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Spike-timing-dependent
plasticity o�ers delay-gated
oscillatory potentiation for
autaptic weights
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Hideaki Yamamoto2 and Takashi Tanii1*

1Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan, 2Research Institute of

Electrical Communication, Tohoku University, Sendai, Japan

Neuronal networks in animal brains are considered to realize specific filter

functions through the precise configuration of synaptic weights, which are

autonomously regulated without external supervision. In this study, we employ

a single Hodgkin–Huxley-type neuron with autapses as a minimum model

to computationally investigate how spike-timing-dependent plasticity (STDP)

adjusts synaptic weights through recurrent feedback. The results show that

the weights undergo oscillatory potentiation or depression with respect to

autaptic delay and high-frequency stimulation. Our findings suggest that the

STDP-mediated modulation of autaptic weights, governed by autaptic delay

and input frequency, may serve as a mechanism for promoting network-level

synchronization in neural systems if the network contains neuronswith autapses.

KEYWORDS

autapse, STDP, recurrent connection, selection rule, autaptic delay, network-level
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1 Introduction

A neuron is believed to act as a filter that integrates input signals and attempts to

transmit the signals to the postsynaptic neurons depending on the timing and magnitude

of the input. While signals are structured as spike patterns based on the synaptic

connectivity, the synaptic weights between neurons change gradually in response to

the spike patterns (Hebb, 1949; Bi and Poo, 1998). When postsynapse neurons receive

neurotransmitters, intracellular calcium-dependent protein kinases and Rho GTPases

are activated, followed by the reorganization of the actin cytoskeleton (Lee et al., 2024,

2009; Murakoshi et al., 2011). This causes a transient increase in spine volume, and the

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors inserted into

the expanding spine enhance synaptic weight continuously (Lee et al., 2024; Matsuzaki

et al., 2001, 2004; Murakoshi and Yasuda, 2011). On the other hand, if the synaptic

weight decreases, spike signals are no longer effectively transferred to the postsynaptic

neurons; hence, the connection becomes comparatively insignificant. The overall circuit

connectivity thus changes dynamically. Such autonomous adjustment undergoes in

individual synapses, resulting in a local circuit with a sophisticated connectivity that works

as a specific filter.

An autapse is a synaptic structure in which the axon of a neuron forms a connection

onto its own dendrites and has been identified in multiple brain regions (Gilson et al.,

2009; Loos and Glaser, 1972; Karabelas and Purrura, 1980; Bekkers and Stevens, 1991).

For example, in the mammalian cortex, although autapses are approximately one-third
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as abundant as synapses, they are observed in 80% of the

neurons (Lübke et al., 1996) and considered to contribute to

temporal tuning, gain control, and network synchronization (Guo

et al., 2016; Ma et al., 2015; Protachevicz et al., 2020; Jiang

et al., 2012). Thus far, computational simulation has predicted

that, if the network contains neurons with autapses, autapses

with specific propagation delays can enhance global-network-wide

synchronization in the absence of synaptic plasticity (Sillito et al.,

1994; Kerr et al., 2013). However, autaptic signals may reenter a

presynaptic neuron within 5 milliseconds (Patolsky et al., 2006;

Uchino et al., 2022), suggesting that the autaptic weight may

be autonomously modulated depending on the neuron’s spiking

activity. Understanding how neurons regulate autaptic weights

offers insights into the coordination of recurrent connections and

the autonomous emergence of synaptic configurations that enable

specific filter functions.

Here, we report our computational simulations to investigate

how a single neuron with autapses adjusts the autaptic weights

through spike-timing-dependent plasticity (STDP) (Bi and Poo,

1998; Markram et al., 1997; Kopysova and Debanne, 1998; Song et

al., 2000; Letzkus et al., 2006; Gilson et al., 2009; Feldman, 2012).

This neuron model was configured with multiple autapses bearing

different transmission delays (Lubenov and Siapas, 2008) and was

driven by input spike trains generated from a Poisson process at

defined frequencies, mimicking presynaptic activity. All autaptic

weights were updated according to the STDP rule. We show that

the potentiation and depression of autapic weights depend on

the interplay between input frequency and transmission delay,

offering a delay- and frequency-dependent selection mechanism.

We further discuss how such selection may contribute to the

synchronization of neuronal firing.

