGN afferent inputs to the L4
compartments of the central and 6 surrounding mesocolumns
(together constituting a macrocolumn) rather than using L4 outputs
of these 7 mesocolumns. Unlike the L4-based variates, all but the first
of the LGN-based variates showed no statistically significant
contextual correlations (black bars in Figure 4B).

To test generalizable nature of the canonical variates extracted
from the 100 IARP TC-12 images, canonical variates were also
extracted from the 5,000 COCO images. The magnitudes of their
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contextual correlations, shown for the first 40 variates, are plotted as  feature subspaces extracted from the IARP and COCO datasets mostly
black bars in Figure 4C, superimposed on the first 40 canonical  overlap, albeit not completely.

variates extracted from IARP images (plotted as white bars). As Going back to Figure 4B, as it shows, only the first canonical
Figure 4C shows, although they come from different sources,  variate does not depend on L4 function-linearization preprocessing.
magnitudes of the two sets of canonical variates are very similar, with ~ The reason is that it reflects the overall magnitude of activity evoked
the first 15 variates having statistically significant contextual in the macrocolumn’s L4 compartment (Figure 5A) and thus the
correlations. But how similar are the features extracted from the two  overall stimulation intensity of the macrocolumn’s RE Since the other
image sources? As basis vectors, the first 15 contextually predictable  canonical variates depend on L4 function-linearization preprocessing,
canonical variates enclose the canonical feature subspace of the  they mustbe tuned to various structural features of the image patterns
mesocolumn’s entire feature space (as defined in Section 2.4). To  occurring in the mesocolumn’s RE. What these features are, either in
determine how much the IARP and COCO canonical feature  our model canonical variates or in real L3 neurons, is not obvious but
subspaces overlap, we performed Canonical Correlation Analysis  some insight is traditionally gained in V1 studies by characterizing
(CCA; Hotelling, 1936), in which we treated the first 15 IARP and first ~ responses of V1 neurons to moving grating images of various
15 COCO canonical variates as 2 sets of input variables and used 5,000  orientations and spatial frequencies. Figure 5B shows orientation and
training image patches, taken at random from the COCO dataset, to  positional tuning of the statistically significant first 15 canonical
compute their loadings. Next, we used these loadings to compute 15  variates, revealing that variates 8 through 11 are sensitive to both
canonical correlations of the two sets of variables over a different set ~ orientation and position while others are sensitive to grating
of randomly picked 1,000 COCO image patches. If the two feature  orientation but not its position in the RF (translational invariance),
subspaces, enclosed by the 15 IARP and 15 COCO canonical variates,  thus falling into the categories of the simple and complex cells,
match closely, the 15 canonical correlations would all be close to 1. On  respectively (Hubel and Wiesel, 1962). With real V1 neurons
the other hand, if the two subspaces do not overlap at all, the 15  exhibiting diversity in the degrees of their orientation and grating
canonical correlations would all be close to zero. The actual computed ~ phase tuning, the standard metric used to place any given V1 cell on
correlations are plotted in Figure 4D, revealing that the first 6 CCA  the simple vs. complex cell spectrum is the F1/F0 ratio, which is the
variates had very high correlations, whereas the last 5 CCA variates  ratio of the 1st and Oth Fourier harmonics of a neuron’s activity during
had very low correlations. Thus, we can conclude that canonical  stimulation of its RF with an optimal sinewave moving grating
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FIGURE 5

Feature tuning of canonical variates. (A) Tuning of the 1st canonical variate to the overall intensity of RF stimulation. The variate's response magnitude is
plotted as a function of the average of the stimulus-evoked activities of all the L4 cells in the macrocolumn, showing linear dependency. (B) Tuning of
the first 15 canonical variates to the orientation and spatial phase of sinewave grating images. (C) F1/F0 scores of canonical variates 2—15, showing
clear separation of these variates into the simple and complex cell classes.
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(Skottun et al., 1991; Ringach et al., 2002). V1 cells with F1/F0 > 1 are
classified as simple and cells with F1/F0 < 1 are classified as complex.
Figure 5C shows F1/FO0 scores of the statistically significant canonical
variates 2-15, showing that 70 and 30% of variates fall into the
complex cell and simple cell categories, respectively.

