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Synaptic plasticity underlies adaptive learning in neural systems, o�ering

a biologically plausible framework for reward-driven learning. However,

a question remains: how can plasticity rules achieve robustness and

e�ectiveness comparable to error backpropagation? In this study, we introduce

Reward-Optimized Stochastic Release Plasticity (RSRP), a learning framework

where synaptic release is modeled as a parameterized distribution. Utilizing

natural gradient estimation, we derive a synaptic plasticity learning rule

that e�ectively adapts to maximize reward signals. Our approach achieves

competitive performance and demonstrates stability in reinforcement learning,

comparable to Proximal Policy Optimization (PPO), while attaining accuracy

comparable with error backpropagation in digit classification. Additionally, we

identify reward regularization as a key stabilizing mechanism and validate our

method in biologically plausible networks. Our findings suggest that RSRP o�ers

a robust and e�ective plasticity learning rule, especially in a discontinuous

reinforcement learning paradigm, with potential implications for both artificial

intelligence and experimental neuroscience.

KEYWORDS

synaptic plasticity, brain inspired computing, reinforcement learning, Spiking Neural

Network, supervised learning

1 Introduction

Synaptic plasticity serves as a fundamental mechanism for adaptive learning in neural

systems (Bliss and Collingridge, 1993; Neves et al., 2008; Abbott and Nelson, 2000). A key

characteristic of biological plasticity rules is their reliance on local information–such as pre-

and postsynaptic neuronal activity–alongside global neuromodulatory signals. Among the

most prominent of these rules is Hebbian plasticity (Hebb, 1949), which posits that synaptic

strength is modulated by the correlated activity of connected neurons. This process can be

further gated by global neural modulators, such as reward signals, leading to frameworks

such as reward-modulated spike-timing-dependent plasticity (R-STDP) (Izhikevich, 2007).

These models have demonstrated learning in biologically plausible paradigms and can be

applied to tasks such as image classification (Diehl and Cook, 2015; Mozafari et al., 2019)

and robotic locomotion control (Vasilaki et al., 2009).

The stochastic hedonic synaptic hypothesis posits an alternative learning mechanism,

proposing that the learning process is primarily governed by reward-driven plasticity

mediated through stochastic synaptic release (Minsky, 1954; Hinton, 1990; Seung,

2003). This phenomenon is modulated by the correlation between reward signals and

probabilistic neurotransmitter release events. Crucially, it re-conceptualizes stochastic

synaptic transmission not as biological noise but as a computational resource. By
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dynamically adjusting release probabilities in response to

hedonistic feedback, synapses could stochastically explore

and maximize expected rewards, thereby optimizing network

functionality. This perspective challenges classical views of

stochasticity in neural systems and highlights its potential role in

reward-driven learning. Additionally, this hypothesis asserts that

hedonistic synaptic learning is an approximation to the gradient of

the average reward (Seung, 2003).

Hedonistic synaptic plasticity is potentially a more plausible

learning mechanism in neural systems, compared to error

backpropagation. Unlike backpropagation, which relies on

continuous supervision signals and differentiable network

architectures, reward-based plasticity operates without these

constraints. However, several key questions remain unanswered,

limiting the broader adoption of the stochastic hedonistic synaptic

hypothesis. First, can a global reward signal alone suffice to achieve

performance comparable to that of traditional methods, such as

backpropagation? Second, how can such a learning process be

scaled and regulated to accommodate larger and more complex

neural networks for solving a non-trivial task?

To address these problems, we introduce a learning framework,

Reward-Optimized Stochastic Release Plasticity (RSRP), inspired

by the stochastic hedonistic synaptic hypothesis, to investigate

its computational viability. In RSRP, synaptic release is modeled

as a parameterized distribution, and learning occurs through

optimizing these parameters to maximize global reward. To

establish a theoretically grounded framework for reward-driven

plasticity, we re-formulate the hypothesis using natural gradient

descent, which is both effective and robust for optimizing a

parameterized distribution (Wierstra et al., 2011;Wang et al., 2023).

This yields a synaptic learning rule that operates in accordance with

the hypothesis, ensuring mathematically principled adaptation to

global reward signals.

Our approach achieves competitive performance in both

reinforcement learning and classification tasks. Under comparable

network architectures and parameter settings, RSRP demonstrates

a comparable performance with Proximal Policy Optimization

(PPO) (Schulman et al., 2017) in reinforcement learning tasks, and

exhibits greater stability. In classification tasks, RSRP approaches

backpropagation in accuracy while outperforming STDP-based

plasticity rules.

Furthermore, we explore the learning process itself, describing

how synaptic uncertainty evolves as the network learns and how

it differs from gradient descent based approaches. We track

the evolution of the probability distribution and find that the

information entropy of the network decreases during the learning

process, quantifying its information gain. The learning rule drives

synapses from an uncertain state to a more certain state, a trend

also observed in experiments (Zhou et al., 2024). Additionally,

we identify that reward regularization is a crucial mechanism for

stabilizing our learning rule, ensuring effective convergence.

