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birds: once in the lineage leading to anseriform birds and at least 
once in the group that gave rise to parrots and songbirds. In this 
review we show that distinct developmental mechanisms under-
lie these two independent evolutionary changes in telencephalon 
size. We next examine how ancestral developmental modes may 
have influenced changes in developmental mechanisms, which in 
turn influenced evolutionary changes in behavioral flexibility and 
learning capacity.

AltriciAlity is A pre-AdAptAtion for delAyed brAin 
mAturAtion
Most land birds (e.g., parrots, songbirds, suboscines, owls, 
kingfishers, falcons) are altricial (Figure 2; Starck and Ricklefs, 
1998). That is, their hatchlings are relatively immobile and receive 
extensive post-hatching parental care. However, the degree of 
helplessness at hatching varies among land birds (Starck and 
Ricklefs, 1998). For instance, falcons and owls are considered 
semi-altricial in that their hatchlings are covered with down. 
Parrots, songbirds, and suboscines are among the most altricial 
avian species (Starck and Ricklefs, 1998; Londoño, 2003; Greeny 
et al., 2004, 2005). Their hatchlings are naked, have their eyes 
closed, and are fed for several weeks after hatching. In general, 
the most salient difference between altricial and precocial spe-
cies is that parents feed altricial hatchlings whereas precocial 
hatchlings feed on their own.

Altricial and precocial species also differ in the timing of brain 
maturation. Specifically, altricial species delay some aspects of 
brain maturation into the post-hatching period relative to pre-
cocial  species. This is most evident from the observation that 
 altricial (including semi-altricial) species such as parrots,  songbirds, 

introduction
Parrots, songbirds, and anseriform birds (ducks and geese) have 
evolved a disproportionately large telencephalon compared with 
many other birds (Figure 1; Portmann, 1947a; Boire and Baron, 
1994; Iwaniuk and Hurd, 2005). Although the proportional size 
of the telencephalon in ducks and geese rivals that in parrots and 
songbirds, the latter taxa differ from ducks and geese in numerous 
respects. First, parrots and songbirds are altricial (their hatchlings 
are fed by their parents), whereas ducks and geese are precocial 
(their hatchlings feed on their own; Starck and Ricklefs, 1998). 
Second, parrots and songbirds enlarge their telencephalon by 
delaying telencephalic neurogenesis (Striedter and Charvet, 2008; 
Charvet and Striedter, 2009a), whereas ducks and geese enlarge 
their telencephalon before telencephalic neurogenesis begins 
(Charvet and Striedter, 2009b). Finally, parrots and songbirds 
have evolved a set of telencephalic nuclei responsible for vocal 
learning (Nottebohm, 1972; Nottebohm et al., 1976; Doupe and 
Kuhl, 1999), whereas anseriform birds have evolved an expanded 
trigeminal system that is related to feeding (Dubbeldam and 
Visser, 1987; Gutiérrez-Ibáñez et al., 2009). Thus, anseriform birds 
differ form parrots and songbirds in their developmental modes, 
in brain development, in brain anatomy, and in behavior.

Recent analyses of avian phylogenetic relationships indicate that 
parrots are the sister group of passerines, which include songbirds 
and suboscines (manakins, antbirds, tyrant-flycatchers; Ericson 
et al., 2006; Hackett et al., 2008). Anseriform birds are the sister 
group of galliform birds (e.g., chickens), which are distantly related 
to songbirds and parrots (Ericson et al., 2006; Hackett et al., 2008). 
Therefore, it is most parsimonious to conclude that the expansion 
of the telencephalon evolved at least twice independently among 
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owls, and pigeons generally exhibit more post-hatching brain 
growth than precocial species (Figure 3). Given this delayed brain 
growth, we can infer that late-born brain regions, such as the 
 telencephalon, are functionally immature at hatching in altricial 
species (Portmann, 1947b; Finlay and Darlington, 1995; Ling et al., 
1997; Finlay et al., 1998; Striedter and Charvet, 2008). This delayed 
brain maturation presumably renders altricial hatchlings relatively 
helpless and dependent on their parents.

Parrots and songbirds exhibit even more post-hatching brain 
growth than other altricial species (e.g., pigeons, owls; Figure 3; 
Portmann, 1947b; Starck and Ricklefs, 1998). Most of the post-
hatching brain growth in parrots and songbirds is due to a late 
expansion of the telencephalon, which is associated with a gen-
eral delay and extension of telencephalic neurogenesis (Striedter 
and Charvet, 2008; Charvet and Striedter, 2009a). Post-hatching 
neurogenesis has only been examined in a few parrots (parakeets) 
and songbirds (canaries, chickadees, zebra finches; Paton and 
Nottebohm, 1984; Kirn and DeVoogd, 1989; Barnea and Nottebohm, 
1994). Previous work shows that the telencephalon in parakeets 
(Melopsittacus undulatus) and zebra finches (Taeniopygia guttata) 
harbors an expanded pool of precursor cells, which persists well into 
the post-hatching period (Charvet and Striedter, 2008; Striedter and 
Charvet, 2009). In zebra finches, the major period of telencephalic 
neurogenesis ends approximately 1 week after hatching, although a 
limited amount of telencephalic neurogenesis persists into adult-
hood (DeWulf and Bottjer, 2005; Charvet and Striedter, 2009a; Kirn, 
2010). In parakeets, the major period of telencephalic  neurogenesis 
wanes approximately 2 weeks after hatching (Striedter and Charvet, 