In principle, function-linearization capabilities of mesocolumns’
L4 compartment depend on the number of cells they employ (Favorov
and Kursun, 2011): the larger the number of L4 cells in a mesocolumn,
the broader the repertoire of nonlinear functions it can linearize. This
is shown in Figure 6, in which the total contextual correlation of the
first 20 canonical variates, computed as the sum of squared contextual
correlations of individual variates (Watanabe, 1960), is plotted as a
function of the number of cells in each mesocolumn’s L4 compartment.
Significantly, there is little further gain in total correlation after the
number of L4 cells in mesocolumns is increased beyond 150-200,
which suggests that they linearize all the contextually predictable
features available for extraction in the mesocolumn’s RE

4.2 Canonical features of L3 cells

L3 cells are expected to be driven by their apical dendrites to tune
to contextually predictable — canonical, according to our terminology —
features. Such features occupy a particular subspace in the
mesocolumnss state/feature space, and the extracted canonical variates
give us the principal axes of this canonical feature subspace. In
choosing their features, L3 cells should be attracted to the canonical
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FIGURE 6

The dependence of the amount of contextually predictable
information extracted by canonical variates on the number of L4
cells in the mesocolumn (N 4..). The amount of contextual
information extracted by the first 20 canonical variates was
estimated by their total contextual correlation, which was computed
as the sum of squared (with sign preserved) correlations of the 20
variates in the central mesocolumn and their averages among the 12
surrounding mesocolumns with abutting RFs. Total correlation was
computed 10 times, each time using different randomly chosen sets
of image patches to train a particular number of L4 cells per
mesocolumn and to extract canonical variates. Plotted are the
means and standard deviations of the total correlation estimated for
the number of L4 cells per mesocolumn ranging from 1 to 240. The
plot suggests that having around 150 L4 cells per mesocolumn
might be enough to extract most of the contextually predictable
information in mesocolumns’ RFs.
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variates according to their contextual predictability. We explored this
feature-selecting mechanism in our extended field of 19 macrocolumns
(Figure 3A) by providing the L3 compartment of the central
mesocolumn (red-shaded in Figure 3A) with 150 cells, each modeled
as a pair of basal and apical dendrites. In each L3 cell, its basal dendrite
was given afferent input from 1,050 L4 cells of its own and 6
immediately adjacent mesocolumns (150 L4 cells per mesocolumn),
which together make up a macrocolumn (blue-shaded in Figure 3A).
The vector of the weights of these L4 connections to the cell’s basal
dendrite (i in Equation 4) determines that dendrite’s preferred
direction in the mesocolumn’s L3 state space and thus that cell’s
preferred feature. The apical dendrite of each L3 cell was given
contextual input from the 18 more distant mesocolumns (black-
shaded in Figure 3A) in the form of their 15 statistically significant
canonical variates (for further details, see Methods section 3.1.6). The
apical dendrite learns to produce output that best matches the output
of the basal dendrite and vice versa.

Feature selectivities of L3 cells were developed by repeatedly
exposing the model to randomly picked dataset images and adjusting
the weights of the Hebbian basal and apical connections of L3 cells,
gradually driving them into stable connectional patterns (Figure 7).
After such training, the apical and basal dendrites of L3 cells developed
prominent correlations in their responses to image patches
(Figure 8A), demonstrating that all 150 L3 cells succeeded in tuning
to contextually predictable features. Furthermore, Figure 8B shows
that cross-correlations between basal outputs of different L3 cells
residing in the same mesocolumn are low, indicating that these cells
tuned to diverse canonical features.

