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An accurate diagnostic method using biological indicators is critically needed 

for bipolar disorder (BD) and major depressive disorder (MDD). The excitatory 

glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

(AMPAR) is a crucial regulator of synaptic function, and its dysregulation may 

play a central role in the pathophysiology of psychiatric disorders. Our recently 

developed positron emission tomography (PET) tracer, [11 C]K-2, enables the 

quantitative visualization of AMPAR distribution and is considered useful for 

characterizing synaptic phenotypes in patients with psychiatric disorders. This 

study aimed to develop a machine learning-based method to differentiate 

bipolar disorder from major depressive disorder using AMPAR density. Sixteen 

patients with BD and 27 patients with MDD, all in depressive episodes, underwent 

PET scans with [11 C]K-2 and structural magnetic resonance imaging. AMPAR 

density was estimated using the standardized uptake value ratio from 30 to 

50 min after tracer injection, normalized to whole brain radioactivity. A partial 
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least squares model was trained to predict diagnoses based on AMPAR density, 

and its performance was evaluated using a leave-one-pair-out cross-validation. 

Significant differences in AMPAR density were observed in the parietal lobe, 

cerebellum, and frontal lobe, notably the dorsolateral prefrontal cortex between 

patients with BD and patients with MDD during a depressive episode. The model 

achieved an area under the curve of 0.80, sensitivity of 75.0%, and specificity of 

77.8%. These findings suggest that AMPAR density measured with [11 C]K-2 can 

effectively distinguish BD from MDD and may aid diagnosis, especially in patients 

with ambiguous symptoms or incomplete clinical presentation. 

KEYWORDS 

AMPA receptor, bipolar disorder, depression, differentiation, machine learning 

Introduction 

Mood disorders, including major depressive disorder (MDD) 
and bipolar disorder (BD), are complex psychiatric conditions. 
Approximately 10%–20% of individuals experience MDD, while 
2.4% develop BD over their lifetimes (Merikangas et al., 2011; Lim 
et al., 2018; Gutiérrez-Rojas et al., 2020). These disorders pose 
significant public health challenges and remain leading causes of 
global disability, highlighting the substantial reduction in healthy 
life years attributable to these conditions (Vigo et al., 2016). BD 
and MDD are operationally diagnosed under the Diagnostic and 
Statistical Manual of Mental Disorders (DSM) (Cooper, 2018), 
with the primary distinction being the presence of mania in BD, 
absent in MDD. However, dierentiating BD from MDD remains 
challenging, as BD often first appears with depressive symptoms 
and lacks early manic episodes (Hantouche et al., 2006; Smith et al., 
2011; Shen et al., 2018), leading to a high misdiagnosis rate (40%– 
75% of patients with BD are first diagnosed as MDD) (Ghaemi 
et al., 1999, 2000; Hirschfeld et al., 2003; Watanabe et al., 2016; Shen 
et al., 2018). Moreover, BD’s episodic nature, marked by fluctuating 
intervals between depressive and manic/hypomanic phases, further 
complicates diagnosis and can delay accurate identification by 4– 
10 years (Ghaemi et al., 2000; Baethge et al., 2003; Hirschfeld et al., 
2003; Baldessarini et al., 2007; Watanabe et al., 2016). MDD is 
typically treated with antidepressants, whereas BD requires mood 
stabilizers and second-generation antipsychotics. This dierence 
in treatment approach necessitates the precise dierentiation of 
BD from MDD. In patients with BD, antidepressants increase 
the risk of rapid cycling—frequent shifts between manic and 
depressive episodes—significantly heightening the likelihood of 
suicidal behavior (Carvalho et al., 2020). Additionally, prolonged 
misdiagnosis impairs quality of life and increases hospitalizations 
and healthcare costs (Goldberg and Ernst, 2002; Birnbaum et al., 
2003; Shi et al., 2004; McCombs et al., 2007). Given these challenges, 
objective biomarkers are urgently needed to facilitate early and 
accurate dierentiation between BD and MDD during depressive 
states. Numerous studies have explored this, including a recent one 
on peripheral blood-based assays, such as RNA-editing markers 
combined with machine learning (ML), which reportedly achieved 
good classification accuracy (Salvetat et al., 2024). However, these 
approaches often rely on systemic immunological or inflammatory 

signals rather than directly capturing the underlying neuronal 
pathophysiology. Medication use and comorbid conditions can 
heavily influence peripheral measurements, raising uncertainty 
about their reflection of neural dysfunction in BD. Consequently, 
a biomarker that visualizes neuronal targets in the living human 
brain would provide a more direct biological interpretation and 
reduce ambiguities inherent in blood-derived markers. 

