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et al., 2001). For instance, the cerebral cortex (with the underly-
ing white matter) represents 28% of total brain mass in the least 
shrew, 43% in the tree shrew, 66% in the marmoset, 76% in the 
macaque, 84% in humans, and 73% in the pilot whale (Hofman, 
1988; Clark et al., 2001). Exclusion of the subcortical white matter 
from the analysis does not change the results (Wang et al., 2002). 
While larger brains possess relatively larger cerebral cortices, the 
relative size of the cerebellum fails to increase with brain size (Clark 
et al., 2001), as if these two structures did not evolve in concert. 
Since relatively larger structures are expected to hold increasingly 
larger percentages of brain neurons across species, the discrepancy 
in the scaling of relative cerebral cortical and cerebellar size in larger 
brains has been used as an argument against the hypothesis that the 
cerebellum acts as a computational engine serving the neocortex, 
or functionally related to it (Clark et al., 2001), and thus favoring 
the traditional view that emphasizes the importance of relative 
neocortex expansion in brain function and evolution (Hofman, 
1985a; Clark et al., 2001; Jerison, 2007).

Strikingly, in contrast with the volumetric preponderance of 
the cerebral cortex in most mammals, the vast majority of brain 
neurons are located in the cerebellum across a range of mammals. 
For instance, the cerebellum holds 60% of all brain neurons in the 
mouse, small shrews, and marmoset; 70% in the rat, guinea pig and 
macaque; and 80% in the agouti, galago, and human (Andersen 
et al., 1992; Herculano-Houzel et al., 2006, 2007; Azevedo et al., 
2009; Sarko et al., 2009). Recent models of brain function  consider 

INTRODUCTION
When comparing different species, the number of neurons in a 
structure, that is, its number of information-processing units, is 
generally assumed to be a determinant of its computational power 
(Williams and Herrup, 1988). For instance, a decrease in the number 
of neurons in salamander larvae caused by genetic manipulation 
causes a marked slowing in learning, although their locomotion is 
normal (Fankhauser et al., 1955); in birds, seasonal oscillations in 
neuron number in the song nuclei of canaries correlates well with 
singing ability (Goldman and Nottebohm, 1983); and in mammals, 
experimental doubling of the number of visual cortical neurons 
excited by one eye is associated with smaller receptive fi elds and 
improved discrimination abilities (Shook et al., 1984), and experi-
mental reduction of the size of somatosensory and motor cortices 
in mice greatly reduces their performance in somatomotor tests 
(Leingärtner et al., 2007). Instances in which increased numbers 
of neurons may be maladaptive seem to be limited to pathological 
changes in specifi c populations that disturb neuronal excitability 
and lead to hyperactivity, such as in epilepsy (Maurin et al., 1985; 
Shapiro et al., 2008; Vaccarino et al., 2009).

The number of neurons in the cerebral cortex is today con-
sidered a better correlate of cognitive abilities across species than 
absolute or relative size of the brain (Roth and Dicke, 2005). The 
cerebral cortex is the structure that exhibits the most remarkable 
increase in relative size with increasing brain size, coming to be 
the predominant structure (in terms of size) in large brains (Clark 
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and humans (Azevedo et al., 2009). All experiments were conducted 
in accordance with US and Brazilian guidelines regarding the use of 
animals and human subjects in research. All values refer to species 
averages, which guarantees that analyses regard relationships across 
species only, and are not confounded by intraspecifi c variability. 
Although ideally a quantitative comparison of cerebral and cerebel-
lar cortices should not include subcortical nuclei of any kind, the 
deep cerebellar nuclei correspond typically to 2–3% and at most 
4% of the total cerebellar volume in primates (Matano et al., 1985). 
Therefore, even in the unlikely scenario that neuronal density in 
these nuclei were as elevated as in the cerebellar cortex, they would 
still amount to less than 4% of the cerebellar neurons. The number 
of neurons found in the whole cerebellum can thus be considered 
as a useful and quite accurate estimate of the number of neurons 
in the cerebellar cortex.