5

6

7

8

9
10

3

2

3

4

5

6

7

8

9
10

4

9

10
3

2 3 4 5 6 7 8 9

10
4

Parrots
Songbirds
Anseriform birds
Galliform birds
Other birds

Te
le

nc
ep

ha
lo

n 
Vo

lu
m

e 
(m

m
 )

3

Brain Volume (mm )
3

Figure 1 | A plot of telencephalon volume versus overall brain volume shows that the telencephalon is disproportionately large in parrots, songbirds (i.e., 
oscine passerines), and anseriform birds (ducks and geese) compared with galliform birds and diverse other avian species. The other avian species in this 
graph include mainly pigeons, shorebirds and falcons. Data are from Iwaniuk and Hurd (2005).
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Figure 2 | Phylogeny of archosaurs (alligators and birds) shows their 
modes of development. Parrots, songbirds, suboscines (manakins, antbirds, 
tyrant-flycatchers), and kingfishers are altricial, whereas falcons and owls are 
semi-altricial. Because most land birds (e.g., suboscines and falcons) are 
either altricial or semi-altricial, the ancestors of parrots and songbirds were 
probably either altricial or semi-altricial. This, in turn, implies that the 
expansion of the telencephalon in parrots and songbirds evolved in a lineage 
that was at least semi-altricial. In contrast, many reptiles (e.g., alligators), 
paleognaths (e.g., emus), and basal lineages of Neoaves (e.g., galliform and 
anseriform birds) are precocial. Thus, ducks and geese were probably 
precocial when they expanded their telencephalon. The phylogeny is based 
on Hackett et al. (2008).
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Figure 3 | Comparative analysis of avian post-hatching brain growth 
is measured by the ratio of adult to hatchling brain weight. Altricial 
species with proportionally small telencephalons (e.g., swifts and 
pigeons) exhibit more post-hatching brain growth than precocial species 
(e.g., anseriform and galliform birds). Parrots and songbirds (i.e., oscine 
passerines) exhibit even more post-hatching brain growth than many 

other altricial species. Among songbirds, corvids (carrion crows, 
magpies) exhibit some of the largest post-hatching brain growth. Because 
the telencephalon is born late in development, post-hatching brain growth 
is due primarily to the expansion of the telencephalon (see Striedter 
and Charvet, 2008; Charvet and Striedter, 2009a). Data are from 
Portmann (1947b).

2008), but the extent to which telencephalic neurogenesis persists 
in adult parrots is unclear. Because of the extension of telencephalic 
neurogenesis into the post-hatching period, the brains of parrots 
and songbirds are relatively immature at hatching. This immaturity 
presents no major problem, however, because parrot and songbird 
hatchlings receive extensive parental care.

Because most land birds are either altricial or semi-altricial, it 
is likely that altriciality evolved before the origin of parrots and 
passerines (songbirds and suboscines; Figure 2). This suggests 
that telencephalic expansion in the ancestors of modern songbirds 
and parrots, relative to suboscines, falcons and kingfishers (Day 
et al., 2005; Iwaniuk and Hurd, 2005; Charvet, 2010), occurred 
after the evolution of altriciality. Based on these observations, we 
hypothesize that altriciality may have been a pre-adaptation for 
telencephalic expansion and its associated delays of telencephalic 
neurogenesis and maturation in parrots and songbirds.

precociAlity requires An AlternAte mechAnism for 
telencephAlic expAnsion
Although a disproportionately expanded telencephalon appears to 
be more common among altricial species than among precocial spe-
cies (Iwaniuk and Nelson, 2003), ducks and geese are precocial and 
have evolved an enlarged telencephalon (Iwaniuk and Hurd, 2005). 
However, unlike parrots and songbirds, ducks and geese do not 
enlarge their telencephalon by delaying telencephalic neurogenesis. 
This is evident from the observation that post-hatching brain growth 
and neurogenesis timing are conserved in precocial anseriform and 

galliform birds (Portmann, 1947b; Charvet and Striedter, 2009b, 
2010). Furthermore, the major period of neurogenesis is thought to 
be largely complete by hatching in precocial species (quail, chicken) 
although a limited amount of neurogenesis persists after hatching 
(Tsai et al., 1981; Nikolakopoulou et al., 2006; Striedter and Charvet, 
2008). Instead of delaying neurogenesis, ducks (Anas platyrhynchos) 
and geese (Anser anser) enlarge their presumptive telencephalon 
early in development, before telencephalic cells exit the cell cycle 
(Charvet and Striedter, 2009b). Thus, the enlarged telencephalon 
of adult ducks and geese can be traced back to an expansion of the 
telencephalon precursor pool before neurogenesis begins.