2 Computational model

A Hodgkin–Huxley-type model of a cortical neuron was used

to simulate the neuronal dynamics (Hodgkin and Huxley, 1952;

Pospischil et al., 2008; Hattori et al., 2020). The time evolution of

the membrane potential V(t) was calculated as

Cm
dV

dt
= −INa − IKd − IM − Ileak − Isyn + Iapp , (1)

where Cm is the specific capacitance of the cell membrane,

V the membrane potential, INa the sodium current, IKd the

potassium current, IM the slow non-inactivating potassium current

responsible for spike-frequency adaptation, Ileak the leakage

current, Isyn the synaptic current, and Iapp the current applied

additionally to the cell. In the simulation, Cm was assumed to

be 1.0 µF/cm2 (Pospischil et al., 2008). Numerical integrations

were performed using the Euler method with a time step of less

than 0.04 ms.

The current terms are given by

INa = ḡNam
3h(V − ENa) , (2)

IKd = ḡKdn
4(V − EK) , (3)

IM = ḡMp(V − EK) , (4)

Ileak = gleak(V − Eleak) , (5)

where ḡNa, ḡKd, ḡM, and gleak indicate the maximum sodium

conductance, themaximum potassium conductance, themaximum

slow non-inactivating potassium conductance, and the leakage

conductance, respectively. In the simulation, ḡNa, ḡKd, ḡM, and

gleak were set to 56 mS/cm2, 6 mS/cm2, 75 µS/cm2, and

20.5 µS/cm2, respectively (Pospischil et al., 2008). Moreover, the

reversal potential for sodium current ENa, potassium channels EK,

and leakage channels Eleak were set to 50, −90, and −70.3 mV,

respectively (Pospischil et al., 2008). The functionals m, h, and n

are given by

dx

dt
= αx(V)(1− x)− βx(V)x (x = m, h, n), (6)

where the voltage-dependent functions αx(V) and βx(V) obey the

following equations (Pospischil et al., 2008; Hattori et al., 2020):

αm(V) =
−0.32(V + 43.2)

exp
(

−
V+43.2

4

)

− 1
, (7)

βm(V) =
0.28(V + 16.2)

exp
(

V+16.2
5

)

− 1
, (8)

αh(V) = 0.128 exp

(

−
V + 39.2

18

)

, (9)

βh(V) =
4

1+ exp
(

−
V+16.2

5

) , (10)

αn(V) =
−0.032(V + 41.2)

exp
(

−
V+41.2

5

)

− 1
, (11)

βn(V) = 0.5 exp

(

−
V + 46.2

40

)

. (12)

The functional p is given by the following equations (Pospischil et

al., 2008):

dp

dt
=

p∞(V)− p

τp(V)
, (13)

p∞(V) =
1

1+ exp[−(V + 35)/10]
, (14)

τp(V) =
608

3.3 exp[(V + 35)/20]+ exp[−(V + 35)/20]
. (15)

The synaptic current Isyn is the current introduced by AMPA

and N-methyl-D-aspartate (NMDA) receptors and is given by

Isyn(t) =
∑

i

Isyn,i(t) =
∑

i

(

IAMPA,i(t)+ INMDA,i(t)
)

=
∑

i

(wigAMPA,i(V(t − τdelay,i)− Vsyn) (16)

+wigNMDA,i(V(t − τdelay,i)− Vsyn)),

where wi and Vsyn indicate the synaptic weight and the synaptic

reversal potential, respectively (Hattori et al., 2020; Borges et al.,

2017). We assumed Vsyn = 0 mV (Yamamoto et al., 2016). The

suffix i denotes the i-th synaptic connection. In the case of an

autapse, the synaptic current Isyn,i was fed back to the neuron

after a delay of τdelay, corresponding to the time required for an

action potential to propagate through the axon and transmitted
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through the autapse. The AMPA conductance gAMPA,i and the

NMDA conductance gNMDA,i are given by

gAMPA,i =
EAMPA,i

0.37N
, (17)

gNMDA,i =
ENMDA,i

2.15N

(

1+
[Mg2+]

3.57
exp(−0.062V)

)
, (18)

dRx,i

dt
=

Ix,i

τrec,x
− USE,xRx,i exp

(

−
t − tAP

τrise,x

)

, (19)

dEx,i

dt
= −

Ex,i

τinact,x
+ USE,xRx,i exp

(

−
t − tAP

τrise,x

)

, (20)

Ix,i = 1− Rx,i − Ex,i (x = AMPA,NMDA) , (21)

where N indicates the number of synaptic connections, and tAP
indicates the time the neuron fires. We assumed τrec,AMPA =

200 ms, τinact,AMPA = 5 ms, USE,AMPA = 0.7, τrec,NMDA = 200 ms,

τinact,NMDA = 55 ms, USE,NMDA = 0.03, Vsyn = 0 mV, and

[Mg2+] = 1.0 mM (Hattori et al., 2020).