Briefl y, the method employed to determine numbers of neu-
rons in the cerebral cortex and cerebellum of these species, the 
isotropic fractionator (Herculano-Houzel and Lent, 2005), consists 
of mechanically dissociating the fi xed and dissected structures in a 
saline detergent solution, such that cell membranes are disrupted, 
but nuclear membranes remain intact. This allows the free cell 
nuclei to be collected in a suspension of known volume that is 
made isotropic by agitation. Samples of the suspension are counted 
in a hemocytometer to determine the number of nuclei per unit 
volume of the suspension, and in the total suspension volume. This 
is referred to as the total number of cells in the structure.

that the cerebellar and cerebral cortices work in conjunction (Leiner 
et al., 1989; Ramnani, 2006; Ito, 2008), instead of endorsing a func-
tional preponderance of the cerebral cortex over other brain struc-
tures. In the absence of evidence on numbers of neurons in these 
structures, this view of a coordinated function of the cerebral cortex 
and cerebellum is supported by the correlated increase in absolute 
mass of the cerebral cortex and cerebellum across species of several 
mammalian orders (Stephan et al., 1981; Whiting and Barton, 2003) 
and, more recently, by the concerted increase in size of the prefron-
tal cerebral cortex, prefrontal inputs to the cortico-pontine system, 
and prefrontal-projecting cerebellar lobules in primates (Ramnani 
et al., 2006; Balsters et al., 2010). Surface area, usually considered 
as a proxy for numbers of neurons and hence as a measure of the 
information processing capacity of cortical structures (Hofman, 
1985b; Sultan, 2002), also increases concertedly in both structures 
across species (Sultan, 2002).

No consensus, however, has been reached in the literature so 
far regarding the (un)coordinated scaling of cerebral cortex and 
cerebellum. Remarkably, whether emphasis is placed on relative 
or absolute size of the cerebral cortex and cerebellum leads to 
opposing conclusions, which are based on interpretations of the 
same dataset that rely on untested assumptions: respectively, that 
relative size is a measure of relative number of neurons; and that 
the absolute surface area of these structures refl ects in the same 
fashion their absolute numbers of neurons. Establishing whether 
the cerebral cortex and cerebellum scale coordinately, increasing 
their numbers of neurons at the same pace, requires solving this 
discrepancy by analyzing numbers of neurons in the cerebral cortex 
and cerebellum directly.

A novel method developed recently in our laboratory, the 
isotropic fractionator (Herculano-Houzel and Lent, 2005), has 
made possible the determination of total numbers of neurons 
in the cerebral cortex and cerebellum of 19 species of the orders 
Eulipotyphla (insectivores), Rodentia, Scandentia, and Primata 
(including humans; see Materials and Methods). These numbers 
provide the fi rst opportunity to test directly the hypothesis that, 
if the cerebral cortex and cerebellum are functionally related and 
are subject to concerted changes in evolution, then their numbers 
of neurons should be positively correlated within and perhaps 
even across mammalian orders. Such an investigation in rodent 
and primate brains is particularly interesting since we have shown 
that different cellular scaling rules apply to these mammalian 
orders: both the cerebral cortex and the cerebellum increase in 
mass as linear functions of their numbers of neurons in primates 
(Herculano-Houzel et al., 2007), but as steep and different power 
functions of their numbers of neurons in rodents (Herculano-
Houzel et al., 2006), and as a combination of these in Eulipotyphla 
(Sarko et al., 2009).

