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movements, known as levodopa-induced dyskinesia (LID) (Yahr 
et al., 1968). The frequency of these motor complications has been 
estimated between 40 and 50%, after 4–6 years of levodopa treat-
ment (Ahlskog and Muenter, 2001) but increases to 90% after 
10 years of treatment (Rascol et al., 2000). Despite its frequency 
and clinical significance, the pathophysiology and the clinical risk 
factors causing dyskinesia in PD are not understood. The incidence 
is estimated at about 10% per year after initiating levodopa therapy. 
Some people exhibit severe dyskinesia very rapidly, whereas oth-
ers do not develop this complication despite many years of levo-
dopa treatment. The phenomenology of dyskinesia encompasses 
various forms: chorea, athetosis, dystonia, stereotypy, ballismus, 
or a combination of these. In addition to levodopa-induced motor 
fluctuations, PD patients can frequently experience affective, moti-
vational, and cognitive disorders (Ahlskog and Muenter, 2001). 
The development of dyskinesia has been reported to depend on 
several clinical risk factors, such as duration of disease, severity of 
disease, duration of levodopa treatment and actual, or cumulative 
levodopa dose. Numerous important advances have been made 
in understanding of the etiopathogenesis, pathology and clinical 
phenomenology of PD and LID over the past 10 years.

Basal GanGlia anatomical orGanization
The basal ganglia comprise a group of interconnected subcorti-
cal nuclei located at the base of the cerebral hemispheres, with 
parts belong to the forebrain, diencephalon, and midbrain. The 
basal ganglia nuclei include the striatum (caudate and putamen), 
the globus pallidus pars externa (GPe) and pars interna (GPi), the 
subthalamic nucleus (STN) and the substantia nigra, divided into 
its pars compacta (SNc) and pars reticulata (SNr). Current knowl-
edge suggests that the basal ganglia constitute a highly organized 
network, whose functional organization is complex. There is a clear 
consensus in considering that input to the basal ganglia from differ-
ent cortical areas terminates within specific basal ganglia territories, 
which are connected to similarly specific portions of the thalamus. 

Parkinson’s disease (PD) is the second most common  neurodegenerative 
disorder after Alzheimer’s disease, which neuropathological hallmark 
is the degeneration of dopaminergic neurons in the substantia nigra 
pars compacta (SNc). The loss of dopaminergic input to the stria-
tum results in the depletion of dopamine that causes a cascade of 
functional modifications that involves all components of the basal 
ganglia circuitry. These changes are thought to represent the neural 
substrate for parkinsonian motor symptoms such as bradykinesia 
(slowness of movement), rigidity (stiffness), and tremor. However, 
other neurotransmitter systems (e.g., cholinergic, adrenergic, sero-
toninergic) also degenerate and cell loss is seen in other brain stem 
nuclei and the cortex (Braak et al., 2002; Chaudhuri et al., 2006). This 
non-dopaminergic degeneration is thought to be the major cause of 
the non-motor symptoms of PD (e.g., cognitive decline, autonomic 
dysfunction). Dopaminergic drugs (e.g., dopamine precursor drug, 
l-3,4- dihydroxyphenylalanine – levodopa), dopamine agonists and 
the inhibitors of dopamine catabolism are the main therapeutic 
options for alleviating the parkinsonian motor symptoms.

incidence and PhenomenoloGy of dyskinesia
However, as PD patients receive chronic treatment with levodopa 
upon a progressive disease, they gradually develop two clinical 
phenomena requiring changes in their clinical management: fluc-
tuations in motor response and a variety of abnormal involuntary 
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These thalamic areas, in turn, project back to the same areas of the 
cortex from which the circuit originates (Alexander et al., 1986; 
Kelly and Strick, 2004; DeLong and Wichmann, 2007). Numerous 
data suggest that the basal ganglia nuclei are involved in movement 
control, as well as associative learning, planning, working memory, 
and emotion (Hikosaka et al., 2002; Pasupathy and Miller, 2005; 
Yin and Knowlton, 2006).