The synaptic (autaptic) weight wi is updated according to the

following equations representing STDP (Borges et al., 2017):

wi = wi + η1wi, (22)

1wi =







A1 exp
(

−
1t
τ1

)

(1t ≥ 0)

−A2 exp
(

1t
τ2

)

(1t < 0)
, (23)

where 1t represents the time difference between the firing of the

postsynaptic neuron and the arrival time of a synaptic current from

the presynaptic neuron, namely,1t = tAP− tEPSC. Hence,1t takes

both positive and negative values. In the case of an autapse, the pre-

and postsynaptic neurons are identical. We assumed that A1 = 1.0,

A2 = 0.5, τ1 = 1.8 ms, and τ2 = 6.0 ms (Borges et al., 2017).

We also assumed that wi is bound to a maximum of one and a

minimum of zero. The learning rate η was set to 10−3. All autaptic

weights were initialized to 0.5 before stimulation and limited to the

range of 0–1.

The applied current Iapp models synaptic inputs from other

neurons (Dayan and Abbott, 2005; Miller, 2018) and is defined as

Iapp(t) = Papp ×

(

exp

(

−
t − tinput

τfall

)

− exp

(

−
t − tinput

τrise

))

×
(

Vsyn − V
)

, (24)

where tinput denotes the onset time of an input event, drawn from

an exponential distribution, and Papp is the transmission intensity

of the input current and is set to 10−2. The time constants were

set to τrise = 0.2 ms and τfall = 5.3 ms (Yamamoto et al., 2016).

The synaptic inputs were generated as a Poisson process with a

specific mean frequency. The input spike frequency was changed

from 200 spikes/s to 5000 spikes/s. For each condition, simulations

were repeated 50 times using independently generated inputs, and

the results were averaged. The fixed parameters used in the present

simulation are summarized in Supplementary Table 1.

3 Results and discussion

We first investigated how the synaptic weights of STDP-

regulated autapses are modulated when a neuron receives external

spike inputs. The simulation model is illustrated in Figure 1A. A

single neuron with 60 autapses, each with a unique autaptic delay

(1–60 ms), was simulated. A spike train Iapp, modeling input spikes

from other neurons, was applied for 5 s, and the time evolution of

synaptic weights of autapses was analyzed.

Figure 1B shows a representative example of how the synaptic

weights of STDP-regulated autapses evolve in response to external

inputs. The synaptic weight set to be 0.5 at the starting point was

updated during the spike injection. Minor fluctuations observed in

individual synaptic weights originated from the variability in spike

timing caused by stochasticity in Iapp. Notably, it was found that

autapses with specific delays tended to be selectively potentiated

when the input frequency was fixed. This property remained

consistent acrossmultiple simulations using different random seeds

for generating Iapp. As shown in Figure 1B , autapses with delays

of approximately 10 ms (8 ms < τdelay < 12 ms) were robustly

potentiated by input stimulation with a frequency of 103 spikes per

second. In contrast, autapses with shorter (τdelay < 8 ms) or longer

(τdelay > 12 ms) delays tended to be depressed under the same

stimulation condition.

A similar trend was also observed when input stimulation

was delivered at other frequencies. Specifically, the evolution of

the weights could be classified into three categories: (i) those

that gradually potentiated and reached saturation, (ii) those that

gradually depressed and stabilized at low values, and (iii) those

that fluctuated within an intermediate range (τdelay = 8 ms and

τdelay = 11 ms). Figure 1C shows the final synaptic weights for each

autaptic delay and input frequency, with each of the three categories

represented with different colors. The simulation was performed

fifty times with different spike trains, and the average eventual

synaptic weight was taken. As shown in Figure 1C, the eventual

synaptic weight shows a periodicity with alternating patterns of

potentiation and depression depending on the autaptic delay. Thus,

STDP modulates the weights of autapses in a delay-dependent

manner, enabling the specific selection of autaptic connections.

In STDP, spike timing is the key to connection strength

modulation. Therefore, the interspike interval (ISI) is an essential

indicator when discussing changes in neuron connection

strength.Figure 2A shows the relationship between the ISI and

the spike injection frequency. The ISI is long at a low frequency

and asymptotically approaches the minimum value as the spike

injection frequency increases. The minimum value is attributed to

the refractory period of the neuron. In the following analyses, we

use the ISI rather than the spike injection frequency because the ISI

can be compared directly with the autaptic delay on the temporal

axis, as shown in Figure 2B.