MATERIALS AND METHODS
All data analyzed here have been published previously, and consist 
of mass of and numbers of neurons found in the whole cerebral 
cortex (including white matter) and whole cerebellum (including 
white matter and deep cerebellar nuclei) of a total of 19 species 
(Figure 1): six rodent species (Herculano-Houzel et al., 2006), 
six primate species and one scandentia (Herculano-Houzel et al., 
2007), fi ve Eulipotyphla (insectivore) species (Sarko et al., 2009), 

FIGURE 1 | Phylogenesis of the 19 species analyzed. Numbers in 
parentheses refer to brain mass (excluding olfactory bulb), and body mass. 
Data from Herculano-Houzel et al. (2006, 2007), Sarko et al. (2009) and 
Azevedo et al. (2009).
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Phylogenetic independent contrasts were also calculated to 
examine the scaling of cerebellar mass and number of neurons as 
a function of cerebral cortical mass and number of neurons across 
the 19 species while controlling for effects of phylogenetic related-
ness in the dataset (Felsenstein, 1985). Standardized independent 
contrasts were calculated using the PDAP:PDTREE module of 
Mesquite software version 2.7 (Maddison and Maddison, 2005). 
Since the relationships approach linearity, contrasts were calcu-
lated both from log-transformed and original values. Phylogenies, 
shown in Figure 1, are based on Purvis (1995), Murphy et al. (2001), 
Brant and Ortí (2002) and Shinohara et al. (2003). Branch lengths 
were transformed according to the method of Pagel (1992), which 
assigns all branch lengths to 1 with the constraint that tips are 
contemporaneous. The reported values for the linear regressions 
of independent contrasts on log-transformed or original data are 
reduced major axis (RMA) slope, r2 and p-value, which are similar 
to the results obtained with least-square regression of independent 
contrasts for this dataset.

RESULTS
A combined analysis of the insectivore, rodent and primate spe-
cies in our published datasets shows that the cerebellum and cer-
ebral cortex increase in mass together (Figure 2A), while relative 
cortical mass increases but relative cerebellar mass fails to change 
signifi cantly within each order or even decreases in the combined 
dataset with increasing total brain mass (Figure 2B). Our dataset 
thus repeats the discrepancy observed previously (Stephan et al., 
1981; Clark et al., 2001; Sultan, 2002).

The relative mass of the cerebral cortex and cerebellum does 
not, however, refl ect the relative numbers of neurons in these struc-
tures, calculated as percentages of the total number of  neurons 

The total number of neurons is then determined by applying 
to the total number of cells the percentage of nuclei that express 
NeuN, a neuronal-specifi c antigen that is found in all cortical 
and cerebellar neurons, to the exception of Purkinje cells (Mullen 
et al., 1992). These, however, represent such a small minority of 
all cerebellar neurons (between 1 in 700 and 1 in 3000 granule 
cell neurons for the species analyzed here; Lange, 1975) that the 
number of neurons estimated in the cerebellum is not signifi cantly 
affected by their exclusion from the pool of NeuN-labeled, neuro-
nal nuclei. In the cerebral cortex, NeuN labeling has been shown 
to give similar quantitative results as morphological analysis of 
cresyl violet-stained cells, being particularly useful in distinguishing 
small neurons from glia (Gittins and Harrison, 2004). Additionally, 
because labeled nuclei are identifi ed by visual inspection under the 
microscope and not by automated methods, we could confi rm that 
all NeuN-labeled nuclei in each sample were indeed of neuronal 
morphology and that all nuclei of a particular labeled morphology 
were labeled in the sample.

The relative structure mass and numbers of neurons reported 
here refer to the percentage of average mass or numbers of neu-
rons for each species relative to average whole brain mass and 
numbers of neurons in that species, also reported previously. 
Intraspecifi c variability in numbers of neurons in the cer-
ebral cortex and cerebellum is typically below 10% in rodents 
(Herculano-Houzel et al., 2006), insectivores (Sarko et al., 2009), 
and primates (Herculano-Houzel et al., 2007, 2008), including 
humans (Azevedo et al., 2009). Non-parametrical Spearman cor-
relation coeffi cients and least-squares regressions to linear and 
power functions were calculated with Statview (SAS, USA). To test 
for common slopes, an ANCOVA was performed on the dataset 
using PASW18 (IBM, USA).