Finally, we address the role of biological network architecture

in learning. Traditional backpropagation-based networks often

violate Dales Law and are not designed for balanced excitation-

inhibition (EI) networks, limiting their applicability to biologically

plausible learning (Lillicrap et al., 2020). In contrast, our approach

demonstrates the ability to learn successfully in such environments.

We further evaluate our method in reservoir networks, widely used

networks for biologically plausible circuits, and find that our rule

remains effective within these architectures.

In summary, we introduce a robust plasticity learning rule that

achieves competitive performance while adhering to fundamental

neural principles. Moreover, we highlight several key properties of

our learning framework to achieve robustness and effectiveness,

which could be further experimentally tested in biological systems,

paving the way for future neurobiological validation.

2 Materials and methods

As shown in Figure 1 andAlgorithm 1, the architecture of RSRP

contains two stages: the plasticity optimization stage and the model

environment interaction stage. During the plasticity optimization

stage, the synaptic release probability undergoes adjustment by

applying the RSRP plasticity rule. In the model environment

interaction stage, the neural network interacts with environments

to acquire reward signals with synaptic release samples.

2.1 Reward-optimized stochastic release
plasticity

We extend the hedonistic plasticity learning rule

framework (Seung, 2003) by introducing a parameterized Bernoulli

distribution B(·) to model stochastic synaptic transmission.

Specifically, we formulate the system’s objective as an optimization

problem where J(ρ) serves as the expected reward function

quantifying system performance for a given release probability ρ.

We aim to determine the optimal release probability that

maximizes expected reward:

ρ∗ = argmax
ρ

J(ρ) = argmax
ρ

Eθ∼B(ρ)[R(θ)], (1)

where R(θ) corresponds to the reward signal received given

a specific synaptic release sample θ , which is a binary random

variable representing either successful (θ = 1) or failed (θ = 0)

synaptic transmission events. The learning rule governing the

dynamic adjustment of ρ is formulated as

1ρ =
η

N

N∑

i=1

(θ i − ρ)Ri (2)

This equation specifies a learning mechanism that dynamically

adjusts ρ through reward modulation. Specifically, the update 1ρ

represents the adjustment direction and magnitude for synaptic

efficiency optimization, where the learning rate parameter η

controls the temporal scaling of updates, Ri and θ i are the reward

signal and synaptic release samples in the ith trial over N observed

synaptic events, respectively.

To constrain the release probability ρ within the admissible

domain [0, 1]K , we incorporated a projection operator with

clipping threshold ǫ. The clipping approach is formally

expressed as:
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FIGURE 1

Architecture of RSRP, which consists of two stages: plasticity optimization stage and model/environment interaction stage. In the plasticity

optimization stage, synaptic release probability is adjusted via Bernoulli sampling and plasticity rule. In the model/environment interaction stage, the

neural network interacts with environments like physics simulation and digit classification, with rewards guiding the overall process.

Input: Task environment D, Number of samples N

Output: Final binary synaptic matrix ρ

1 Initialize release probabilities: ρ ← {0.5}d;

2 for t = 1 to T do

3 Sample data batch B ∈ D

4 for i = 1 to N do

5 Sample synaptic release: θi ← Bernoulli(ρ);

6 Compute reward: Ri ← Evaluate(θi,B);

7 R1,...,Ri,...,RN ← Reward_Regularization(R1,...,Ri,...,RN)

8 ∇̃ρR(ρ)← 1
N

∑
N

i=1(θi − ρ) · Ri ; // Gradient estimation

9 ρ ← Optimizer(ρ, ∇̃ρR(ρ)) ; // Parameter update

10 ρ ← Clip(ρ, ǫ,1− ǫ) ; // Clip to valid probability range

11 return ρ

Algorithm 1. Reward-optimized stochastic release plasticity (RSRP).

ρ(t+1) = clip
(
ρ(t) +1ρ(t), ǫ, 1− ǫ

)
(3)

2.2 Natural gradient estimation

While the standard gradient identifies the direction of steepest

descent in Euclidean space, the natural gradient determines

the steepest descent direction in the space of probability

distributions, using the Kullback-Leibler (KL) divergence as a

measure of distance. The natural gradient exhibits greater stability

when optimizing over probability distributions (Wierstra et al.,

2011). Synaptic release can be conceptualized as a form of

probabilistic inference, thereby operating within a distributional

space (Kappel et al., 2015). Building upon our framework, where

the stochastic synaptic transmission is modeled as θ ∼ B(ρ),

the gradient of the expected reward function J(ρ) can be derived
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as follows:

∇ρ J(ρ) = Eθ∼B(ρ)[∇ρ log P(θ |ρ)R(θ)] (4)

= Eθ∼B(ρ)[
θ − ρ

ρ(1− ρ)
R(θ)] (5)

≈
1

N

N∑

i=1

θ i − ρ

ρ(1− ρ)
Ri (6)

The equation shows that, unlike chain rule and

backpropagation, the derivative of expected reward J(ρ) can

be acquired without relying on an explicit calculation of gradient

over a neural network. This technique aligns with a foundational

concept in deep reinforcement learning, where the gradient

of the expected reward is computed through the gradient of a

probability distribution, thereby eliminating the need to directly

differentiate the reward function. The key distinction in RSRP

lies in how the probability distribution is defined: while deep

reinforcement learning uses a neural network to parameterize

the distribution, RSRP employs a straightforward Bernoulli

distribution and treats the network solely as a component of the

reward sampling mechanism.