Every spike injection updates synaptic weights, and it is

the STDP curve that determines whether the synaptic weight is

potentiated or depressed. In the case of autapses, input signals

are assumed to be feedback signals via the autaptic connection.

As shown in Figure 2B, the feedback synaptic current Isyn arrives

with the autaptic delay τdelay after the first spike, depolarizing the

membrane potential. Therefore,1tp is defined as the duration from

the arrival time of Isyn to the second spike. 1td is also defined as

the duration from the second spike to the subsequent arrival time

of Isyn, which is equivalent to τdelay in the case of ISI > τdelay.

As shown in Figure 2C, the potentiation component 1w(1tp)

was evaluated using the STDP curve. Similarly, the depression
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FIGURE 1

(A) Schematic of a neuron with 60 autapses, each with a distinct propagation delay, τdelay. The neuron receives stochastic input spikes Iapp with a

mean frequency of 103 spikes per second. (B) Representative time evolution of synaptic weights w during 5 s of stimulation. Each trace represents an

individual weight that was updated in response to neuronal firing. The autaptic delay τdelay is annotated for autapses that were potentiated. (C) Final

synaptic weights of autapses. The observed stripe pattern indicates that STDP potentiates or depresses autapses depending on their propagation

delay.

FIGURE 2

(A) Relationship between the average ISI of a neuron with 60 autapses and the average spike injection frequency. The shaded area of the lollipop

chart indicates the standard deviation. (B) Schematic showing how to determine 1tp and 1td for the given ISI and autaptic delay. 1tp is defined as the

duration from the arrival time of the former feedback synaptic current Isyn to the subject spike (the second spike in the figure), whereas 1td is defined

as the duration from the spike to the arrival time of the latter synaptic current. In the case of τdelay ≤ ISI, 1td is equivalent to −τdelay and 1tp is

equivalent to ISI− τdelay, as shown in the schematic. In the case of τdelay > ISI, 1td and 1tp can be determined accordingly. The potentiation and

depression of the synaptic weight can be estimated using the STDP curve, as shown in (C). At every spike timing, the synaptic weight is updated in

accordance with the balance between 1w (1tp) and 1w (1td). If 1w(1tp) > 1w(1td), the synaptic weight is potentiated. Otherwise, the synaptic

weight is depressed.

component 1w(1td) was estimated as a negative value. Since these

potentiation and depression components are competing in STDP,

the synaptic weight must be updated depending on the balance

between 1w(1tp) and 1w(1td); namely, Wpd = 1w(1tp) +

1w(1td). As a result, if τdelay is close to the ISI but does not exceed

the ISI, the synaptic weight of the autapse is potentiated. This is

because the neuron fires immediately after Isyn arrives. In contrast,

if τdelay exceeds the ISI but is close to the ISI, the synaptic weight

of the autapse is depressed because the neuron fires immediately

before Isyn arrives.

As shown in Figure 2C, Wpd is constant at a constant ISI. This

condition is fulfilled at a high spike injection frequency because, as
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FIGURE 3

(A) Eventual synaptic weight of autapses with autaptic delays of 0.5–5 ms. The bright pixels show potentiated autapses, whereas the dark pixels show

depressed autapses. (B) Relationship between ISI and autaptic delay. The red line shows that the ISI and the autaptic delay are equivalent. The blue

dots show the autapses whose synaptic weights are potentiated and almost saturated in the stimmulation.

shown in Figure 2A, the fluctuation in ISI decreases with increasing

spike injection frequency. Therefore, as shown in Figure 1C, the

oscillation in the autapse selection becomes clear in the high-

frequency region. In contrastingly, depression is dominant at a

low frequency because of the asymmetric characteristics in the

potentiation and depression of the STDP curve.

The STDP autapses undergo selections according to the

autaptic delay, particularly at a high spike injection frequency,

as shown in Figure 1C. Although the selection was made only

on the local autapses, it was reported that a single autapse may

induce network synchronization. Yilmaz et al. (2016) simulated a

neuronal network containing a single autapse and reported that

network synchronization occurs depending on the autaptic delay

and conductance. Moreover, Wang et al. (2015) reported that

the autaptic delay inducing network synchronization resulted in

discrete values. Similar results were obtained by the simulation

of a more complicated network. Note that the autaptic delay

and conductance were controlled artificially in the simulation

reported previously, where neuronal plasticity was not modeled.

In this work, neuronal plasticity was realized in the presented

simulation, where the selection was made spontaneously in a

spike-timing-dependent manner. The above results suggest that the

selection of autapses regulates the network activity such as network

synchronization through neuronal plasticity.