Figure 8C provides some insight into the nature of the features
chosen by the 150 L3 cells. It plots correlations of the basal dendrite
of each L3 cell in the central mesocolumn with each of the first 15
canonical variates computed for that mesocolumn. The plot shows
that each L3 cell developed either positive or negative sensitivity to
each of the first 11 canonical variates, declining gradually from the
first to the last variate. Combined with information in Figure 8B, this
indicates that L3 cells picked different mixes of positive and negative
sensitivities to the 11 variates. If we view the canonical feature space
defined by the first 11 variates as an 11-dimensional hypercube,
Figures 8B,C indicate that L3 cells picked different corners of this
hypercube. Unlike L3 cells, L4 cells do not have any preferential
sensitivity to the canonical variates (compare white- and black-shaded
bars in Figure 8D). The prominent preferential sensitivity of L3 cells
is the product of L3 self-organization. As our no-context L3 model
shows, L3 self-organization without contextual guidance from
surrounding columns also can to some degree enhance cells’ sensitivity
to canonical variates (compare black- and gray-shaded bars in
Figure 8D), but much less than under contextual guidance.

When evaluated by their responses to moving images of sinewave
gratings, 80% of L3 cells fall in the complex-cell category, whereas 20%
of L3 cells fall in the simple-cell category (Figure 9A). This suggests
that as a group, L3 cells in a mesocolumn should be able to represent
both the orientation and position of grating images in their output
activity vector ¢ (Equation 4). To show how well they can do it,
we expose the RF of the central mesocolumn to a grating pattern of
randomly selected orientation, spatial frequency, and position in the
RE, and compute the $0 response it evokes in the 150 L3 cells in the
central mesocolumn. We then rotate the grating pattern by a randomly
chosen angle &, compute the new @« response of L3 cells, and

frontiersin.org


https://doi.org/10.3389/fncir.2025.1615232
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Favorov and Kursun 10.3389/fncir.2025.1615232

Correlation with final state

0 1 1 1 1 1 1 1 1 |

100 200 300 400 500 600 700 800 900 1000
L3 Hebbian learning update #

FIGURE 7

Time-course of L3 cells’ development of feature selectivities. Hebbian connections of the basal and apical dendrites of L3 cells were developed by
modifying them iteratively over 1,000 steps based on pre- and post-synaptic activity correlations computed in response to 5,000 visual input patterns
To see how quickly the cells converge to their final connectional patterns, responses of each cell to a particular set of test input patterns were obtained
after completion of 1,000 connection updates, and these responses were correlated with responses to the same test set obtained after each
connection update prior to the final one, thus using the correlation coefficient to express the similarity of the cell's tuning at each update step to its
final tuning. The plot shows superimposed the progressions of these correlation coefficients of all 150 L3 cells, from the first update to the last,
revealing fast convergence to the final state without any meandering around.

>
I
©

; B 2
Nc »
o 1
3 0.6 315
2 T
o o
o
o o
= 04 =10
n (o]
5 E
T 0.2 S 5
£ 8
<
0 0
20 40 60 80 100 120 140 -1 0 1
L3 cell # L3 basal-basal correlation?
C o2 O P
N
r 1 '§ 0.15
o~ = =
ic ®
g 0 =8 g 0.1
S = S
E ©
. = { 2005
<
-0.2 0
NY D X0 0A R0 ND D0 NY D X0 0A D0 N DD 0
Canonical variate Canonical variate
FIGURE 8

Successful tuning of L3 cells to contextually predictable features. (A) Uniformly high correlation (squared) of outputs of the apical and basal dendrites
of the 150 cells in the mesocolumn’s L3 compartment. (B) Distribution of pairwise correlations (squared, keeping the sign) of outputs of basal dendrites
of all 150 L3 cells, revealing their low similarity. (C) Basal dendrite correlations (squared, keeping the sign) of all L3 cells with each of the first 15
canonical variates (horizontal tick marks), showing that each L3 cell acquired gradually declining sensitivity to each of the first 11 variates. (D) Average
magnitude of correlations (squared) of canonical variates with outputs of the 150 L4 cells in the mesocolumn (black bars) and outputs of basal
dendrites of the 150 L3 cells (white bars), revealing complete insensitivity of L4 cells to canonical variates. Also plotted are the average correlations of
canonical variates with 150 L3 cells in the no-context L3 model (gray bars). Development of feature selectivities of L3 cells was repeated 10 times, each
time starting by assigning initial connection weights to L4 cells at random and training them on a different randomly selected sequence of image
patches, then extracting canonical variates using another randomly selected set of image patches, followed by the same in L3. The bars in the plot
show the means and SEM of the average correlations determined in the 10 runs. In all runs, L3 cells developed similar feature selectivities.
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FIGURE 9