Our research focuses on the role of the excitatory glutamate 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 
(AMPARs) and elucidates synaptic dysfunction in mood disorders 
(Hatano et al., 2024). AMPARs are the primary molecules 
that mediate fast transmission at glutamate synapses (Derkach 
et al., 2007; Jitsuki et al., 2011; Diering and Huganir, 2018; 
Krystal, 2020). The synaptic traÿcking of AMPARs is a key 
molecular mechanism driving experience-dependent synaptic 
plasticity, which underlies fundamental cognitive processes such 
as learning and memory (Takahashi et al., 2003; Mitsushima 
et al., 2011; Takemoto et al., 2017; Abe et al., 2018; Diering 
and Huganir, 2018). Given their role as crucial regulators of 
synaptic function, AMPARs have been implicated as key molecular 
bottlenecks in the pathophysiology and treatment mechanisms 
of psychiatric disorders (Ueno et al., 2019; Yonezawa et al., 
2022). Consistently, dysregulated AMPAR signaling is observed 
in mood disorders. In the dorsolateral prefrontal cortex, GluA2 
mRNA is reduced in both MDD and BD, whereas GluA3 down-
regulation appears confined to MDD (Beneyto and Meador-
Woodru, 2006). Cortico-limbic extension of this pattern is evident 
in the entorhinal cortex of BD, which shows concordant decreases 
in GluA2 and GluA3 transcripts (Beneyto et al., 2007). In rodents, 
pharmacological enhancement of AMPAR throughput or synaptic 
insertion reproduces—whereas AMPAR antagonism blocks—the 
rapid and sustained antidepressant-like eects of ketamine (Suzuki 
et al., 2023). Together with accumulating evidence that AMPAR-
dependent synaptic plasticity underlies experience-driven circuit 
remodeling (Derkach et al., 2007; Diering and Huganir, 2018), these 
findings position aberrant AMPAR signaling as a mechanistically 
tractable pathway in mood disorders. 

Extensive preclinical research has established the importance 
of AMPARs; however, the inability to visualize AMPARs in the 
living human brain limits their translation to clinical practice. To 
address this gap, we developed a positron emission tomography 
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(PET) tracer, [11C]K-2, that can quantitatively assess AMPAR 
density on the cell surface in vivo (Miyazaki et al., 2020; Arisawa 
et al., 2021). The AMPAR density measured via positron emission 
tomography (PET) with [11C]K-2 was consistent with the local 
AMPAR protein distribution in surgical specimens of patients with 
mesial temporal lobe epilepsy (Miyazaki et al., 2020). Moreover, 
a recent PET-functional magnetic resonance imaging (fMRI) 
multimodal imaging study revealed a strong correlation between 
AMPAR density measured via [11C]K-2 PET and functional 
connectivity density in the human brain, underscoring the pivotal 
role of [11C]K-2 PET as a synaptic biomarker (Yatomi et al., 
2024). This imaging technique has enabled the visualization and 
comparison of AMPAR distribution patterns across the entire brain 
in psychiatric diseases. Notably, BD shows widespread alterations 
relative to healthy controls (HCs), whereas MDD does not, and 
the relationship between regional AMPAR density and symptom 
severity diverges between the two disorders (Hatano et al., 2024). 