It was reported in Graupner and Brunel (2012) that, in

physiological calcium concentrations, not the STDP function like

the one shown in Figure 2C but the depression-potentiation-

depression (DPD) function is realistic. Thus, the final synaptic

weights of autapses were calculated by using the DPD function

proposed in Graupner and Brunel (2012). Supplementary Figure 1

shows that the autaptic weights undergo oscillatory potentiation

or depression with respect to autaptic delay and high-frequency

stimulation. This is because the balance between potentiation and

depression changes periodically with increasing autaptic delay. The

small discrepancy between Figure 1C and Supplementary Figure 1

is due to the difference of the STDP curve used in the

present simulations.

On the other hand, it was reported that the STDP function like

the one shown in Figure 2C is usually unapplicable in physiological

calcium conditions (Inglebert et al., 2020) but is applicable only

when the postsynaptic neuron fires at a high frequency (> 10 Hz).

As shown in Figure 2A, the average ISI of the neuron with sixty

autapses is shorter than 40 ms, which corresponds to the average

firing frequency higher than 25 Hz. Hence, it is conjectured that

the STDP function like the one shown in Figure 2C is applicable to

the neuron with sixty autapses.

The simulation reported previously (Borges et al., 2017)

employed η = 10−3 as the coefficient to update synaptic weights

in the simulation. In this work, the same coefficient was used

accordingly. However, it is suggested that a smaller coefficient

(η ≃ 10−6) is realistic because the changes in synaptic weight

that real neurons undergo in response to a single input are more

gradual (Bi and Poo, 1998). The decrease in η by three orders of

magnitude may retard the change in autaptic weight markedly.

Nevertheless, if we assume a longer spike injection duration (e.g.,

2 h), the autaptic weights are conjectured to converge into the same

values, suggesting that the present simulation can be considered an

accelerated test.

As shown in Figure 1C, clear periodic differences in connection

strength were observed by assuming autapses with a wide range of

propagation delays. However, in the case of cultured neurons and

neurons in vivo, autapses with a propagation delay time of 60ms are

not realistic because the time scale is very long. Given that the signal

conduction velocity along dendrites is approximately 0.16 m/s and

that the average dendritic length of neurons with autapses is about

330 µm, the corresponding autaptic delay is estimated to be 5 ms

or less (Patolsky et al., 2006; Uchino et al., 2022). In Figure 3A,

we show how the final synaptic weights of STDP-regulated

autapses with delays ranging from 0.5 to 5 ms as a function of

input stimulation frequency. Clearly, synaptic weights were either

potentiated or depressed depending on the autaptic delay. Autapses

with delays shorter than 2 ms were consistently depressed because

of the refractory period of a neuron (Yeomans, 1978), suggesting

that short-delay autapses are insignificant. Even among autapses

with delays exceeding 2 ms, synaptic depression was dominant

when the input signal frequency was below 2,000 spikes per second.

Although this simulation did not include autapses with delays

longer than 5 ms, the results within this range closely align with

those presented in Figure 1C. This indicates that the effects of

individual autapses on the potentiation/depression of synaptic
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weights are independent. Figure 3B further reveals that the autapses

with delays slightly shorter than the average ISI are preferentially

potentiated. These findings suggest that the autapses with delays

between 2 and 5 ms are most effective in promoting network

synchronization if it is induced by autaptic feedback.

As reported in Boudkkazi et al. (2007) and Boudkkazi et al.

(2011), the synaptic delay increases with decreasing presynaptic

release probability by 1–2 ms. The synaptic delay also increases

with increasing duration and amplitude of the presynaptic action

potential by 1–2 ms. If these conditions are applied for the

presented simulations, the autaptic delay corresponding to the

horizontal axis of Figures 1C, 3A and Supplementary Figure 1 may

shift by 1–2 ms accordingly.

4 Conclusions

In this study, we analyzed how STDP modulates the synaptic

weights of a single neuron with autapses by computational

simulation. We found that synaptic weights of autapses exhibit

oscillatory patterns of potentiation and depression depending on

the autaptic delay. The oscillation was also found to vary with

the frequency of input stimulation. In particular, focusing on

the physiologically realistic range of autaptic delays (τdelay <

5 ms), our results indicate that autapses with a specific delay

are selectively potentiated under high-frequency inputs, suggesting

their role in regulating network dynamics such as network

synchronization. Taken together, STDP modulates the synaptic

weights of autapses in a delay-dependent manner, enabling the

specific selection of autaptic connections depending on the input

spike frequency.
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