Responses of L3 cells to grating patterns. (A) F1/FO scores of the 150 cells in the mesocolumn'’s L3 compartment, spanning the range from clearly
simple-cell (> 1) to clearly complex-cell (<1) categories. This distribution of ratios resembles that found in the upper layers in the real V1 cortex

(Figure 1A; Kim and Freeman, 2016). (B) Discrimination of the grating orientations by the output vector of the 150 cells in the mesocolumn’s L4
compartment (black curve) and the 150 cells in the mesocolumn’s L3 compartment (gray curve). The average angle between two L4 or L3 output
vectors is plotted as a function of the angle between orientations of the two compared gratings. (C) Discrimination of the grating placements by the
output vector of the 150 cells in the mesocolumn'’s L4 compartment (black curve) and the 150 cells in the mesocolumn’s L3 compartment (gray curve).
The average angle between two L4 or L3 output vectors is plotted as a function of the phase shift of the two compared gratings. Vertical bars are

measure the angle between the two L3 output vectors @ and @ .
Figure 9B plots the average L3 angle as a function of the angle between
the two gratings (gray curve). For a comparison, we also plot the
average angle computed for the output vectors of the 150 L4 cells in
the central mesocolumn (black curve). In Figure 9C, instead of
rotating, we translate the grating pattern by a randomly chosen
fraction (phase) of the grating’s period, compute the new response of
L4 and L3 cells, and measure the angle between the two L3 output
vectors and between the two L4 output vectors. Figure 9C plots the
average L3 (gray) and L4 (black) angles as a function of the phase shift
between the two gratings. The plots show that both L4 and L3 output
vectors can discriminate even small differences in gratings’ orientation
or position in the RE It is interesting to note that even at the maximal
orientation (90°) or spatial phase (180°) differences between two
gratings, L3 output vectors show less than maximal (90°) separation,
reflecting the fact that other than for their orientation or phase, the
two gratings are the same.

Figure 10 demonstrates the importance of contextual guidance for
the development of biologically realistic feature properties in L3 cells.
To test orientation tuning of L4 and L3 cells in the model, each cell was
stimulated with moving grating patterns of the optimal spatial
frequency and the full 180° range of orientations. The tightness of the
cell’s orientation tuning was expressed by the standard half-width and
half-height (HWHH) of the orientation tuning curve. Figure 10 plots
the F1/F0 ratio determined for each cell against its HWHH. The
model’s L4 cells are shown as blue circles, L3 cells as red dots, and L3
cells of the no-context model as green dots, revealing that all L4 cells
are most tuned to orientation (average HWHH = 18°, matching real
cat V1) and belong to the simple-cell category, L3 cells are also well-
tuned to orientation and have biologically accurate proportion of
simple- and complex cell categories, whereas L3 cells in the no-context
model fail do develop translational invariance and have poor
orientation tuning.
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Importance of contextual guidance for the development of
biologically realistic feature properties in L3 cells. Plotted against
each other are the F1/FO ratio and half-width at half-height (HWHH)
of orientation tuning of the model's L4 cells (blue circles) and
contextually guided L3 cells (red dots), as well as L3 cells of the no-
context model (green dots), showing that L4 cells and contextually
guided L3 cells acquire biologically correct orientation tuning and
translational invariance properties, whereas in the absence of
contextual guidance L3 cells fail to do so.