To mitigate the instability commonly observed in standard

gradient estimates (Wierstra et al., 2011), we instead employ natural

gradient estimation:

∇̃ρ J(ρ) = F−1∇ρ J(ρ) (7)

where ∇̃ denotes natural gradient, and F denotes the Fisher

information matrix. Given that the synaptic release process is

assumed to be independent of each other neuron, the Fisher

information matrix F takes a diagonal form:

F = Eθ∼B(ρ)

[
∇ρ log P(θ |ρ)∇ρ log P(θ |ρ)

T
]

(8)

= diag(
1

ρ(1− ρ)
) (9)

As a result, we derive a plasticity rule based on the natural

gradient:

1ρ = η∇̃ρ J(ρ) = ηF−1∇ρ J(ρ) (10)

≈
η

N

N∑

i=1

(θi − ρ)Ri (11)

2.3 Relation to hedonistic synaptic
plasticity

Seung (2003) proposed a learning rule that employs the sigmoid

function σ to parameterize the synaptic release probability p.

This approach utilizes an eligibility e to compute the gradient

of the reward signal, incorporating a temporal summation trace

mechanism, which might be similar to our summation over

different synaptic samples. The learning rule can be summarized as:

p = σ (ρ) (12)

e = θ − p (13)

1q = η
∑

t

e∗R (14)

where θ denotes a synaptic release sample. Specifically, it

employs a standard gradient approach, distinct from RSRP, to

optimize the expected cumulative reward:

∇qJ(q) = Eθ∼P(q)[∇q log P(θ |q)R(θ)] (15)

= Eθ∼P(q)[σ
′(q)

θ − p

p(1− p)
R(θ)] (16)

≈
1

N

N∑

i=1

(θ i − q)Ri (17)

Coincidentally, both update rules exhibit similar functional

forms. However, two key differences can be identified: RSRP applies

a natural gradient, whereas hedonistic plasticity employs a standard

gradient; and RSRP updates the probability parameter directly,

while hedonistic plasticity adjusts a parameter that indirectly

controls the release probability through the sigmoid function.

To further enhance training stability in recurrent architectures,

we sample the vesicle release event once per synapse at the

beginning of each episode and hold it fixed across all time

steps within that episode. This temporally shared randomness

reduces the variance of learning signals, encourages temporal

consistency in recurrent dynamics, and remains consistent with

interpreting vesicle release reliability as a synapse-level trait that is

modulated over behavioral episodes, rather than at every individual

spike. While the model captures key computational principles,

its biological fidelity could be further enhanced–an important

direction for future research.

2.4 Regularization

2.4.1 Centered rank based reward transform
To avoid local minima in the estimation process (Wierstra

et al., 2011; Salimans et al., 2017), we employ a rank-based

transformation over rewards. Instead of using the actual numerical

values of individual rewards, we replace them with their ordinal

rankings to construct the reward signal for the learning rule.

Specifically, the transformed reward R′i is computed as,

R′i = −
1

2
+

1

N

∑

j

δ(Ri > Rj) (18)

where δ(·) denotes the indicator function, which equals

1 if Ri > Rj and 0 otherwise. Raw rewards, R, are

converted to normalized, rank-ordered values that are subsequently

centered at zero via the subtraction of 1
2 . Furthermore, this

method of rank-based normalization finds a conceptual parallel

in neuroscience. The functional diversity observed in midbrain

dopamine neurons supports the concept of a distributional reward

coding framework (Lowet et al., 2020). It is plausible that this

neural mechanism serves a computational role analogous to the

rank-based encoding proposed in our paradigm.

2.4.2 Balanced input transformation
The input to a network may be unbalanced, exhibiting a

nonzero mean or an asymmetric distribution, which can degrade

the performance of a balanced network. Therefore, we expand the
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input into an EI-balanced form. Specifically, for any given input x,

the input is transformed into:

x′ = concat(x,−x) (19)

By concatenating the input with its negated copy, we ensure

that the resulting vector remains balanced. This mechanism

mirrors biological sensory systems, where signals are processed in

on-off cell pairs to maintain balance.

2.4.3 Reward signal for classification
We employ three reward signals for the classification task:

cross-entropy, accuracy, and a smoothed variant of recall, which we

refer to as soft recall. In soft recall, the reward signal is computed

using a smoothed function inspired by reciprocal rank. Specifically,

for a given batch of data samples, the reward is defined as:

R =
1

TP + FP

∑ 1

ranki
(20)

Where ranki denotes that the position of the label li in the

ranking of the network’s classification outputs, in descending

order. This formulation represents a modified approach to recall

calculation, utilizing reciprocal rank to provide a smoothed

estimation of true positives.