At present, there is a classical model of movement disorders 
in basal ganglia disease, developed in the late 1980s (Alexander 
et al., 1986; Crossman, 1987; Albin et al., 1989), both describing 
the  neural mechanisms underlying parkinsonian akinesia and 
explaining the appearance of abnormal involuntary movements 
(dyskinesia). These represent two diametrically opposed mecha-
nisms. However, the limitations and pitfalls of these models have 
also been discussed extensively on several occasions (Wichmann 
and DeLong, 1996; Obeso et al., 1997; Rodriguez-Oroz et al., 2009). 
The classical box and arrows basal ganglia model (Crossman, 1987; 
Albin et al., 1989; DeLong, 1990) proposes a motor circuit consist-
ing of two input structures, comprising the striatum and STN, 
two output structures (GPi and SNr) and two intrinsic structures, 
including GPe and SNc (Mink, 1996). The striatum and the STN 
receive topographically organized input from the cerebral cortex 
(Monakow et al., 1979; Nambu et al., 1997; Lei et al., 2004) whereas 
the GPi and the SNr provide basal ganglia output to the thalamus 
and brainstem (Carpenter et al., 1976; Parent and De Bellefeuille, 
1982; Francois et al., 1984; Oertel and Mugnaini, 1984).

The striatum receives massive cortical excitatory inputs (Kemp 
and Powell, 1970; Kitai et al., 1976; McGeer et al., 1977; Cherubini 
et al., 1988) and is densely innervated by dopamine from the SNc 
(Faull and Mehler, 1978; Beckstead et al., 1979). In the striatum, 
the major neuronal population is represented by medium spiny 
neurons (MSNs), accounting for almost 95% of total striatal cells 
(Kemp and Powell, 1971). MSNs use g-amino-butyric acid (GABA) 
as a inhibitory neurotransmitter (Kita and Kitai, 1988). They form 
two main populations of projection neurons (striatofugal system) 
that differ in their expression of the receptors that mediate the effect 
of dopamine. The striatonigral MSNs that monosynaptic project to 
GPi and the SNr (direct pathway) express preferentially dopamine 
D1 receptors (D1R) and produce the neuropeptides dynorphin 
and substance P whereas the striatopallidal MSNs that project to 
GPe (indirect pathway) express dopamine D2 receptors (D2R) and 
enkephalin (Gerfen et al., 1990). Although this strict “segregation” 
was supported by previous studies, a significant number of D1R 
and D2R-coexpressing neurons (about 5–10%) were found in rat 
(Le Moine and Bloch, 1995) and primate (Aubert et al., 2000) using 
double in situ hybridization technique. In this same line, anatomi-
cal studies clearly show that single striatofugal axons arborize in 
both pallidal segments in rodents (Kawaguchi et al., 1990; Castle 
et al., 2005) and in primates (Parent and Hazrati, 1995; Levesque 
and Parent, 2005; Nadjar et al., 2006). These data indicate that the 
striatofugal system is not as functionally segregated in rodents and 
primates as previously considered in the current model of basal 
ganglia. Dopamine modulates glutamatergic effects on corticos-
triatal inputs by exerting a dual effect on striatal neurons, exciting 
D1R neurons in the direct pathway and inhibiting D2R neurons 
in the indirect circuit. Within this general context, activation of 
direct-pathway circuits has been proposed to facilitate or select 

appropriate movements, whereas activity in the indirect pathway 
may inhibit unwanted or inappropriate movements (Albin et al., 
1989; Alexander et al., 1990). Clearcut demonstration of such 
roles has just been released using optogenetic approaches (Kravitz 
et al., 2010).

The GPe and the STN are classically viewed as part of the so-
called indirect pathway (Parent and Hazrati, 1995). The GPe, prin-
cipally sends GABAergic projections to the STN (Albin et al., 1989; 
Alexander et al., 1990; DeLong, 1990) but anatomical studies have 
revealed the existence of new efferent projections of the GPe to 
the two output structures of the basal ganglia (Hazrati et al., 1990; 
Kincaid et al., 1991). The STN is an important control structure of 
basal ganglia circuits, being the only glutamatergic nucleus of the 
network (DeLong and Wichmann, 2007). The STN, like the other 
components of the basal circuit, is subdivided into different territo-
ries, motor, oculomotor, associative, and limbic, each with different 
connections and functions (Parent and Hazrati, 1995; Bevan et al., 
2006). The large dorsolateral portion of the STN corresponds to 
the motor territory; the ventromedial portion to the associative 
territory and the medial tip to the limbic territory of the STN.