4.3 L3 emergent properties

In the real cortex, long-range horizontal connections link cortical
columns separated by up to several millimeters in a cortical area. They
preferentially link cortical sites that share similar functional properties
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but have non-overlapping RFs (Gilbert and Wiesel, 1983; DeFelipe
etal., 1986; Lund et al., 1993; Burton and Fabri, 1995; Bosking et al.,
1997). The fact that input patterns encountered by mesocolumns in
their RFs possess contextually predictable features makes it possible
for such long-range horizontal connections to establish Hebbian links
between distant cortical columns even though they have
non-overlapping RFs. When L3 cells tune to contextually predictable
features, they become correlated with similar L3 cells in surrounding
columns in their stimulation-evoked activities. Figure 11 shows the
magnitude of such correlations between L3 cells in the central
mesocolumn and functionally identical L3 cells in the first and second
ring of surrounding mesocolumns. For a comparison, Figure 11 also
shows that even in the first ring of mesocolumns, functionally
identical L4 cells have very low correlations, which means that they
would not be able to establish lateral Hebbian connections.

Canonical features learned by L3 cells characterize input patterns
in many different ways that reflect the orderly aspects of the sensed
outside world. This makes it possible for different input patterns,
which are in some way objectively related, to be preferentially clustered
in the L3 output space. We demonstrate this clustering tendency on
an example of 4 different 512 x 512 pixel texture images shown in
Figure 12A. We exposed the field of 19 mesocolumns to 500 randomly
picked locations in each of the 4 texture images, and for each location
we averaged the responses of L3 cells tuned to the same feature across
19 mesocolumns, resulting in a 150-dimensional feature vector
representation of the imaged texture field. We next did Principal
Component Analysis (PCA) on the 500 x 4 feature vectors. In
Figure 12B, we plot the computed scores of the first 3 principal
components, color-coding them according to the texture images from
which they originated. This 3-D plot reveals that L3 responses to the
4 different textures occupy non-overlapping regions in the principal
components space. For a comparison, Figure 12C shows the same plot
for responses of thalamic LGN cells, which provided the input to the
19 cortical mesocolumns. As expected, LGN responses to the 4
different textures show no sign of preferential clustering.

We expressed the similarity of L3 output vectors evoked in
response to different randomly picked locations in the same texture
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FIGURE 11

Correlations of cells in the central and surrounding macrocolumns in
response to natural images. Plotted are distributions of magnitudes
of correlation between functionally identical L4 and L3 cells in the
central vs. the 1st and 2nd rings of surrounding macrocolumns.
Substantial correlations at the level of L3 offer a substrate for
growing Hebbian short- and long-range horizontal connections.
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image by computing correlations between pairs of such vectors.
Figure 13 plots average correlations (squared, keeping the sign) for
each of the 13 texture images in the Brodatz (1966) database. Also
plotted are average correlations computed for the L4 response vectors
and vectors of 15 significant canonical variates. As the plot shows,
unlike L4 vectors, both L3 cell and canonical variate vectors evoked
by different views of the same texture show substantial similarity. Also
noticeable is that L3 cells consistently show greater similarity than
canonical variates (compare red and green bars), demonstrating the
advantages of the overcomplete representation of the mesocolumn’s
15-D canonical feature space by 150 L3 cells.

5 Discussion
5.1 Model accomplishments

The results of our cortical model simulations support biological
plausibility of the proposed mechanism of cortical feature tuning and
offer new insights into the nature of information extraction by
neocortical networks. While potential usefulness of contextual
guidance for feature tuning has long been recognized (see
Introduction), so far it has only been explored at an abstract level or
using greatly reduced “toy” models. In this paper we explore actual
biological means by which neocortex tunes its neurons to contextually
predictable features. Such means are likely to be the backbone of
functional organization of cortical columns.

The starting point in our biologically grounded exploration was
consideration that the tuned features have to be nonlinear. Our
proposed two-stage solution is that, similar to artificial neural
networks, feature tuning relies on hidden layer-like preprocessing,
performed by the afferent input layer L4. That is, a local group of L4
neurons together perform a nonlinear transform of their thalamic
inputs, which is akin to a basic RBF transform. Such transform
accomplishes pluripotent function linearization, thus allowing L3 cells
in the second stage to extract their features by simple linear summation
of their L4 inputs.