2.5 EI balanced networks

Excitatory-inhibitory (EI) balance is a fundamental property of

neural networks. The output of an excitatory neuron is inherently

positive, whereas the output of an inhibitory neuron is negative.

Consequently, for a layer producing positive vectors–such as spike

outputs in LIF neurons or ReLU activations in deep learning–

its output can be transformed into an EI-balanced regime. This

transformation is expressed as:

y =W@x′ x′ = concat(x0 :N/2,−xN/2,N) (21)

where both x andW are strictly positive. Notably, the positivity

constraint onW can be naturally enforced within the RSRP.

2.6 Recurrent Spiking Neural Networks

For reinforcement learning, we employ a recurrent network

composed of Leaky Integrate-and-Fire (LIF) neurons with

exponential synapses. This network features a recurrent hidden

layer that is directly connected to both the input and output

layers, receiving environmental states as inputs and generating

corresponding actions as outputs. The size of the hidden state in

every RL task is 256. Each layer in the Recurrent Spiking Neural

Network (RSNN) maintains excitatory-inhibitory (EI) balance.

The input layer, output layer, and recurrent hidden layer are all

trainable under the RSRP framework. Additionally, we implement

a reservoir network with the same architecture, in which the

recurrent hidden layer remains frozen, preserving a fixed set

of random connections to provide a dynamic but unstructured

computational regime.

2.7 Experimental setup

Our experiments mainly focused on two fields: Reinforcement

Learning and Supervised Learning.

2.7.1 Reinforcement learning (RL)
RSRP is evaluated on two RL benchmark tasks: the CartPole

and Humanoid locomotion. These tasks represent complementary

challenges spanning low-dimensional nonlinear instability

and high-dimensional, contact-rich dynamics, offering a

comprehensive assessment of RL capabilities across varying state-

space complexities. Specifically, the CartPole task (2 DoF, simpler)

and humanoid task (17 DoF, more complex) require policies to

maximize the episodic return R(θ) = Eτ∼πθ
[
∑T

t=0 rt] through

continuous torque optimization under distinct constraints.

All models are trained and tested in the same version of the

environment: the Gym (Brockman et al., 2016) environment for

CartPole task, and Brax (Freeman et al., 2021) for Humanoid

task. Each evaluation roll-out Ri corresponds to one full episode

trajectory generated by policy parameters θk: the CartPole task

enforces strict actuator ranges for balance maintenance, while

the humanoid imposes joint torque limits and fall-prevention

termination conditions.

In our framework, the synaptic release sampling number refers

to the number of samples used during synaptic updates, denoted as

N in the update rule. In each RL task, N = 10, 240, ǫ = 0.001, and

the learning rate is set at 0.15. We applied 100 training iterations in

the CartPole task and 2,000 in the Humanoid task.

2.7.2 Supervised learning
We further evaluate our learning rule on two benchmark

supervised learning tasks: MNIST and CIFAR-10. The MNIST

dataset consists of 60,000 training images of handwritten digits

while CIFAR-10 comprises 50,000 training images across 10 object

classes, both with 10,000 test images. To assess scalability across

architectures, we employ both multilayer perceptrons (MLPs) and

convolutional neural networks (CNNs). For MLPs, we use a single

hidden layer with 64 units for MNIST and 128 units for CIFAR-

10. The CNN architecture consists of two 3×3 convolutional layers

with 32 and 64 channels, respectively, followed by a fully connected

classification layer.

To align with the constraints of our proposed framework, we

exclusively employ a sparse reward signal rather than conventional

supervision. Specifically, instead of utilizing the standard cross-

entropy loss, we define the reward as a binary logit-label hit signal,

which assigns a positive outcome only when the models predicted

classes are close to the ground-truth label. The design mirrors

biologically plausible reinforcement paradigms, where discrete

success/failure signals–rather than continuous error gradients–

drive learning. By replacing dense error signals with a sparse reward

structure (Figure 2), we emulate scenarios in which agents receive

limited, intermittent feedback, thereby testing the robustness and

Frontiers inNeural Circuits 05 frontiersin.org

https://doi.org/10.3389/fncir.2025.1618506
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Sun et al. 10.3389/fncir.2025.1618506

FIGURE 2

Illustration of the sparse reward training procedure of RSRP, where the networks are fed with N stimuli of an image batch and output predictions.

After collecting all rewards from N trials, these rewards are transformed and guide the optimization of network parameters via the reward-optimized

plasticity rule.

efficiency of our rank-based learning mechanism under resource-

constrained conditions.

For classification tasks, the data sampling size is defined as

the number of input instances used to compute each reward

signal per synaptic sample, as illustrated in Figure 2. In the

baseline configuration, all synaptic samples within a training

step utilize the same data batch. In contrast, subsequent studies

adopt random data sampling for each forward trial to enhance

variability and robustness. To achieve optimal performance, the

number of synaptic release samples was set to N = 20, 000 for

the MLP model and N = 8, 000 for the CNN model. While these

values may exceed biologically plausible limits, we demonstrate

that the RSRP framework remains capable of learning with

significantly smaller, biologically realistic sampling sizes, albeit

with a corresponding decline in task performance. Training

was conducted over 5,000 steps (corresponding to 5 epochs)

with a batch size of 64 for the MNIST dataset, and 5,000 steps

(approximately 13 epochs) with a batch size of 128 for the

CIFAR-10 dataset. Subsequent investigations focus on the MNIST-

MLP64 configuration, employing 3,000 training steps to ensure

computational efficiency while maintaining statistical reliability.