Most STN neurons are glutamatergic projection neurons and 
provide a powerful excitatory input to the GPe (Van Der Kooy 
and Hattori, 1980; Kita and Kitai, 1987; Parent et al., 2000; Castle 
et al., 2005) and to the two output structures of the basal ganglia 
(Parent and Smith, 1987; Smith et al., 1990). Additionally a sub-
population of efferent STN neurons innervate directly the ventral 
motor thalamic nuclei (Nauta and Cole, 1978; Rico et al., 2010). The 
STN also has important reciprocal connections with the pedun-
culopontine tegmental nucleus (PPT) (Hammond et al., 1983; 
Jackson and Crossman, 1983; Kita and Kitai, 1987; Granata and 
Kitai, 1989; Steininger et al., 1992) as well as the cerebral cortex 
(Jackson and Crossman, 1981; Nambu et al., 2002; Degos et al., 
2008). Furthermore, as inputs to both striatum and STN arise from 
the intralaminar thalamic nuclei, the centromedian nucleus (CM), 
and the parafascicular nucleus (Pf) (Wilson et al., 1983; Sadikot 
et al., 1992; Feger et al., 1994; Lanciego et al., 2004; Castle et al., 
2005), the STN is now viewed as a key entry to the basal ganglia 
circuit, probably as important as the striatum itself.

The GPi and SNr share many histological characteristics, as well 
as similar afferent and efferent connections. Although the pro-
jection neurons of the basal ganglia output nuclei are generally 
considered to be GABAergic (Penney and Young, 1981; Rajakumar 
et al., 1994), there is evidence that projection neurons within the 
entopeduncular nucleus (ENT, the rodent homolog of GPi) also 
express other markers such as markers of cholinergic (Parent et al., 
1981) and glutamatergic neurons (Kha et al., 2000), as well as pep-
tides like somatostatin and substance P (Murakami et al., 1989a,b). 
Both nuclei project to the ventral motor thalamus, caudal intrala-
minar nuclei (Sidibe et al., 1997, 2002) and PPT (Steininger et al., 
1992; Grofova and Zhou, 1998). Finally the thalamic nuclei then 
send glutamatergic projections to the motor cortex, thus closing 
the loop.

the striatum, focus of most studies
Dyskinesia in PD seems to be mediated by alterations in basal ganglia 
activity that are the opposite of those occurring in PD (Vidailhet 
et al., 1999; Obeso et al., 2000; Boraud et al., 2001). Current 
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recently confirmed with an electrophysiological approach (Mallet 
et al., 2006). Such an imbalance could be generated locally within 
the striatum or caused by a complex interaction with the corticostri-
atal excitatory. Retrograde tract-tracing experiments in the rat have 
shown that striatonigral neurons are preferentially innervated by 
cortical neurons that project inside the telencephalon (intratelen-
cephalic (IT)-type), in both the ipsilateral and contralateral striatum, 
whereas striatopallidal neurons receive a greater input from cortical 
neurons that send their main axon into the pyramidal tract (PT) and 
their collateral axons only in the ipsilateral striatum (Lei et al., 2004). 
Although such a clearly segregated corticostriatal organization has 
recently been challenged (Ballion et al., 2008), a deficit in specific 
cortical inputs might also contribute to selectively depress the activity 
of striatonigral neurons (Mallet et al., 2006). Both the spontaneous 
activity and the sensitivity to cortical stimulation of striatonigral 
neurons were reduced by the lesion, whereas the reverse effects were 
observed for striatopallidal neurons (Mallet et al., 2006). However, 
elegant electrophysiological studies have shown that the decreased 
IT neuron activity associated with the dopaminergic depletion does 
not contribute to the striatal imbalance (Ballion et al., 2008).

striatal Glutamic acid decarBoxylase mrna levels  
in Pd and lid
While electrophysiological investigations are scarce, anatomo-
functional studies have documented the specific changes in the 
transcriptional activity of subpopulations of striatal GABA neu-
rons in PD and LID conditions. Outside the scope of this review, a 
number of studies have indirectly confirmed the anatomo-func-
tional organization of the striatal territories. Immediate-early genes 
have been extensively studied and expression patterns of c-fos and 
FosB proteins clearly relate a given behavioral phenotype with an 
increased expression/signal in a sub-territory of the striatum (Saka 
et al., 1999; Cenci, 2002; Jenner, 2008).