Despite these prior AMPA-PET studies in psychiatric disorders, 
the clinical application of AMPAR imaging remains constrained by 
inter-subject heterogeneity in AMPAR density and the limitations 
of traditional group-level comparisons. In our earlier work, 
significant group-mean dierences in regional AMPAR density 
were detected between diagnostic categories, yet the individual 
SUVR distributions of BD, MDD, and healthy controls overlapped 
substantially, illustrating that a single threshold based on mean 
shifts is diagnostically inadequate (Hatano et al., 2024). Such 
overlap arises because first-level, region-wise comparisons ignore 
the complex spatial covariance among brain areas. Consequently, 
a classification framework that exploits whole-brain pattern 
information and inter-regional interconnectivity is required. ML 
and multivariate pattern-analysis techniques have emerged as 
powerful tools for psychiatry because they can uncover subtle, 
multivariate patterns that elude conventional univariate tests 
(Chekroud et al., 2021; Lee et al., 2021; Ray et al., 2022). Neuro-
imaging work illustrates this advantage: Redlich et al. (2014) 
discriminated BD from unipolar depression with 76% accuracy 
using support-vector machines on structural MRI despite minimal 
ROI-level mean dierences; Winter et al. (2024) showed that 
multivariate models outperformed any single metric when group 
eects were as small as η2 < 0.02. 

Inspired by these findings, we used a whole-brain partial least 
squares (PLS) classifier on [11C]K-2 PET maps to test whether 
multivariate AMPAR patterns can reliably distinguish BD from 
MDD during depressive episodes, thereby providing an objective 
biomarker for early dierential diagnosis. Because the clinical 
challenge lies in separating depressive BD from MDD rather 
than manic BD, our analysis was restricted to patients in the 
depressive state. 

Materials and methods 

Ethics statement 

This study comprised two clinical studies registered under 
the following IDs: UMIN000025132, jRCTs031190150. The 
Yokohama City University Human Investigation Committee and 
the Yokohama City University Certified Institutional Review Board 

approved this study, following the Ethical guidelines for medical 
and health research involving human participants by the Japan 
Ministry of Health, Labor, and Welfare and the Clinical Trials 
Act in Japan. Both studies were conducted at the Yokohama City 
University Hospital, Keio University Hospital, Kyushu University 
Hospital, and University of Fukui Hospital between August 
2016 and April 2022. All participants provided written informed 
consent after receiving detailed information on the study protocol. 
Decision-making capacity was assessed using the MacArthur 
Competence Assessment Tool for Clinical Research (Appelbaum 
and Grisso, 2001). 

Participants 

The selection criteria for participants are detailed in the 
Supplementary Methods. The first study (UMIN000025132) 
included male inpatients and outpatients aged 30–49 years who 
met the DSM-IV criteria for BD or MDD, as assessed using the 
Structured Clinical Interview for DSM-IV (SCID-I)/DSM-IV. The 
second study (jRCTs031190150) included male and female patients 
aged 20–59 years to broaden generalizability. To specifically 
examine misclassification risk during depressive episodes, only 
patients in a depressive state were included. The depressive state 
was defined based on the criteria of the International Society for 
Bipolar Disorders Task Force: Montgomery–Asberg Depression 
Rating Scale (MADRS) ≥ 8 and Young Mania Rating Scale 
(YMRS) ≤ 7 (Tohen et al., 2009). 

PET and MRI analyses 

Participants underwent a 60 min PET scan with [11C]K-2 
and an MRI scan. Detailed imaging settings are provided in the 
Supplementary Methods. [11C]K-2 was synthesized locally at each 
study site following the Good Manufacturing Practice guidelines. 
PET images from Keio University Hospital were processed with 
a 5.0 mm full-width at half-maximum (FWHM) Gaussian filter 
to match the resolution of PET images from other sites. Summed 
images from 30 to 50 min after [11C]K-2 injection were obtained 
using Magia (Karjalainen et al., 2020) and normalized to whole 
brain radioactivity, resulting in standardized uptake value ratio 
(SUVR) images. Spatial normalization to MNI standard space was 
performed using DARTEL in SPM12, followed by smoothing with 
an 8 mm FWHM Gaussian kernel. 