Simplifying the task of feature tuning to that of linear operation
over the L4 transform allowed us to determine - using an objective-
function optimizing algorithm derived in Section 2.4 - that an RF of
a representative V1 cortical column is likely to possess around 15
independent contextually predictable features, which we called
canonical variates (Figure 4B). Furthermore, we determined that the
transform-performing group of L4 cells will need at least 150 members
in order to maximize the contextual predictability of all the canonical
variates in its RF (Figure 6). Such a number is much greater than the
30-60 excitatory cells found in the L4 compartment of a single
0.05 mm-diameter cortical minicolumn (which is the narrowest
columnar entity in the neocortex), but much smaller than the total
number of excitatory L4 cells in the 0.5 mm-diameter macrocolumn.
This finding leads us to propose a new class of cortical columns, the
0.15 mm-diameter mesocolumn. It is estimated to comprise a local
group of 7 minicolumns, all innervated by the same bundle of afferent
axons, and to have 200-400 L4 excitatory cells, which together
perform the pluripotent function linearizing transform of the
mesocolumn’s afferent input.

Moving to the second stage of cortical feature extraction, which
takes place in the upper layers, both anatomical evidence and model
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FIGURE 12

Separate clustering of different textures in the L3 output space but not in the L4 input space. (A) Four texture images used for demonstration. The
viewing window of the central and 2 rings of macrocolumns (Figure 3B) was placed at 500 random locations in each of these images to obtain
responses of all their L3 cells, yielding a 150-dimensional activity vector for each location. These vectors were converted to principal component
scores by performing PCA on the 2000 vectors. (B) 3D plot of the scores of the first 3 principal components, color-coding each L3 activity vector by
the frame color of its source texture image. L3 vectors coming from the same texture image cluster separately from other vectors, reflecting
prominent visual differences among the 4 textures. (C) 3D scores plot of the afferent input vectors from LGN layer to L4, revealing that these activity

vectors are all mixed together.
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FIGURE 13

Similarity of output activity patterns evoked in L3, but not in L4, by
different locations in the same texture image, reflecting their shared
higher-order statistics. Responses of L4 and L3 cells in 19
mesocolumns, as well as their canonical variates, were obtained for
200 randomly placed locations in each of the 13 texture images in
the Brodatz database, similar to Figure 12. Response profiles
obtained from each texture image were cross-correlated and the
average of these correlations (and standard deviation) were plotted
separately for L4 (blue bars), canonical variates (green bars), and L3
(red bars) responses, showing that L4 responses had little, if any,
similarity (the average correlation across the 13 images = 0.03),
whereas L3 responses were more similar than canonical variate
responses (13-image averages of 0.43 and 0.25, respectively).
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studies indicate that an L3 pyramidal cell extracts its feature from the
L4 input it receives from not just its own mesocolumn, but from a
macrocolumn-size group of 7 mesocolumns. Anatomical segregation
of the ascending L4 inputs to the basal dendrites and the long-range
horizontal inputs to the apical dendrites of L3 pyramidal cells,
combined with their separate spike-generating synaptic input
integrating centers allows basal and apical dendrites to have separate —
classical and extra-classical - RFs and develop RF properties that will
maximize covariance of the cell’s apical and basal outputs (Kording
and Konig, 2000; Kay and Phillips, 2011). Our model simulations,
based on Hebbian plasticity of apical and basal synapses, show that
contextual inputs to the apical dendrites readily drive basal dendrites
to select contextually predictable (i.e., canonical) features in their
classical RFs. Similarly to real V1 cortex, 80% of model L3 cells acquire
complex-cell RF properties while 20% acquire simple-cell properties
(Gilbert, 1977; Kim and Freeman, 2016). Overall, the design of the
model and its emergent properties are fully consistent with the known
properties of cortical organization.