FIGURE 2 | Discrepancy between the scaling of absolute and relative 

cortical and cerebellar mass. Each point represents the average values for 
one species (insectivores, orange; rodents, green; primates, red; scandentia, 
black), (A) cerebellar mass covaries with cerebral cortical mass in a similar 
fashion across Eulipotyphla (insectivore), rodent, scandentia and primate 
species. Power function exponents and 95% confi dence intervals are 
indicated; all values of p < 0.01. The plotted power function applies to all 

species. The relationship for the ensemble of data is equally well fi t with a 
linear function of slope 0.125 (p < 0.0001, r2 = 1.000; not shown), (B) relative 
mass of the cerebral cortex (circles), shown as % of total brain mass, 
increases with total brain mass across all species, but relative cerebellar mass 
(squares) decreases slightly. Spearman correlation coeffi cients and p-values 
are shown. All data are from Herculano-Houzel et al. (2006, 2007), Azevedo 
et al. (2009) and Sarko et al. (2009).



Frontiers in Neuroanatomy www.frontiersin.org March 2010 | Volume 4 | Article 12 | 4

Herculano-Houzel Coordinated scaling of cortex and cerebellum

in  insectivore, rodent, primate (including human) and scandentia 
brains, since relative mass and relative number of neurons within 
each structure are not correlated across species (Figure 3; all 
p-values above 0.05). The increase in relative cortical size in larger 
brains in the absence of a correlated change in relative cerebellar size 
therefore cannot be used as a proxy for a similar lack of correlation 
between relative numbers of neurons in these structures.

How do actual numbers of neurons scale across the cerebral 
cortex and cerebellum, then? We have shown previously that dif-
ferent cellular scaling rules apply to rodent and primate brain 
structures: both the cerebral cortex and the cerebellum increase in 
mass as linear functions of their numbers of neurons in primates 
and one scandentia (Herculano-Houzel et al., 2007), but gain 
mass as steep and different power functions of their numbers of 
neurons in rodents (Herculano-Houzel et al., 2006; Figure 4A). 
In Eulipotyphla, the mass of the cerebellum varies linearly with 
the number of neurons in the structure, while the mass of the 
cerebral cortex increases faster than the structure gains neurons 
(Sarko et al., 2009). Strikingly, despite the different neuronal 
scaling rules across orders and structures, the number of neu-
rons in the cerebellum covaries with the number of neurons in 
the cerebral cortex across species of the four orders, and does 
so in a similar fashion in Eulipotyphla, Rodentia, Primata, and 
Scandentia (Figure 4B).

The coordinated scaling of numbers of cortical and cerebel-
lar neurons across all Eulipotyphla, rodents, primates and one 
scandentia species analyzed can be described as a single linear 
function of slope 4.2 (ANCOVA test for the interaction between 
order and number of neurons in the cortex, F = 0.008, p = 0.992; 
Figure 4B, Table 1). Similar slopes of 4.3 and 3.9 are obtained for 
the ensemble of scandentia and primates, and for rodents. A larger 
slope of 7.2 is obtained for Eulipotyphla, although with a very 
large 95% confi dence interval (0.2–14.2). Analysis of independent 
contrasts of the raw values yields similar slopes (Table 1), show-
ing that the scaling of numbers of neurons in the cerebellum and 
cerebral cortex is not affected by phylogenetic relationships. The 
fi nding that data from all 19 species from four mammalian orders 
can be described by a single linear function, and that the slopes for 
individual orders are comparable, suggests that, roughly, for every 

FIGURE 3 | Relative cortical and cerebellar mass does not refl ect the 

relative number of brain neurons that each contains. Each point 
represents the average values for one species (insectivores, orange; rodents, 
green; primates, red; scandentia, black). Circles, relative mass and relative 
number of brain neurons in the cerebral cortex; squares, relative values for 
cerebellum. Spearman correlation coeffi cients and p-values are indicated. All 
data are from Herculano-Houzel et al. (2006, 2007), Azevedo et al. (2009) and 
Sarko et al. (2009).