All optimizations use simple updating rules (stochastic gradient

descent, SGD) without momentum or weight decay mechanisms.

Learning rates are tuned independently for each configuration to

maximize performance.

Hyperparameters in our experiments for reproduction is

listed in Supplementary material. Notably, RSRP exhibited stability

in experiments, demonstrating no significant dependence on

hyperparameter tuning. The only critical hyperparameter is the

synaptic sampling size, which requires sufficiently large values to

reduce optimization noise.

3 Results

3.1 Reinceforcement learning

3.1.1 Comparative frameworks
Our experimental design systematically compares RSRP and

its Reservoir computing (Jaeger, 2001; Jaeger and Haas, 2004)

variant (RSRP-Reservoir) against three representative methods,

Reward-modulated Spike-Timing-Dependent Plasticity (R-STDP),

Evolutionary Strategy (ES) (Salimans et al., 2017), and Proximal

Policy Optimization (PPO) (Schulman et al., 2017), spanning a

range of optimization approaches, from biological plausibility to

gradient-free optimization and mainstream RL methods. R-STDP-

based Spiking Neural Networks (Haşegan et al., 2021) (SNNs)

provide a neurophysiologically grounded baseline, testing the

sufficiency of bio-inspired heuristics in complex tasks. ES-based

R-SNN, which evolves network parameters through population-

based sampling, probes the robustness of optimization when

disentangled from gradient dynamics. Meanwhile, PPO with

Long Short-TermMemory (LSTM) (Hochreiter and Schmidhuber,

1997) architectures represent the state-of-the-art gradient-based

approach, establishing performance ceilings for backpropagation-

driven learning. This systematic comparison–from strict biological

mimicry to engineered gradient exploitation–demonstrates RSRP’s

unique ability to balance biological fidelity, training stability,

and task efficiency, positioning it as a versatile solution for

biological learning.

3.1.2 Performance across learning horizons
Our methodology establishes robust performance benchmarks,

as demonstrated by the learning trajectories (Figure 3) and final
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FIGURE 3

Evaluation of return during training on two typical locomotion reinforcement learning tasks: (A) CartPole task with 2 DoF and (B) Humanoid task with

17 DoF. (C) All the network are a variant of RNN. Five independent experimental trials are launched for each model. The plotted curves represent the

arithmetic mean of the five replicate experiments, with the shaded regions indicating the range of standard deviation.

FIGURE 4

Average of final returns in trials of Humanoid and CartPole tasks. The left and right y-axes represent Humanoid final return and CartPole final return.

Each bar is accompanied by error bars to visualize the data distribution.

returns (Figure 4, Table 1). Researchers proved that reporting

only the optimized performance highlights the best possible

result from the algorithm, rather than its expected behavior in

realistic settings. Across various fields, analyzing performance

distributions is commonly recommended to offer a fuller picture

of an algorithm’s behavior (Jordan et al., 2020). Therefore, our

methods focus more on the training curves and final rewards,

instead of the peak performance during training. In the CartPole

environment (Figure 3A), both RSRP-RSNN and its Reservoir

variant match PPO-LSTM’s maximum return (500), which is

the maximum return of the environment. While our approach

demonstrates rapid convergence, the learning trajectory reveals

that R-STDP, a foundational plasticity optimization method,

exhibits more gradual performance progression, stabilizing

below a cumulative return of 300 across all training runs.

In the more complex Humanoid environment (Figure 3B),

our method demonstrates a more nuanced superiority: while

PPO-LSTM occasionally generates high-return occasionally

during training, our method consistently achieves higher final

performance (14,033.97 vs 12,725.04). Notably, the Reservoir

variant maintains 97% of base model performance with a

frozen recurrent layer, consolidate the effectiveness of our

plasticity framework on reservoir computing. This cross-task

dominance confirms plasticity based approaches can rival
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TABLE 1 Average of final returns in CartPole (2 DoF) and Humanoid (17

DoF), and the bold values indicate the best performance among all

models.

Method Model CartPole(2
DoF)↑

Humanoid(17 DoF) ↑

R-STDP SNN 109.00± 45.99 —

ES R-SNN 500.00 ± 0.00 12,331.52± 1,944.22

PPO LSTM 440.36± 119.28 12,725.04± 1,852.03

RSRP R-SNN-

reservoir

500.00 ± 0.00 13,606.16± 604.51

RSRP R-SNN 500.00 ± 0.00 14,033.97 ± 360.33

backpropagation-based methods in a complex reinforcement

learning scenario.

3.1.3 Robustness through synaptic stability
The learning curves’ variance (Figure 3 shaded regions) and

the variance of final returns (Figure 4) quantitatively validate our

method’s stability advantages over gradient-based counterparts.