If cells in the mesocolumn’s L3 compartment did not push each
other to select different features, they would all tune exclusively to the
first - most predictable and thus most attractive — canonical variate.
However, diversification pressures drive L3 cells to choose the second
best solution. Rather than tuning to one or a mix of few of the
canonical variates, all L3 cells in the mesocolumn become sensitive to
all first 11 variates. This sensitivity declines gradually from the 1st to
the 11th variate in all cells (Figure 8C). For each variate, all L3 cells
develop approximately the same correlation with it but they differ in
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the sign of that correlation. Thus, each L3 cell carries maximal
information it can about all first 11 variates (rather than emphasizing
a subset of variates), with each variate contributing either positively or
negatively in the pattern unique to that cell. As a result, L3 can
be considered as approximating Hadamard-like domain transform of
the first 11 canonical variates, decomposing them into a set of
constituent functions (canonical features) over all variates. The L3
transform differs from Hadamard transform in that its transform
functions are not orthogonal, and their number (200-400) greatly
exceeds the number of variates (11). That is, L3 generates an
overcomplete representation of canonical variates.

Considered geometrically, diversification pressures among cells in
the mesocolumn’s L3 compartment drive them to choose different
preferred directions in the mesocolumn’s canonical feature subspace.
If we view the canonical feature space defined by the first 11 variates
as an 11-dimensional hypercube, we find that L3 cells pick different
corners of this hypercube. Such a hypercube will have 2048 corners to
choose from. It is intriguing that while 200-400 L3 cells in a
mesocolumn will not be able to pick all these corners, the larger
columnar entity comprising a group of 7 mesocolumns - together
making up a macrocolumn and sharing L4 input — will have just the
right number of L3 cells for such a task.

As pointed out in Introduction, the orderly - as evidenced by their
contextual predictability — nature of canonical features reflects the
orderly structures in the environment. In tuning selectively to
canonical features, L3 performs selective filtering of the information
it receives from L4, emphasizing information about orderly aspects of
the sensed environment and downplaying local, likely to
be insignificant or distracting, information. Despite selective filtering
and overcomplete representation of the canonical feature subspace, L3
output preserves excellent discrimination capabilities (Figure 9) while
acquiring novel categorization/abstraction ability to preferentially
cluster in the L3 output space different input patterns that are in some
way objectively related (Figure 12). Furthermore, reduced sensitivity
of L3 output to distracting irrelevant details should help the L4 in the
next cortical area to minimize the Curse of Dimensionality and to
succeed in the next round of pluripotent function linearization, and
for the next L3 to find higher-order canonical features.

5.2 The model's antecedents

The general idea of using spatiotemporal coherence to discover
useful regularities in inputs was introduced by Becker and Hinton
(1992) and later elaborated by Becker (1996). Their IMAX learning
procedure discovers regularities in multiview inputs by maximizing
mutual information between outputs of two nonlinear multilayer
network modules that receive nonoverlapping, but spatially or
temporally related, input samples, thus tuning to higher-order input
features reflecting common distal causes in the external world. Details
of IMAX design, however, make it unsuitable for implementation in
the cerebral cortex (Becker, 1996). Phillips and Singer (1997)
suggested a way of making computation of mutual information
biologically more plausible, and it is one of the cornerstones of their
Coherent Infomax theory. They consider abstract local processors,
loosely analogous to unspecified local cortical circuits, that receive
both the afferent input from their RFs and lateral (contextual field)
input from other such local processors. The contextual field input
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guides local processors to tune to those stimulus features in their RFs
that are predictably related to the context in which they occur.
According to Coherent Infomax, contextual inputs can be used not
only to guide learning but, importantly, also modulate short-term
processing of sensory information. Phillips and Singer (1997) derived
a particular mechanism for how contextually-guided learning might
be accomplished. Unfortunately, that mechanism is limited in its
practical utility due to its inability to search for nonlinear correlations.
In its later development, Kay and Phillips (2011) showed that Coherent
Infomax is consistent with a particular Bayesian interpretation for the
contextual guidance of learning and processing and suggested learning
rules that are more computationally feasible within systems composed
of very many local processors.

Rather than invoking abstract local processors, Kording and
Konig (2000) proposed that contextual guidance of feature tuning is
implemented in individual pyramidal neurons, in which the apical
dendrite acts - in addition to the soma - as a second site of integration
capable of generating action potentials. Synaptic inputs to the soma
site, coming from the cell's RE, mainly determine the output activity
of the post-synaptic neuron. Contextual inputs to the apical site gate
synaptic plasticity. This separation makes it possible for contextual
information to avoid confounding the effects of processing and
learning. In “toy” simulations of such 2-site neurons receiving
nonoverlapping but correlated inputs to their somata while sending
their “teaching” outputs to each other’s apical site, cells learned to
represent only the coherent part of the input, which would be expected
to be relevant to the processing at higher stages. Kording and Konig
termed their design Relevant Infomax.