FIGURE 4 | Coordinated scaling of the number of neurons in the cerebral 

cortex and cerebellum of mammals. Each point represents the average 
values for one species. Eulipotyphla (insectivores), orange; rodents, green; 
primates, red; scandentia, black. (A) neuronal scaling rules relating structure 
mass and number of neurons (cerebral cortex, circles; cerebellum, squares). 
Power law exponents are indicated in the appropriate colors for Eulipotyphla, 
rodents, and combined scandentia and primates (all values of p < 0.01). 

(B) the number of neurons in the cerebellum covaries with the number of 
neurons in the cerebral cortex across all species in a way that can be 
described as a linear function of slope 4.2 (p < 0.0001, r2 = 0.995). Slopes and 
r2 values for insectivores, rodents, and combined scandentia and primates are 
indicated in different colors (all p < 0.01, except insectivores, for which 
p = 0.0463). All data are from Herculano-Houzel et al. (2006, 2007), Azevedo 
et al. (2009) and Sarko et al. (2009).
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neuron added to the cerebral cortex in evolution, four neurons are 
added to the cerebellum. Indeed, across the 19 species analyzed 
here, the average ratio between the numbers of neurons in the 
cerebellum and in the cerebral cortex is 3.6 ± 1.6, and does not 
covary with brain size (Spearman correlation −0.082, p = 0.7265; 
Figure 5).

DISCUSSION
Despite the abundant connectivity between the cerebral and cer-
ebellar cortices, the increase in relative size of the cerebral cortex in 
the face of a constant relative size of the cerebellum across species 
has been used as an argument against the functional coordination 
of these structures and their joint evolution (Clark et al., 2001). The 
rationale for considering relative size as a proxy for functionality 
or even “functional evolution” of a brain structure, however, is 
questionable. First, even though the function of any given structure 
may depend on how much information it receives from others, its 
capabilities should ultimately refl ect its own number of processing 
units, or neurons and their synapses, regardless of how large the 
remaining structures are – and, hence, regardless of the relative size 
of the structure at issue. Furthermore, the use of relative structure 
size as a proxy for function across species is based on the assump-
tion that the relative size of a structure refl ects the relative number 
of brain neurons it contains – and this assumption, which could 
now be tested directly, does not hold.

Rather, the direct comparison of the numbers of neurons in the 
cerebral and cerebellar cortices across species presented here indi-
cates that these are not only correlated, but vary together in the same 
way across mammalian orders with a relatively stable numerical 
preponderance of 3–4 neurons in the cerebellum to every neuron 
in the cerebral cortex, even though these structures change in size 
following different cellular scaling rules across rodents, primates, 
and Eulipotyphla (insectivores). These results are consistent with 
the fi ndings that, in primates, the cerebellum, neocortex, vestibu-
lar nuclei and relays between them exhibit concerted volumetric 
evolution, even after removing the effects of change in other struc-
tures (Whiting and Barton, 2003), and increased size of the pre-
frontal cerebral cortex is accompanied by an increased prefrontal 
cortico-pontine system and prefrontal-projecting cerebellar lob-
ules (Ramnani et al., 2006; Balsters et al., 2010). If extensive to all 
mammals, such a universal numerical relationship as observed here 
would account for why, across mammalian species, the number of 
neurons seems to be always larger in the cerebellum than in the 
cerebral cortex, even when cortical mass is relatively large, such as 
in humans (Azevedo et al., 2009).

The numbers of neurons analyzed here encompass all neurons 
(interneurons and pyramidal projection neurons) in the cer-
ebral cortex, and, in the cerebellum, consist of granule cells and 
 interneurons. As observed in the Methods, Purkinje cells are not 
labeled with NeuN, and are therefore not included in the count; 
however, since they are a very small proportion of all cerebellar 
neurons (Lange, 1975), their absence is unlikely to affect signifi -
cantly the fi nal neuron count of cerebellar neurons. In this way, the 
coordinate scaling of the cerebellum and cerebral cortex does not 
refer to the projection neurons that interconnect these structures, 
but rather to the ensemble of neurons that process information 
in them, and therefore determine how they function and generate 
the information that will be, as a result, communicated to other 
structures.