Statistical analysis 

Demographic and clinical characteristics were compared 
between the BD and MDD groups using Pearson’s chi-squared 
test for categorical variables and Student’s t-test for continuous 
variables. SUVR values between patients with BD and those with 
MDD were compared using voxel-wise two-sample t-tests. A false 
discovery rate (FDR) correction at P < 0.05 (cluster-level, FDRc) 
was applied to control for multiple comparisons. A gray matter 
mask (voxels > 10% probability in SPM12 tissue maps) was applied 
to minimize false positives. For visualization, the FDR-corrected 
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voxel mask was intersected with the Hammersmith atlas; mean 
SUVR was then extracted for each ROI, and individual values were 
displayed as scatter plots. 

Discriminant analysis using the partial 
least squares algorithm 

Bipolar disorder was dierentiated from MDD using a PLS 
algorithm, with SUVR values as explanatory variables (Figure 1). 
Voxel-wise analysis was performed across the whole brain, but we 
applied a mask that included only voxels with SUVR values > 0.9 
across all participants. This mask excluded voxels with low PET 
signal and was slightly more restrictive than a standard gray 
matter mask (gray matter probability > 10%), allowing us to 
focus on reliable high-signal regions. This reduced the number 
of explanatory variables. Response variables comprised disease 
status (0 for MDD and 1 for BD), along with age, sex, and site, 
to account for potential confounding eects of these covariates 
on disease classification. We selected partial least-squares (PLS) 
a priori and did not examine alternative classifiers for three 
reasons. First, even after masking, each scan contained ∼70 000 
voxels whereas the cohort comprised only 43 participants; PLS 
projects these highly collinear predictors onto a small set of 
latent components that maximize covariance with the diagnostic 
label, thereby reducing dimensionality and limiting over-fitting. 
Second, unlike principal component analysis, PLS incorporates 
the outcome variable during dimensionality reduction, helping 
to mitigate potential confounding given the pleiotropic roles of 
AMPAR in the central nervous system. Third, the resulting voxel-
wise β-weights can be rendered as spatial weight maps, allowing 
direct neurobiological interpretation of each region’s contribution 
to classification. PLS regression was performed using 10 latent 
variables. The number of components was chosen because the 
cumulative explained-variance curve reached a clear plateau at 
10 components (Supplementary Figure 1). Model performance 
was assessed using a leave-one-pair-out cross-validation approach, 
where each of the 16 patients with BD was paired with one of the 27 
patients with MDD, generating 432 PLS models. For each iteration, 
the model was trained on the remaining data and tested on a single 
patient-control pair. We chose leave-one-pair-out cross-validation 
rather than the more common leave-one-out procedure because 
leave-one-out would exacerbate the class imbalance whenever 
the single held-out subject happened to be a BIP participant. 
Predicted values were generated for each test pair, yielding 27 
predicted values per patient with BD and 16 predicted values per 
patient with MDD. The mean predicted value for each patient was 
calculated by averaging their respective predicted values. A receiver 
operating characteristic (ROC) curve was constructed using the 
values, and the area under the curve (AUC) was computed. 
The optimal threshold was determined using the Youden Index, 
which maximizes the sum of sensitivity and specificity. To 
visualize which voxel values the PLS model prioritized for disease 
classification, the beta coeÿcients corresponding to disease status 
were extracted from a representative model and visualized as an 
image. As sensitivity analysis, we repeated the PLS regression with 
duration of illness (DOI) added to the response block (disease 

FIGURE 1 

Schema of the partial least squares algorithm. To differentiate 
between BD and MDD, we employed a partial least squares (PLS) 
algorithm using standardized uptake value ratio (SUVR) values as 
explanatory variables and disease status (0 for MDD and 1 for BD), 
along with age, sex, and site as the response variables. Model 
performance was assessed using a leave-one-pair-out 
cross-validation approach, where each of the 16 patients with BD 
was paired with one of the 27 patients with MDD, generating 432 
PLS models. For each iteration, the model was trained on the 
remaining data and tested on a single patient-control pair. Predicted 
values were generated for each test pair, yielding 27 predicted 
values per patient with BD and 16 predicted values per patient with 
MDD. The mean predicted value for each participant was calculated 
by averaging their respective predicted values. MDD, major 
depressive disorder; BD, bipolar disorder; PLS, partial least squares. 

status + age + sex + site + DOI) to evaluate the robustness of the 
classification to illness-duration dierences. 