Where PPO-LSTM exhibits high and changing variance (±119.28

in CartPole; ±1,852.03 in Humanoid), our approach demonstrates

stable variance control throughout training, achieving consistent

performance in CartPole (500±0) and maintaining less than 2.6%

relative Humanoid variance (360.33/14,033.97) versus PPO’s 14.5%

(1,852.03/12,725.04). Although PPO-LSTM exhibited transiently

high returns during training, its overall performance was

unstable, resulting in a lower final average performance relative

to its peak performance. In contrast, RSRP demonstrated

greater stability and consequently achieved a higher final

average performance.

3.1.4 Environment sampling e�ciency between
RSRP and PPO in humanoid task

As shown in Figure 3B and Figure 5, the Humanoid task

reveals a significant difference in environmental steps utilized

between PPO and RSRP methodologies. In contrast to PPO,

which optimizes policies using fragmented 16-step (specific

to our experimental settings) trajectory segments, RSRP-based

approaches rely on full-episode returns for gradient estimation,

with episode lengths dynamically determined by the agent’s survival

duration (capped at 1,000 steps in this task). To ensure a fair

comparison, we treat RSRP’s episodic interactions as equivalent to

1,000 environmental steps per update cycle. However, empirical

observations suggest that actual episode durations are typically

much shorter. The results indicate that RSRP requires 8× more

total environment steps compared to PPO, however it requires

×550 fewer model parameter updates and demonstrating much

more stability in learning. This operational distinction creates

a efficiency trade-off: while PPO requires fewer environmental

steps per update and achieves higher-frequency policy updates, it

necessitates a significantly larger number of updates to complete

training. In contrast, RSRP requires more environmental steps per

update, leading to fewer but more stable updates.

3.2 Supervised learning

3.2.1 Performance and stability
In the MNIST classification task, RSRP demonstrated

comparable convergence performance and training stability

to Backpropagation (BP) (Figure 6A). After RSRP training,

the two layer fully connect networks stably achieved a test

accuracy of 0.96 with consistent convergence, which was only 1

percentage points lower than that attained by BP. Notably, RSRP

significantly outperformed Spike-Timing-Dependent Plasticity

(STDP), a biologically plausible learning rule. While Diehl and

Cook (2015) reported classification accuracy up to 95% using

unsupervised STDP, our experimental replication demonstrated

lower performance (85% maximum accuracy) with frequent

divergence during optimization. The extension of the width to

1000 hidden neurons of the networks improved the performance

up to 97.8%. Table 2 compares our results with other optimizing

algorithms for the similar network architecture on MNIST.

We also investigated the impact of different reward functions

on RSRP optimization in supervised learning. The results

indicated that simply using accuracy as a reward yielded

similar performance to cross-entropy, though it introduced slight

fluctuations in the early learning phase. Accuracy provides a

reward only when the network produces a correct answer;

however, it should also offer a partial reward for responses that

are close to the correct answer, even if not entirely accurate.

Thus, we introduced a smoothed version of the recall matrix,

which succeeded in stabilizing gradient updates and accelerating

convergence.

To further assess the scalability of RSRP in complex learning

scenarios, we evaluated its efficacy across varying network

architectures and task difficulties. As illustrated in Figure 6B,

applying the convolution architecture in feedforward networks

improved RSRPs performance, achieving a test accuracy of 0.98

(versus 0.96 for MLPs) with reduced parameter counts and

higher training efficiency. On the more challenging CIFAR-

10 benchmark (Figure 6C), RSRP maintained stable training

dynamics to attain a test accuracy of 0.48 but exhibited a

performance gap relative to BP(0.51), which was more pronounced

than that in MNIST. Increasing network depth improved

BP’s performance but had negligible benefit on RSRP and

introduced instability and divergence failures during training,

highlighting a limitation of RSRP in deeper architectures.

The result suggests that RSRP is capable of training deeper

networks, although its performance on such architectures remains

suboptimal.

In summary, RSRP demonstrated competent but inferior

performance relative to BP in classical supervised learning. On one

hand, unlike BP that relies on the cross-entropy-based gradient

in supervised classification, RSRP employs a simpler reward-

based optimization signal, which contains much less information.

Although this may result in slightly lower performance, it

offers significantly greater biological plausibility. On the other

hand, RSRP’s design is focused on modulating spike probability,

while disregarding the synaptic strength adjustments, which is

central to rules like STDP. Therefore, to unlock broader and

better performance, RSRP should be viewed not as a standalone
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FIGURE 5

Comparison of environment sample e�ciency during training for the humanoid task. A significant di�erence is observed in the environment sample

e�ciency between PPO and RSRP. RSRP and ES require the final return from the entirety of an episode for training. The number of environmental

steps per episode varies with the “living time”, which in this task is less than 1,000. For standardization purposes, we consider each episode to consist

of 1,000 environmental steps (though, in practice, our method typically uses even fewer steps). In contrast, PPO only requires 16 steps (specifically in

this task) to perform optimization.