For instance, a number of studies using in situ hybridization 
studies have unraveled changes in glutamic acid decarboxylase 
(GAD) mRNA levels, the rate-limiting enzyme in the synthesis 
of GABA, in parkinsonian and dyskinetic animal models. Studies 
carried out during the last 25 years have shown the existence of 
two GAD isoforms, GAD

65
, and GAD

67
, each encoded by a differ-

ent gene, and differing in molecular size and intraneuronal dis-
tribution (Denner and Wu, 1985; Kaufman et al., 1991; Martin 
et al., 1991; Martin and Rimvall, 1993). In MPTP-treated primates, 
GAD

65
 mRNA and GAD

67
 mRNA are increased in the striatum 

(Pedneault and Soghomonian, 1994; Soghomonian et al., 1994; 
Levy et al., 1995). Levodopa treatment significantly normalizes 
GAD

67
 mRNA expression in the putamen and caudate nucleus to 

levels similar to those found in control monkeys (Levy et al., 1995). 
Other studies, however, showed not significant changes in the dis-
tribution of both isoforms in the cortex, caudate, and putamen of 
parkinsonian and dyskinetic primates (Stephenson et al., 2005). In 
rats bearing a unilateral 6-OHDA lesion, GAD gene expression is 
increased in the striatum on the side of the lesion (Lindefors et al., 
1989; Soghomonian et al., 1992; Consolo et al., 1999; Bacci et al., 
2002). By contrast, the administration of levodopa leads to further 
increases in striatal GAD

67
 mRNA levels (Cenci et al., 1998; Consolo 

et al., 1999; Carta et al., 2001, 2003; Bacci et al., 2002; Nielsen and 
Soghomonian, 2004).

 models of LID suggest that excessive decrease in GPi  activity in 
turn  disinhibits the motor thalamus and the cortex, giving rise to 
abnormal increase in cortical drive and consequent excessive motor 
movements (Wichmann and DeLong, 1996; Bezard et al., 2001a).

The first site of interest is of course the striatum with a particular 
emphasis upon the MSNs. Over the past few years, LID have been 
associated with a number of molecular changes, including regula-
tion of striatal dopamine receptors, downstream changes in striatal 
proteins and genes, abnormalities in non-dopaminergic transmitter 
systems, etc., all changes that go beyond the topic of the present 
review (Bezard et al., 2001a; Jenner, 2008). Changes are not sim-
ply the consequence of chronic treatment since the first levodopa 
dose would induce expression changes of numerous proteins in the 
dopamine depleted striatum that equate those induced by chronic 
exposure as evidenced using a proteomic approach in the MPTP 
macaque model (Scholz et al., 2008).

dendritic sPine PruninG occurs on d2-exPressinG msns
A simple but long ignored question was the possible changes in the 
connections in the basal ganglia circuit in both the parkinsonian 
and dyskinetic states. Recently, Nadjar et al. (2006) showed that both 
the phenotype and the targets of striatofugal neurons, and there-
fore their relative influence on target structures, is preserved after 
dopamine denervation in the parkinsonian state and after additional 
chronic levodopa treatment in both non-dyskinetic and dyskinetic 
groups (Nadjar et al., 2006). This suggests that the phenotypic plas-
ticity of the striatofugal system is not affected by the experimental 
condition. It does not mean however that plastic changes do not 
occur in the striatum. For instance, it has been shown that the size 
of the dendritic tree and the density of dendritic spines of MSNs is 
significantly reduced in the caudate nucleus and the putamen of PD 
patients compared with controls (Stephens et al., 2005), confirming 
previous data in rodents (Ingham et al., 1998). Such pruning was 
observed in MPTP-primates as well (Scholz et al., 2008; Villalba 
et al., 2009). The MSNs submitted to this dramatic plastic change 
were recently characterized as the D1R-immunonegative neurons, 
i.e., the D2R-expressing neurons (Day et al., 2006). Unfortunately, 
the impact of such spine pruning on MSN physiology is still unclear. 
These data nevertheless support the idea of plastic changes in the 
corticostriatal network but with no consequence on the phenotype 
and organization of projections of striatal neurons. Thus, loss of 
cortical afferents appears unlikely to affect the phenotypic pattern 
of striatal neurons, but rather might alter their activity or mRNA 
processing (Day et al., 2006). Altogether, these changes contribute 
in the development of adverse events related to levodopa therapy, 
because they would alter information flow through the striatum 
and rest of the basal ganglia nuclei.