Results 

AMPAR profiles in patients with BD and 
MDD in a depressive state 

In total, 16 and 27 patients with BD and MDD, respectively, met 
the inclusion criteria (Supplementary Figure 2). One participant 
with MDD met DSM-5 criteria for specific phobia, whereas no 
other participant met criteria for any current or lifetime psychiatric 
comorbidity, including anxiety disorders, personality disorders, 
or neurodevelopmental disorders. No significant dierences were 
observed in age, sex, or severity of depressive symptoms between 
the two groups; however, the BD group had approximately twice 
the illness duration of the MDD group. Table 1 shows participants’ 
demographic and clinical characteristics. We provide detailed 
individual-level medication histories in Supplementary Tables 1, 2. 
Within the BD group, 15 of 16 patients were receiving lithium, 
often in combination with other agents. In the MDD group, 
medication classes overlapped substantially, and three patients 
were receiving lithium augmentation. On comparing SUVR values 
between patients with BD and MDD in a depressive state, we 
found that patients with BD had decreased SUVR values in the 
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TABLE 1 Demographic and clinical characteristics of the participants. 

Characteristics MDD 
(N = 27) 

BD 
(N = 16) 

t-value/χ 2 P-value 

Age, years 42.3 ± 7.7 42.0 ± 8.5 0.17 0.87 

Female, n (%) 5 (33.3) 9 (56.3) 3.7 0.053 

Duration of illnessa 8.8 ± 8.1 16.6 ± 8.6 3.0 0.005 

MADRS score 20.6 ± 8.8 16.6 ± 5.7 -1.6 0.10 

YMRS score NA 2.6 ± 2.5 – – 

Medication variable 

(n, %) 
– – – – 

Lithium 3 (11.1) 15 (93.8) 33.1 < 0.001 

Other mood stabilizer 0 (0) 4 (25.0) 5.9 0.015 

Antidepressant 27 (100) 2 (12.5) 39.5 < 0.001 

Antipsychotic 

augmentation 

8 (29.6) 5 (31.3) 0.01 0.92 

a P < 0.05. MDD, major depressive disorder; BD, bipolar disorder; MADRS, Montgomery 
Åsberg Depression Rating Scale; YMRS, Young Mania Rating Scale; NA, not applicable. 

prefrontal cortex, including the dorsolateral prefrontal cortex, 
anterior cingulate cortex, and cerebellum, compared with those of 
patients with MDD. Conversely, patients with BD had increased 
SUVR values in the parietal and occipital cortices compared to 
those of patients with MDD (Figure 2). Supplementary Figure 3 
presents individual scatter plots of SUVR values for each region that 
showed a significant group dierence. 

Cell surface AMPAR distribution predicts 
BD or MDD diagnosis 

Partial least-squares algorithms calculated predicted 
classification scores for each patient, with values closer to 0 
indicating a stronger resemblance to MDD and values closer to 1 
suggesting a higher likelihood of BD. A scatter plot was constructed 
to illustrate the distribution of these predicted values between BD 
and MDD (Figure 3A). ROC analysis of these predicted values 
yielded an AUC of 0.80 (95% CI: 0.66–0.94) (Figure 3B). The 
optimal threshold, determined using the Youden Index, was 0.456, 
resulting in a sensitivity of 75.0%, specificity of 77.8%, PPV of 
66.7%, and NPV of 84.0%. According to the beta coeÿcients in a 
representative PLS model, decreased SUVR values in the prefrontal 
cortex, anterior cingulate, and cerebellum and increased SUVR 
values in the occipital lobe, parietal lobe, posterior cingulate gyrus 
were key contributors to distinguishing BD from MDD (Figure 4). 
When DOI was included as an additional response variable, 
the classification performance remained stable (AUC = 0.81, 
95% CI 0.67–0.94; Supplementary Figure 4), confirming that 
illness-duration dierences did not account for the main findings. 