Remarkably, our quantitative analysis shows that the cerebral 
cortex can become enlarged, coming to represent over 80% of 
total brain mass, without the correlated increase in the percent-
age of neurons that it contains relative to the whole brain that 

Table 1 | Regression coeffi cients for the linear scaling of numbers of neurons in the cerebellum as a function of numbers of neurons in the cerebral 

cortex across species within each order, and across the combined 19 species.

 Contemporary “tip” species data Independent contrasts

Orders r2 p Slope 95% CI, lower 95% CI, upper r2 p slope

Eulipotyphla 0.782 0.0463 7.2 0.2 14.2 0.758 0.0548 6.4

Rodentia 0.948 0.0010 3.9 2.6 5.1 0.964 0.0005 3.8

Primata, Scandentia 0.997 <0.0001 4.3 4.0 4.5 0.997 <0.0001 4.5

All 0.995 <0.0001 4.2 4.1 4.4 0.998 <0.0001 4.4

FIGURE 5 | Average ratio between numbers of neurons in the cerebellum 

and in the cerebral cortex does not correlate with brain mass across 

species. Each point represents the average values for one species. 
Eulipotyphla (insectivores), orange; rodents, green; primates, red; scandentia, 
black. The average ratio ± standard deviation between number of neurons in 
the cerebellum and in the cerebral cortex within each order and among all 20 
species are indicated in the corresponding colors. No correlation between 
cortex/cerebellar neuronal ratio and brain mass reaches signifi cance 
(Spearman correlation, all p > 0.1). All data are from Herculano-Houzel et al. 
(2006, 2007), Azevedo et al. (2009) and Sarko et al. (2009).
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 species. First, while structure mass and numbers of neurons vary 
across species in the present sample by about 10,000-fold, varia-
tion within each of these species is typically of less than 0.3-fold 
(Herculano-Houzel et al., 2006, 2007). Such comparatively small 
intraspecifi c variations in brain size may not be correlated with 
variations in number of neurons (P. Morterá and S. Herculano-
Houzel, unpublished observations), but rather refl ect individual 
variations in the size of neuronal arborizations and in numbers of 
synapses. Therefore, while the number of neurons in the cerebral 
cortex is today considered a good correlate of cognitive abilities 
across species (Roth and Dicke, 2005), and absolute brain size has 
been found to be the best predictor of cognitive abilities across 
non-human primate species (Deaner et al., 2007), a larger brain or 
structure size or even number of neurons is not necessarily accom-
panied by better cognitive abilities within a species. Across these 
individuals, other factors such as variations in number and identity 
of synaptic connections within and across structures, building 
on a statistically normal, albeit variable, number of neurons, and 
depending on genetics and life experiences such as learning, are 
more likely to be determinant of the individual cognitive abilities 
(see, for instance, Mollgaard et al., 1971; Black et al., 1990; Irwin 
et al., 2000; Draganski et al., 2004).

Finally, the coordinated increase in numbers of cortical and 
cerebellar neurons across adult brains of different sizes in evo-
lution raises the possibility that a direct mechanism may be in 
place that adjusts the number of neurons in the cerebellum and 
cerebral cortex to one another during development, such that, 
when the number of neurons in the cerebral cortex undergoes 
a major evolutionary change, the number of neurons in the 
cerebellum is changed accordingly in a self-organizing fashion, 
although probably not through direct coupling of neurogen-
esis, since the two structures originate from different progenitor 
populations (reviewed in Goldowitz and Hamre, 1998; Jones, 
2009). It is well established that the number of granule cells is 
regulated by the number of Purkinje cells, while the number of 
Purkinje cells themselves seems to be subject to regulation by cell 
death (reviewed in Goldowitz and Hamre, 1998), which might 
in turn be subject to afferent-dependent regulation (reviewed in 
Linden, 1994; Sherrard and Bower, 1998). The neuronal popula-
tions in the cerebral cortex and in the cerebellum might therefore 
be matched numerically through afferent- or target-dependent 
regulation via their thalamic and pontine relay nuclei, even 
though they are not directly connected with each other. Given 
that the adult number of cerebellar neurons is only established 
well into postnatal development, and after the adult comple-
ment of neurons in the cerebral cortex has been reached, the 
cortico-ponto-cerebellar projection is a likely candidate to medi-
ate the numerical matching of cerebral and cerebellar cortical 
neurons. In this manner, even if small variations in the number 
of neurons in the cerebral cortex turn out not to correlate with 
variations in the number of neurons in the cerebellum across 
normal individuals of a same species, larger changes resulting 
from genetic alterations in evolution that affect the size of the 
neuronal population of the cerebral cortex alone might conceiv-
ably result in a coordinated increase in numbers of neurons in 
the cerebellum. Circumstantial support for this hypothesis is 
provided by several reports of crossed cerebrocerebellar  atrophy 