Ducks and geese belong to a basal clade of neognathous birds 
(Hackett et al., 2008) and are closely related to paleognathous 
birds (e.g., emus; Figure 2). Because these lineages are all pre-
cocial (Starck and Ricklefs, 1998; see Burley and Johnson, 2002; 
Zhou and Zhang, 2004), the expansion of the telencephalon in 
anseriform birds probably evolved in precocial ancestors. We sug-
gest that this ancestral precociality did not allow ducks and geese 
to enlarge their telencephalon by delaying telencephalic growth 
and maturation. Instead, anseriform birds enlarged their telen-
cephalon by an alternate mechanism that probably involved a 
shift in the expression boundaries of genes or shortening cell cycle 
duration in the presumptive telencephalon prior to neurogenesis 
(Menuet et al., 2007; Charvet and Striedter, 2010; see McGowan 
et al., 2010; Sylvester et al., 2010). However, more work is needed 
to determine the developmental mechanisms underlying the early 
expansion of the telencephalon in ducks and geese.
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et al., 1999) but they are not known to learn complex vocalizations. 
Furthermore, several species of primates delay isocortical neurogen-
esis (Clancy et al., 2001), but humans are the only primates that learn 
complex vocalizations. Thus, all studied vocal learners delay telen-
cephalic maturation into the juvenile period, but not all species that 
delay telencephalic maturation are vocal learners. These findings are 
consistent with our proposal that delaying telencephalic neurogenesis 
and maturation fosters the evolution of learned vocalizations.

conclusion
Recent work has shown that nature has produced diverse devel-
opmental mechanisms for expanding specific brain regions, such 
as the telencephalon. These mechanisms include evolutionary 
changes in gene expression patterns, neurogenesis timing, and cell 
cycle rates (Finlay and Darlington, 1995; Bachy et al., 2001; Clancy 
et al., 2001; Menuet et al., 2007; Dyer et al., 2009; Abellan et al., 
2010; Charvet and Striedter, 2010; Finlay et al., 2010; Sylvester et al., 
2010). We here explain some of this diversity in developmental 
mechanisms by examining evolutionary changes in developmental 
modes. Specifically, we suggest that ducks and geese could not 
expand their telencephalon by delaying telencephalic neurogen-
esis because their ancestors were precocial. In contrast, songbirds 
and parrots were able to expand their telencephalon by delaying 
neurogenesis because their ancestors were already altricial and, 
therefore, prepared to care for helpless hatchlings. Post-hatching 
neurogenesis and brain maturation, in turn, may have facilitated 
the emergence of specialized circuits that mediate vocal learn-
ing. Whether delays in brain maturation also made songbirds and 
parrots more flexible and innovative in other aspects of behavior 
remains an interesting question.
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delAyed brAin mAturAtion fAcilitAtes leArning
Delays in brain maturation probably foster behavioral flexibility 
and innovation. Although some innovative behaviors (e.g., bait-
fishing, rock-throwing) have been reported in a variety of avian 
species such as vultures and wading birds (e.g., herons; van Lawick-
Goodall and van Lawick, 1966; Higuchi, 1985; Post et al., 2009), 
many innovative behaviors have been reported in songbirds and 
parrots (Jones and Kamil, 1973; Tebbich et al., 2001; Lefebvre et al., 
2002; Huber and Gajdon, 2006; Lefebvre and Sol, 2008; Prior et al., 
2008; Pepperberg, 2010). Delays in brain maturation may promote 
the evolution of flexible and innovative behaviors, such as tool use 
and manufacture by some crows (Hunt, 1996; Emery and Clayton, 
2004, 2009). Most spectacularly, parrots and songbirds have evolved 
specialized telencephalic circuits that allow them to produce 
learned vocalizations (Nottebohm, 1972; Nottebohm et al., 1976; 
Striedter, 1994; Mooney, 2009; Pepperberg, 2010). The telencephalic 
cell groups involved in vocal learning generally mature long after 
hatching, at least in songbirds (Bottjer et al., 1985; Alvarez-Buylla 
et al., 1992; Bottjer and Arnold, 1997; Kirn, 2010; Roberts et al., 
2010). For instance, neurogenesis in the higher vocal control center 
(HVC) is high when zebra finches learn their vocalization, though 
it decreases substantially after zebra finches crystallize their song 
(Wilbrecht and Kirn, 2004). In contrast, neurogenesis in precocial 
birds is largely complete by hatching (Tsai et al., 1981; Striedter and 
Charvet, 2008). Therefore, we propose that the delayed maturation 
in songbirds and parrots is causally linked to delayed maturation of 
the entire telencephalon in parrots and songbirds. In other words, 
we suggest that the developmental mechanism used to expand the 
telencephalon in parrots and songbirds facilitated the emergence 
of vocal learning.

Primates resemble parrots and songbirds in that they are also 
capable of vocal learning and delay brain maturation into the post-
hatching or post-natal period (Coqueugniot et al., 2004; Locke and 
Bogin, 2006). However, not all species that delay neurogenesis and 
brain maturation are capable of vocal learning. For instance, marsupi-
als delay brain maturation well into the post-natal period (Darlington 
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