Discussion 

In this study, we investigated whether in vivo measurements 
of AMPAR density help dierentiate BD from MDD during 

depressive episodes. By leveraging the novel PET tracer [11C]K-
2, we observed distinct spatial patterns of AMPAR distribution 
in BD compared to those in MDD and notably lower SUVR 
values in the prefrontal and anterior cingulate cortices and 
cerebellum but higher SUVR values in the parietal and occipital 
cortices. Using a PLS classification algorithm, we achieved clinically 
meaningful discrimination between BD and MDD (AUC = 0.80). 
These results suggest that quantifying cell surface AMPARs could 
enhance diagnostic precision in mood disorders, particularly when 
dierentiating BD from MDD during depressive episodes. 

Main findings 

Our study demonstrates that BD and MDD exhibit distinct 
AMPAR distribution patterns during depressive episodes. BD 
patients showed lower SUVR in the prefrontal cortex, anterior 
cingulate cortex, and cerebellum, but higher SUVR in the parietal 
and occipital cortices relative to MDD. Importantly, PLS analysis 
confirmed that SUVR dierences in these regions provided 
the strongest discriminatory power between the two disorders. 
Notably, this spatial pattern replicates our earlier BD-versus-
HC findings (Hatano et al., 2024): BD again exhibited lower 
frontal/ACC and higher parietal/occipital SUVR, whereas MDD 
did not dier from controls. The convergence suggests that 
AMPAR alterations in BD are trait-like and persist irrespective 
of mood state, whereas MDD shows mainly state-dependent 
changes. Reduced AMPAR availability in the prefrontal cortex and 
cerebellum may indicate impaired top-down emotion regulation. 
The dorsolateral and ventromedial PFC are central to cognitive 
control and aect regulation, while posterior cerebellar regions 
(Crus I/II) contribute to aective processing through their 
connectivity with limbic and prefrontal areas (Schmahmann and 
Sherman, 1998; Turner et al., 2007; Phillips et al., 2008; Etkin 
et al., 2011; Adamaszek et al., 2017). Structural and functional 
abnormalities in posterior cerebellar regions—including lobule VII 
(vermis VII and hemispheric Crus I/II)—have been repeatedly 
associated with mood lability in bipolar disorder (Mills et al., 2005; 
Phillips et al., 2015; Chen et al., 2019). Conversely, elevated AMPAR 
density in the parietal and occipital cortices suggests hyper-
excitability of posterior sensory–attentional networks responsible 
for sensory integration, visuospatial representation, and attentional 
allocation, and aberrant parietal–salience connectivity has been 
reported in bipolar depression (Hibar et al., 2018; Yu Z. et al., 
2020; Han et al., 2025). Collectively, BD appears to involve 
broad dysregulation across both regulatory (frontal–cerebellar) and 
sensory–attentional (parietal/occipital) circuits, whereas AMPAR 
alterations in MDD are more localized and state dependent. These 
trait-like AMPAR patterns strengthen the case for AMPAR PET 
imaging as a biomarker for identifying enduring pathophysiological 
features of BD. Future longitudinal studies spanning multiple mood 
states are required to determine whether these dierences represent 
stable trait markers or fluctuate with clinical presentation. 

Given the clinical importance of early and accurate BD 
identification—particularly to avoid antidepressant monotherapy, 
which can precipitate manic episodes—neurobiological markers 
have been explored to distinguish BD from MDD during 
depressive status. These include various neuroimaging (e.g., 
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FIGURE 2 

Group difference in SUVR values between BD and MDD. Relative reduction (blue) and increase (red) in [11 C]K-2 retention in patients with BD 
compared to those with MDD (P < 0.05, increase in [11 C]K-2 retention: T > 1.68, reduction in [11 C]K-2 retention: T < –1.68, one-tailed, FDRc). MDD, 
major depressive disorder; BD, bipolar disorder; SUVR, standardized uptake value ratio. 