would be required to give support to the presumed trend towards 
neocorticalization in evolution. Rather, for a variation in brain 
size of fi ve orders of magnitude, the present analysis indicates 
that the ratio between numbers of cerebral cortical and cerebellar 
neurons varies relatively little, averaging 3.6 across all 19 species 
analyzed, and does not correlate with brain size. This is a strong 
argument against neocorticalization (in what concerns numbers 
of neurons) and, rather, in favor of the coordinated increase in 
numbers of neurons across the cortex and cerebellum, as brain 
size increases. The fi nding that such coordinated increase occurs 
with similar rates across insectivore, rodent, and primate spe-
cies, including humans, suggests that it refl ects a general prin-
ciple in mammalian brain evolution, rather than a particularity 
of primates.

The coordinated scaling of the number of neurons in the 
cerebral cortex and cerebellum stresses the importance of ana-
lyzing numbers of neurons directly instead of using absolute or 
relative mass as proxies in comparative studies, specially across 
animal orders, whose brain structures may scale differently in 
size as a function of their numbers of neurons. The coordinated 
scaling of numbers of neurons across the cortex and cerebellum 
also argues strongly in favor of the integrated function of these 
two structures, the conservation of their functional relationship 
across mammalian orders, and their coordinated subjection to 
selective pressures in evolution. In light of the present fi ndings, 
the traditional focus on the enlarged neocortex as the main event 
in brain evolution seems excessive and should be reevaluated 
across all mammals, as proposed by Whiting and Barton (2003) 
based on primate data, with more attention now dedicated to 
the concerted evolution of cortico-cerebellar circuits and of the 
behavioral and cognitive (not only sensorimotor) functions 
they mediate.

The seemingly paradoxical relative enlargement of the cer-
ebral cortex concurrent to a coordinated increase in numbers of 
neurons in the cerebral and cerebellar cortices across species may 
be explained by a combination of at least three factors: the faster 
increase in volume of the cerebral subcortical white matter than of 
the cerebellar white matter in larger brains (Zhang and Sejnowski, 
2000; Bush and Allman, 2003); the small relative size of the cerebel-
lum (about 10–14% of brain size), because of which variations of 
even 50% in its relative size may fail to reach signifi cance across 
species; and a faster increase in overall neuronal size (including 
dendrites and axons) in the cerebral cortex than in the cerebellum 
predicted to occur in rodents and insectivores of increasing brain 
size (Herculano-Houzel et al., 2006; Sarko et al., 2009). The faster 
increase in neocortical than in cerebellar white matter in larger 
brains probably refl ects the functional importance of long-range 
connectivity through the subcortical white matter for the operation 
of associative networks in the cerebral cortex (Wen and Chklovskii, 
2005), while associative connections in the cerebellum, in contrast, 
consist mostly of shorter-range connections within the gray matter 
(Bush and Allman, 2003).

It is important to bear in mind, however, that the interspe-
cifi c numeric relationships described here, both between num-
bers of neurons in the cerebral cortex and in the cerebellum, and 
between each structure’s mass and its number of neurons, do not 
necessarily apply to variation across individuals within the same 
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