is the direct/indirect Pathway imBalance caused By 
differential corticostriatal inPut?
Many studies have investigated the pathophysiology of the basal gan-
glia after dopamine denervation. Imbalances between neural activity 
in the two major output pathways of striatum have been proposed 
to underlie the profound motor deficits observed in PD, such as the 
hypokinesia (Albin et al., 1989; DeLong, 1990; Bezard et al., 2001b). 
This imbalance was first documented in anatomo-functional stud-
ies (Gerfen et al., 1990; Gerfen, 2000) and, surprisingly, only very 
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MPTP-treated monkeys (Herrero et al., 1996). These data fit with 
the observation that there is no difference in the levels of GAD

67
 

mRNA between levodopa-treated PD patients and control sub-
jects (Herrero et al., 1996), i.e. that levodopa treatment normalizes 
GAD

67
 mRNA levels. In rats, an ipsilateral marked up-regulation of 

GAD
65

/
67

 mRNA expression in the ENT nucleus has been reported 
following 6-OHDA lesion (Soghomonian and Chesselet, 1992; 
Barroso-Chinea et al., 2008). Continuous or intermittent levodopa 
administration is equally effective at reversing the lesion-induced 
increase in GAD

67
 mRNA expression in the ENT nucleus (Nielsen 

and Soghomonian, 2004). Altogether, these results indicate that 
the level of GAD

67
 mRNA is increased in the cells of the GPi after 

nigrostriatal dopaminergic denervation and that this increase can 
be reversed by levodopa therapy (Herrero et al., 1996).

One should however keep in mind that a transcriptional regu-
lation does not necessarily mean a change in electrical activity. 
Parallel to these observations, there are evidences of an increase in 
mitochondrial respiratory chain enzyme activity in ENT nucleus 
in the lesioned hemisphere of 6-OHDA rats suggesting increased 
synaptic activity, perhaps due to increased firing of the STN (Porter 
et al., 1994). The enzymatic activity or the changes in the expres-
sion of cytochrome oxidase-I (COI) have indeed been shown to 
correlate with changes in the firing activity of several structures 
(Wong-Riley and Welt, 1980; Wong-Riley, 1989). ‘‘In situ’’ hybridi-
zation of cytochrome oxidase-I (COI) mRNA in the MPTP monkey 
model of PD has shown increased levels parallel increased firing 
of the STN (Bergman et al., 1994; Vila et al., 1996; Bezard et al., 
1999). Comparably, increased levels in the GPi correlate with an 
increased firing frequency of GPi neurons (Bezard et al., 1999; 
Boraud et al., 2000, 2001). As expected, levodopa treatment reversed 
such COI mRNA overexpression in all affected structures (Vila 
et al., 1996). Similar results were obtained in the 6-OHDA rat 
model (Vila et al., 1999). No changes were however detected in 
levodopa-treated PD patients compared to control subjects, a situ-
ation that could either reflect the levodopa-induced normalization 
of the COI mRNA expression in PD patients or the inescapable 
poor quality of human post-mortem samples (Vila et al., 1996). In 
conclusion, these anatomo-functional evidences correlate with the 
observed hypoactivity of both the STN and GPi during levodopa 
or apomorphine-induced dyskinesia in MPTP-treated monkeys 
(Filion et al., 1991; Boraud et al., 2001), in dyskinetic PD patients 
(Merello et al., 1999) and in patients with generalized dystonia and 
hemiballismus (Suarez et al., 1997; Vitek et al., 1999).