FIGURE 3 

Classification performance of the partial least squares algorithm. (A) Predicted values from the PLS models are displayed using a violin plot and box 
plot. The means of the predicted values are represented by circular points. (B) Receiver operating characteristic curve (solid line) illustrates the 
classification performance of the PLS algorithm in distinguishing patients with BD from those with MDD. The area under the curve was 0.80 (95% 
confidence interval: 0.66–0.94). The optimal cutoff point was 0.456, providing a sensitivity of 75.0% for identifying BD (12 of 16 patients), a specificity 
of 77.8% (21 of 27), a positive predictive value of 66.7% (12 of 18), and a negative predictive value of 84.0% (21 of 25). MDD, major depressive disorder; 
BD, bipolar disorder; PLS, partial least squares. 
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FIGURE 4 

Beta coefficients of disease status from a representative partial least squares model. The beta coefficients from a representative partial least squares 
model, which are associated with disease status, are shown in the visualization. A higher beta coefficient (red) indicates that the predicted value 
increases as the SUVR value of a corresponding voxel increases. As a higher predicted value suggests a stronger likelihood of BD diagnosis, these 
coefficients highlight the relationship between specific voxel SUVR values and the probability of distinguishing BD from MDD. The opposite is true 
for negative beta values (blue). MDD, major depressive disorder; BD, bipolar disorder; SUVR, standardized uptake value ratio. 

cortical morphology, resting-state connectivity) and blood-based 
(e.g., metabolomic or proteomic signatures) biomarkers. Regarding 
MRI research, many studies indicate that the salience and central 
executive networks, as measured via fMRI, can help discriminate 
between the two disorders, although the reported AUC values 
vary widely (Siegel-Ramsay et al., 2022). Additionally, several 
fMRI-based studies have reported better accuracy exceeding 80% 
(Almeida et al., 2013; Grotegerd et al., 2013; Yu H. et al., 
2020; Xi et al., 2023), although these models have not been 
prospectively validated in larger trials. Supervised ML approaches 
have recently been employed to classify participants based on 
complex, multivariate brain imaging data. Several studies have 
applied ML to dierentiate BD from MDD; however, the results 
vary depending on the modality. Tomasik et al. (2024) used 
extreme gradient boosting on blood-based metabolomic data to 
identify BD cases misdiagnosed as MDD among individuals who 
had received an MDD diagnosis within the previous 5 years, 
yielding AUCs of approximately 0.71–0.73. In contrast, Salvetat 
et al. (2024) integrated multiple RNA-editing–based gene markers 
and employed the extremely randomized trees algorithm, achieving 
an AUC of approximately 0.9 when classifying patients with a 
depressive episode as BD or MDD. Our study is the first to 
dierentiate BD from MDD using AMPAR density measured via 
[11C]K-2 PET. Our PLS-based model reached an AUC of 0.80, 
indicating good accuracy. Additionally, the PLS model achieved 
sensitivity and specificity of 75.0% and 77.8%, respectively, at 
a threshold determined by the Youden Index. These metrics 
indicate a reasonable balance between capturing bipolar cases and 
minimizing false positives. Thus, our model represents a promising 
avenue for objectively distinguishing BD from MDD. 

Strengths and limitations 

A major strength of this study is its novelty in distinguishing 
BD from MDD using an ML approach based on postsynaptic 
AMPAR density, an indicator directly linked to glutamatergic 
synaptic function. Some imaging and peripheral biomarker 
studies have attempted similar classifications, but AMPARs, 
given their fundamental role in excitatory neurotransmission, 
likely represent a more pathophysiologically direct target. 
Moreover, because neuromodulation or pharmaceuticals could 
alter postsynaptic AMPAR density, this biomarker could be 
manipulated therapeutically. Thus, AMPA-PET-based diagnosis 
may directly facilitate treatments targeting glutamatergic signaling. 
Unlike many existing clinical methods, this approach oers 
mechanistic insights that can be explored further in preclinical 
animal models. Experimentally manipulating AMPAR expression 
in key brain regions (e.g., frontal cortex and cerebellum) of 
animals could reveal causal links among AMPAR density, circuit-
specific pathophysiology, and mood disorder symptoms. Another 
advantage lies in our specific recruitment of patients in a depressive 
state, reflecting the most challenging real-world scenario for 
dierentiating BD from MDD. AMPAR distribution may vary 
among mood states; however, focusing on individuals currently 
experiencing depressive symptoms likely enhanced classification 
accuracy by reducing confounding from other mood phases. 