FIGURE 6

Performance of RSRP in supervised learning evaluated by accuracy of test set. Shaded regions denote standard deviation across five trials. (A) Training

curves of a 3-layer MLP on MNIST, evaluating RSRP (0.96) with di�erent reward functions (soft recall, accuracy, cross-entropy against BP (0.972) and

STDP (0.85). (B) Performance of RSRP in training CNN on MNIST (0.98), compared to BP (0.988). (C) Performance on CIFAR-10 using deeper

architectures (784-128-64-10), comparing between RSRP (0.48) and BP (0.54).

algorithm, but as a component that likely requires a complementary

plasticity rule to work alongside it.

3.2.2 Impact of sample size
Since RSRP estimates gradients stochastically as an expectation,

it requires a number of samples to reduce variance. Thus,

the precision of the gradient estimate and the optimization

performance should primarily depend on the synaptic sampling

size N, as indicated in Equation 2, while the batch size of the

input data should have a relatively minor impact, as it mainly

influences the precision of the reward Ri. However, experimental

results in the MNIST task (Figure 7) revealed that the final

accuracy was determined by the product of synaptic sampling

size and data sampling size, that is, the total number of forward

trials processed per update step. This finding implies that if

the total sample size remains constant, reducing the number of

synaptic samplings while increasing the amount of input data

preserves learning performance, unless it becomes too small.

Without sampling in synapses, the algorithm fails to function.

When synapse parameters are sampled only twice for gradient

estimation, optimization occurs but remains suboptimal. At least

a dozen synaptic events are required to achieve satisfactory

learning outcomes.

3.2.3 Learning progress of parameters
The core principle of RSRP is reinterpreting synaptic plasticity

as a parameterized stochastic distribution, it allows us to

calculate the information entropy of the weights to quantify

their transformation during learning. As training progressed,

the entropy monotonically decreased (Figure 8), indicating that

the network gradually accumulated more information. However,

the entropy reduction in the input-to-hidden layer remained
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incomplete compared to the hidden-to-output layer, regardless of

learning rate adjustments, suggesting insufficient learning in the

first layer.

Moreover, we analyzed the evolution of distribution parameters

during training. The distribution exhibits high symmetry, with

parameters being gradually driven toward either zero or one by

RSRP, while the overall mean remains centered at 0.5. This pattern

suggested a structured consolidation of learned representations

over time.

3.3 Regularizations

3.3.1 Reward transformation
Without any reward regularization, the RSRP exhibited

instability during training and achieved low final accuracy

(Figures 9A, B). A simple and reasonable approach to maintaining

network balance is to ensure a zero-mean reward by subtracting

the history reward, which can be implemented by our brain. This

TABLE 2 Comparison with similar feedforward network architecture on

MNIST.

Learning rule Network
structure

Accuracy↑
(%)

STDP (Diehl and Cook, 2015) 784-6400 with EI 95

BP-STDP (Tavanaei and Maida, 2019) 784-100-10 94

BP-STDP (Tavanaei and Maida, 2019) 784-500-150-10 97.2

Equilibrium propagation (Scellier and

Bengio, 2017)

784-500-10 97

Equilibrium propagation (Scellier and

Bengio, 2017)

784-500-500-10 98

STBP (Wu et al., 2018) 784-800-10 98.9

RSRP (Ours) 784-64-10 96

RSRP (Ours) 784-1000-10 97.8

adjustment improved optimization but remained inferior to the

centered rank transformation. Thus, our results indicated that

centered rank reward transform played a crucial role in the success

of RSRP.

3.3.2 Excitation-inhibition balance
By partitioning hidden-layer neurons into excitatory and

inhibitory populations in equal proportion, we constructed an

E-I balanced neural network that aligns better with biological

plausibility than conventional ANNs. We observed that RSRP

and BP performed similarly in optimizing this network, but both

exhibited degraded performance compared to their performance in

a standard ANN (Figure 9C). To maintain the balance of the input

layer, we augmented the input data with a mirrored counterpart.

With the modification, RSRP achieved performance levels that

slightly outperformed those of the original ANNs, while BP did

not exhibit complete recovery. These findings suggest that with

appropriate input regularization, RSRP is capable of learning in an

E-I balanced neural network.

3.3.3 Other regularizations in BP
To enhance the training performance of RSRP, we investigated

several regularization strategies commonly employed in BP.

Weight decay is widely used in BP to mitigate overfitting in

traditional deep learning. Here, we attempted to apply weight decay

to RSRP by constraining the distributed parameters toward 0.5, but

this approach yielded no performance improvement.

We also examined the impact of different optimizers, including

momentum and Adam, and found no significant differences in

RSRPs performance compared to vanilla SGD inmost experimental

configurations. However, in the optimization of a four-layer MLP

trained on CIFAR-10, which was more unstable than a three-layer

MLP, incorporating momentum effectively reduced the occurrence

of divergence failures.These findings suggest that future work

FIGURE 7

Task performance dependence on sampling number in RSRP. Data are sampled randomly for each sampling trial. (A) The Final test accuracy as a

function of the total sample size per update step, given by the product of synaptic sampling size (ss) and data sampling size (ds). Shaded regions

denote standard deviation across five di�erent ss and ds. (B) Accuracy under fixed total sampling size (ss*ds = 1,024, 16,384, 65,536) with varying

synaptic sampling sizes. (C) Training dynamics under extreme sampling configurations (ss=1 or ds=1).
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FIGURE 8

Evolution of distributed parameters during RSRP training. (A, B) Entropy dynamics of synaptic parameters across input-hidden layer (Kernel 1) (A) and

hidden-output layer (Kernel 2) (B). (C) Parameter distribution histograms at selected training steps.

should focus on developing RSRP-specific optimization techniques

to reduce noise within gradient decent.