To explain how 2-site pyramidal neurons might be able to tune to
nonlinear features in their inputs, the challenge which was not
addressed by the Kording and Konig model, Favorov and Ryder (2004)
proposed that since dendritic trees are fundamentally nonlinear
integrators, they might be able to operate functionally as error
backpropagating multilayer perceptrons (MLP). In their SINBAD
(acronym for Set of INteracting BAckpropagating Dendrites) neuron
model (Ryder and Favorov, 2001), the apical dendrite in each
pyramidal cell functions as one MLP and the basal dendrites function
as the second MLP, using each other’s output activities as their
reciprocal backpropagating teaching signals. While SINBAD cells are
very powerful in discovering high-order nonlinear regularities hidden
in multiview sensory inputs, effectively approximating Gebelein’s
maximal correlation (Kursun and Favorov, 2010), it has become clear
that they are not biologically feasible because, while action potentials
do backpropagate from the initial axon segment up the apical dendrite,
their experimentally observed amplitude modulation is not consistent
with what would be required in the error signal. Furthermore, this
design depends on a complete separation of the inputs to the apical
and basal dendrites, which is not observed in the real cortex. Instead,
a much more biologically appealing solution for the necessity of
tuning cells to nonlinear features is to make use of pluripotent
function linearization in L4 (Favorov and Kursun, 2011), followed by
linear learning in L3, as is explored in this paper.

5.3 Model limitations

The model of contextual guidance of feature selection explored in
this paper is not complete. In addition to spatial context, which was
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investigated here, contextual guidance can come from temporal
context in which orderly features occur, as well as from higher-level
understanding of the overall situation. In this paper, we only used
static images and thus confined ourselves to spatial features of orderly
structures, leaving temporal features of orderly processes for later
studies. We anticipate that studies of feature acquisition under
temporal contextual guidance and feedback from higher-level cortical
areas will make it necessary to expand our current L4-L3 model by
adding deep layers and layer 2, resulting in a cortical column model
incorporating all cortical layers.

The biological realism of neurons modeled in this paper is not
complete. Unlike real neurons, which have binary outputs and are
either excitatory or inhibitory, but not both, the modeled cells have
outputs that are continuous variables in a negative-positive range and
have connections that in the process of learning can change their
sign. Adding this degree of biological realism to the model will
be insightful, but we do not expect it to negate the lessons learned
using the current model. Also, some of the mathematical techniques
used in the model, such as normalization of the connection weights
in Equations 17, 23, 25, might only approximate the true homeostatic
mechanisms in the cortex (e.g., Turrigiano et al., 1998) and should
be investigated further.

Sensory cortical columns are engaged not only in feature
extraction and sensory information transmission to higher
cortical areas, but also in other tasks, such as across-column
binding by selective spike synchronization (Uhlhaas et al., 2009;
Singer and Lazar, 2016), dynamic contrast enhancement and
focused attention (Schummers et al., 2005; Tommerdahl et al.,
2010; Tallon-Baudry, 2012), predictive computation (Bubic et al.,
2010; Favorov et al., 2015; Marvan and Phillips, 2024; George
et al.,, 2025), etc. Correspondingly, output of real pyramidal cells
in L3 is determined not only by synaptic integration of L4 inputs
by the basal dendrites, as was done in the current paper, but also
by local excitatory and inhibitory inputs, input from the apical
dendrite, and other sources (Angelucci and Bressloff, 2006). Our
current model lacks all this machinery since its sole purpose was
to investigate mechanisms determining classical RF and feature
tuning properties of cortical neurons. However, assuming that our
proposed mesocolumn-based mechanism of 2-stage feature
extraction is biologically realistic, our current model provides a
starting point, constraints, and guidance in building a
model of cortical

progressively more comprehensive

functional organization.
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