Nonetheless, some limitations must be acknowledged. First, our 
sample size was relatively small, and the groups were imbalanced. 
We used a robust PLS model with leave-one-pair-out cross-
validation to mitigate this issue; however, because no external 
validation cohort was available, this approach provides only an 

Frontiers in Neural Circuits 07 frontiersin.org 

https://doi.org/10.3389/fncir.2025.1624179
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-19-1624179 July 31, 2025 Time: 14:42 # 8

Tsugawa et al. 10.3389/fncir.2025.1624179 

internal estimate of performance. Larger, fully independent samples 
are needed to verify generalizability before any clinical application. 
Second, we were unable to recruit treatment-naïve patients at very 
early disease stages because definitive diagnostic labels are diÿcult 
to assign without long-term clinical follow-up. In our sample, 
lithium was prescribed to 15 of 16 BD patients, and medication 
regimens in the MDD group overlapped substantially, limiting 
the variability needed to evaluate drug-specific eects on AMPAR 
density. Consequently, medication eects on AMPAR density 
could not be disentangled in the present study, and treatment-
naïve—or at least lithium-naïve—cohorts will be essential for 
future validation. Third, although our MDD cohort was carefully 
evaluated by multiple psychiatrists, there is a possibility that a small 
subset of individuals could later experience a manic or hypomanic 
episode. Fourth, the BD group had a longer mean duration of illness 
than did the MDD group. Although DOI adjustment produced 
virtually identical results, larger cohorts with balanced illness 
durations will be necessary for definitive confirmation. Fifth, this 
multi-site study broadened recruitment but also introduced site-
to-site dierences. We accounted for potential site eects in the 
PLS model but cannot fully exclude residual variability. Finally, 
a practical limitation concerns radiotracer availability. Because 
[11C]K-2 has a physical half-life of only 20 min, it must be 
synthesized in an on-site cyclotron and radiochemistry facility, a 
resource that few hospitals possess. This requirement currently 
restricts AMPA-PET to major research centers and hampers early-
stage clinical deployment. Low-cost, high-throughput blood-based 
biomarkers—some already achieving > 80% accuracy for BD 
vs MDD and entering clinical use in Europe (e.g., RNA-editing 
panels)—could serve as an initial screen (Salvetat et al., 2022, 2024; 
Hayashi et al., 2023). We envisage a two-tier pathway in which these 
peripheral tests flag high-risk cases, while AMPAR-PET provides 
circuit-level confirmation and phenotyping. 

Future directions 

Building on the current findings, future research should 
employ larger, multicenter clinical trials to ascertain whether 
our PLS model can reliably distinguish BD from MDD across 
diverse populations and clinical settings. The diagnostic model 
can be refined and updated as more AMPA-PET data become 
available. Moreover, our group recently synthesized an [18F]-
labeled derivative, [18F]K-40, which provides comparable measures 
of AMPAR distribution (Arisawa et al., 2022). A first-in-human 
study has now shown that [18F]K-40 reproduces the cerebral 
distribution and binding parameters of [11C]K-2 (Ichijo et al., 
2025). The 110-min physical half-life of 18F supports centralized 
production and same-day delivery to surrounding PET facilities. 
Large multicenter cohorts scanned with [18F]K-40 will allow us to 
refine and externally validate the present classification model while 
mitigating the current tracer-availability barrier. 

Conclusion 

Our results indicate that in vivo AMPAR imaging with [11C]K-
2, combined with advanced multivariate approaches such as PLS, 

can accurately distinguish BD from MDD during depressive states. 
These findings highlight glutamatergic biomarkers as promising 
tools for improving classification precision, particularly when 
dierentiating unipolar from bipolar depression remains clinically 
challenging. Although confirmation in larger and more diverse 
cohorts is necessary, our study underscores the potential of AMPAR 
imaging for mechanism-based diagnoses and optimized treatment 
strategies in mood disorders. 
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