“Parkinson’s disease-related Pattern” in Pd and lid
Considerable efforts have been devoted to develop neuroimaging 
methods to study the basal ganglia (Eidelberg and Edwards, 2000; 
Feigin et al., 2001; Eckert et al., 2005; Asanuma et al., 2006; Trost 
et al., 2006; Eidelberg, 2009). These techniques have been developed 
with the hope that they could be used as biomarkers to help the 
diagnosis, to detect early stages of the disease, later on to grade the 
disease severity of the disease, and, finally, to serve as a surrogate 
marker for progression of the underlying disease. Positron emis-
sion tomography (PET) and single photon emission computed 
tomography (SPECT), which is less sensitive but more widely 
available than PET, are capable to provide an objective measure of 
PD severity as both techniques depict the loss of neurotransmitter 

oPioid PePtide Precursor mrna and oPioid recePtor levels  
in Pd and lid
Besides GAD, expression levels of precursors of the opioid pep-
tides have been extensively investigated. Investigations in rodents 
(Gerfen et al., 1990; Engber et al., 1992; Duty et al., 1998), primates 
(Herrero et al., 1995; Morissette et al., 1999; Tel et al., 2002) and 
humans (Nisbet et al., 1995; Calon et al., 2002; Henry et al., 2003) 
have shown that Parkinsonism is associated with an increased 
expression of the opioid precursor preproenkephalin-A (PPE-A) 
messenger RNA (mRNA) in striatal neurons projecting to the GPe 
and a decreased preproenkephalin-B (PPE-B) mRNA expression 
in striatal neurons projecting to the GPi. In the dyskinetic state, 
however, the expression of PPE-B mRNA is increased (Cenci et al., 
1998; Duty et al., 1998; Henry et al., 1999; Westin et al., 2001; Tel 
et al., 2002; Winkler et al., 2002; Henry et al., 2003), whereas that 
of PPE-A mRNA is either unchanged or further increased (Herrero 
et al., 1995; Morissette et al., 1997; Duty et al., 1998; Henry et al., 
1999; Morissette et al., 1999; Zeng et al., 2000; Westin et al., 2001; 
Calon et al., 2002; Tel et al., 2002). These data suggest a role for 
enhanced endogenous opioid peptide transmission in striatal out-
put pathways for the generation of LID. However, none of these 
studies has regarded basal ganglia nuclei other than the striatum 
as potential sources and those opioid precursors have almost never 
been quantified, simultaneously with the levels of opioid receptors, 
at the peak of dyskinesia severity, a quite surprising observation. 
Recently, Aubert and colleagues, studying a comprehensive brain 
bank of control, parkinsonian and dyskinetic monkeys terminated 
at the peak of levodopa-induced antiparkinsonian efficacy and dys-
kinesia manifestation, found a reduction in κ and μ opioid recep-
tor binding in the GPi correlating with dyskinesia severity. Such 
decrease also correlated with an enhanced expression of PPE-B 
mRNA, but not that of PPE-A, in both the striatum and the STN, 
known to also express peptide precursors (Merchenthaler et al., 
1997). This abnormal PPE-B-derived transmission could therefore 
be involved in LID manifestation with increased peptide levels aris-
ing from both the striatum and the STN (Aubert et al., 2007).

transcriPtomic chanGes affectinG Pallidal comPlex and stn 
in Pd and lid
In the 6-OHDA-lesioned rat model of PD, the profound dopamine 
depletion in the striatum resulted in significant increases in the 
percentage of GPe neurons that expressed GADs mRNA and in 
the amount of GADs mRNA per GPe neuron (Kincaid et al., 1992; 
Soghomonian and Chesselet, 1992). Similar results were described 
MPTP-treated monkeys, the expression of GAD

67
 but not GAD

65
 

was augmented in the GPe, along with a significant increases in 
number of GAD

67
 neurons, while no significant difference in the 

number of GAD
65

 neurons was observed (Stephenson et al., 2005). 
Levodopa treatment did not significantly change the number of 
GAD

65
 or GAD

67
-expressing pallidal neurons following MPTP 

(Stephenson et al., 2005).
In the GPi of MPTP-treated monkeys, i.e., the main output 

structure, the expression of GAD
67

 and GAD
65

 mRNAs is increased 
(Pedneault and Soghomonian, 1994; Soghomonian et al., 1994; 
Herrero et al., 1996). Similar results were described in MPTP-
lesioned cats (Schroeder and Schneider, 2001). Interestingly the 
increase in GAD

67
 mRNA is abolished by levodopa treatment in 
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