4 Discussion

The diversity of learning mechanisms across brain regions

suggests that neural circuits may employ specialized learning

rules tailored to their functional roles. Hebbian plasticity is

widely observed in the nervous system, and its mathematical

models are useful for associative and unsupervised learning.

Error backpropagation, another prominent learning mechanism,

is well tested in supervised learning. However, it remains

questionable whether the entire brain utilizes such a learning

rule, given that it requires precise error signal backpropagation.

Our findings propose a complementary framework RSRP:

learning through global reward and synaptic plasticity.

Nevertheless, we demonstrated that RSRP does not perform

optimally across all tasks. This could be a prediction that

learning in the brain could involve a combination of different

learning rules, where distinct regions utilize specialized

mechanisms suited to their respective functions. Notably, our

experiments demonstrated that RSRP performs particularly

well in motor control tasks. Reservoir networks exhibit

competitive performance in these tasks, although they show

a slight performance decay compared to trainable recurrent

networks, which offer greater adaptability. This performance

gap highlights the potential for further investigating the

modification of statistical properties and their impact on

motor control.

While learning rules with imprecise gradients, like RSRP, may

not be optimal for training deep networks from scratch, we
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FIGURE 9

E�ects of reward normalization and network architecture on RSRP performance. (A) Impact of reward transforms on MNIST classification, including

centered rank transform (crt)(0.95), zero-mean normalization (0.88), and no transform (0.8). (B) Impact of reward transforms on humanoid task,

including centered rank transform (CRT) (14,033), zero-mean normalization (6,534). (C) Performance of RSRP in training the excitation-inhibition

balance networks compared with BP.

hypothesize they are highly effective for fine-tuning large models

such as Transformers. Our central premise is that the performance

of algorithms like RSRP is significantly enhanced when operating

within a neural network’s linear regime. We find empirical support

for this in our experiments with reservoir computing, where RSRP

achieves competitive performance by training an inherently linear

input and readout layer. This principle is not limited to explicitly

linear models: Neural Tangent Kernel (NTK) theory suggests

that even complex, deep networks can operate in an effectively

linear manner from the perspective of parameter updates (Jacot

et al., 2018; Lee et al., 2019). This insight is particularly relevant

for fine-tuning large, pre-trained models, where small parameter

adjustments approximate linear dynamics. Therefore, while RSRP

may be sub-optimal for end-to-end training, it is a promising

candidate for the fine-tuning stage, which operates within this

effective linear regime.

Notably, RSRP contrasts with canonical STDP, which operates

through unsupervised, correlation-based updates dependent

on presynaptic and postsynaptic activity. While STDP excels

at refining temporal representations, its capacity to integrate

explicit supervisory or reward-driven signals remains theoretically

underexplored. Our results address this gap by demonstrating that

reward-contingent synaptic modifications can drive task-specific

learning without relying on precise spike timing. Distinct synaptic

plasticity rules have been observed to operate across dendritic

compartments during learning (Wright et al., 2025), suggesting

that RSRP may plausibly function in parallel with other learning

mechanisms. Crucially, RSRP posits that synaptic efficacy updates

are gated by reward signals rather than solely by presynaptic release

events, a distinction with testable and significant neurobiological

implications. If validated experimentally, the identification

of reward-triggered presynaptic probability modulation in

vivo—potentially mediated by dopamine-dependent vesicular

priming or long-range glutamatergic modulators such as

mGluRs and NMDARs–would provide compelling evidence

for our framework, particularly in supporting their role in

inducing local dendritic depolarization (Sherman and Guillery,

1998).

Additionally, a key component of RSRP involves reward

regularization, particularly rank-based regularization and the

utilization of natural gradient. Biological systems often operate in

noisy and variable environments, and ranking could be a strategy to

enhance survival in such conditions. It may offer a framework for

neuronal coding schemes within the brain, as suggested by previous

studies on rank coding (Portelli et al., 2016). For instance, it could

help explain the role of lateral inhibition in cortical neurons, which

may serve to encode rank-based information. Such findings could

also help elucidate the neuronal coding mechanisms underlying

reward distribution, thereby contributing to more stable learning

dynamics driven by reinforcement signals (Lowet et al., 2020).

Future studies could investigate whether RSRP-like dynamics

are enriched in circuits associated with reinforcement learning,

such as cortico-striatal pathways, and how they interact with

Hebbian or STDP-driven processes. Such investigations would

clarify how distinct learning rules are anatomically partitioned or

dynamically recruited to support adaptive behavior.
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