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axonal  arborizations, and by tonic firing activity (Bolam et al., 1984; 
Wilson et al., 1990; Kawaguchi, 1993; Aosaki et al., 1995; Bennett 
and Wilson, 1998; Bennett et al., 2000; Zhou et al., 2002).

It has long been known that striatal ChIs play a central role in 
the basal ganglia circuitry both in the control of voluntary move-
ments and in the pathophysiology of movement disorders, such as 
Parkinson’s disease (PD), and dystonia (Pisani et al., 2003a, 2007; 
Aosaki et al., 2010). Indeed, anticholinergic drugs have long been a 
first choice therapy for PD and dystonia (Duvoisin, 1967; Jankovic, 
2006). Here, in light of the most recent findings, we will review the 
role of ChIs in striatal function and in the pathogenesis of basal 
ganglia disorders.

Morphological and electrophysiological properties of 
cholinergic interneurons
Large aspiny ChIs represent less than 2% of the entire striatal 
neuronal population. Their neurochemical identification is due 
to the expression of ChAT, the biosynthetic enzyme for ACh. 
Morphologically (Figures 1A,B), they are characterized by a large 
polygonal soma (Ø 20–50 μm), widespread dendritic and axonal 
fields (Bolam et al., 1984; Smith and Bolam, 1990; Wilson et al., 
1990), and a preferential distribution in the matrix area flanking 
the patches border (van Vulpen and van der Kooy, 1998). These fea-
tures suggest that ChIs may integrate synaptic inputs over relatively 
large regions, and act as an associative interneuron in the striatum 
(Kawaguchi et al., 1995; Miura et al., 2007).

In vitro electrophysiological recordings have described the pecu-
liar membrane properties of ChIs, that distinguish these neurons 
from all other striatal neuronal subtypes (Figures 1C–E). These 
include a relatively depolarized resting membrane potential, long-
lasting action potential, high input resistance, prominent afterhy-
perpolarization (AHP) current, and hyperpolarization-activated 

introduction
The basal ganglia include different interconnected subcortical 
nuclei that are involved in serving critical motivation, motor plan-
ning, and procedural learning function (Graybiel et al., 1994; Yin 
and Knowlton, 2006; Nicola, 2007; Kreitzer and Malenka, 2008). 
The striatum represents the main input nucleus of the basal ganglia. 
It receives excitatory afferents from the cortex and thalamus, and is 
densely innervated by midbrain dopamine neurons (Bolam et al., 
2000; Kreitzer and Malenka, 2008).

The large majority of striatal neurons are GABAergic. Most of 
these GABAergic neurons are represented by medium spiny pro-
jection neurons (MSNs; Izzo et al., 1987). At least three types of 
GABAergic interneurons have been identified, according to their 
electrophysiological and neurochemical properties. GABAergic 
interneurons may colocalize with the calcium-binding proteins 
parvalbumin or calretinin, or neuropeptide Y, somatostatin, and 
NADPH diaphorase (Kawaguchi, 1993; Tepper and Bolam, 2004). 
Accordingly, they have been classified, respectively, as fast-spiking 
(FS) neurons, persistent and low-threshold spike (PLTS) neurons, or 
low-threshold spike (LTS) neurons (Kawaguchi et al., 1989; Tepper 
and Bolam, 2004). A recent study has characterized an additional 
group of GABAergic interneurons, expressing tyrosine hydroxylase 
(TH+), which have been electrophysiologically classified into four 
distinct types (Tepper et al., 2010). Indeed, the existence of TH+ 
neurons in the striatum of rodents and primates had been reported 
since the late 1980s (for review, see Ibáñez-Sandoval et al., 2010).

In addition to the numerically prevailing population of 
GABAergic neurons, the striatum also contains a small percent-
age of interneurons which provide this area with one of the 
highest acetylcholine (ACh) levels in the brain (Graybiel, 1990; 
Mesulam et al., 1992; Contant et al., 1996). These are the large 
aspiny cholinergic interneurons (ChIs) characterized by dense local 
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cation current (I
h
; Bolam et al., 1984; Wilson et al., 1990; Kawaguchi, 

1993; Aosaki et al., 1995; Bennett and Wilson, 1998; Bennett et al., 
2000; Zhou et al., 2002).

These cells are autonomously active, showing a range of sponta-
neous tonic firing patterns, from irregular single spiking to rhyth-
mic bursting, even in the absence of synaptic input, suggesting that 
they are intrinsic in origin (Bennett and Wilson, 1999; Bennett 
et al., 2000; Goldberg and Wilson, 2005; Wilson, 2005; Wilson and 
Goldberg, 2006; Goldberg et al., 2009). The prevalence of a spiking 
pattern in any single neuron was shown to be dependent on the 
underlying Ca2+-activated K+ conductances. In particular, single 
spiking depends on a medium-duration AHP (mAHP) current 
generated by rapid SK currents, which are associated with high-
voltage-activated (HVA) Ca

V
2.2 Ca2+ channels. On the other hand, 

periodic bursting is driven by a delayed and slowly decaying AHP 
(sAHP) current, associated with Ca

V
1 Ca2+ channels (Bennett et al., 

2000; Goldberg and Wilson, 2005; Wilson and Goldberg, 2006). The 
specific association between HVA Ca2+ channel subtypes and the 
K+ currents underlying the mAHP and sAHP currents is generated 
by the dynamics of Ca2+ redistribution among cytoplasmic binding 
sites with different binding kinetics (Goldberg et al., 2009).

Striatal ChIs are recipients of a prominent glutamatergic drive 
from both the cortex and the centromedian and parafascicular 
(Cm–Pf) thalamic nuclei (Lapper and Bolam, 1992; Sidibe and 
Smith, 1999; Thomas et al., 2000), as well as of an extensive 
dopaminergic innervation from the substantia nigra pars compacta 
(Olson et al., 1972; Lavoie et al., 1989; Dimova et al., 1993; Smith 
and Villalba, 2008).

Figure 1 | Morphological and electrophysiological properties of striatal 
cholinergic interneurons. (A) Infrared differential interference contrast image 
of a cholinergic interneuron in a striatal slice showing the peculiar polygonal 
shape and large somatic size of this neuronal subtype. (B) Confocal 
microscope image of a biocytin-loaded cholinergic interneuron. The cell was 
loaded with 2% biocytin by means of the recording electrode during an 
electrophysiological experiment. Note the absence of spines along the 

dendrites. (C) Representative current-clamp recording of the I–V relationship. 
The arrowhead indicates the prominent Ih evoked by hyperpolarizing current 
injection. (D) Spontaneous firing activity of a cholinergic interneuron. The inset 
on the right (gray) shows a single action potential, followed by a prominent 
AHP (arrow). (e) Table summarizing the main electrophysiological properties 
characterizing striatal cholinergic interneurons. Data are presented as 
mean ± SEM; n = 5.
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The activity of striatal ChIs is therefore highly regulated, through 
a complex interaction between intrinsic properties and the neuro-
modulatory control exerted by several transmitters.

origin of the pause response in chi tonic firing activity
Striatal ChIs exhibit a variety of spontaneous firing patterns also 
during in vivo recordings (Wilson et al., 1990; Reynolds et al., 2004). 
Indeed, these neurons correspond to the tonically active neurons 
(TANs) recorded in vivo from the primate striatum, which respond 
with a pause in their ongoing firing activity to reward-related stimuli 
(Apicella et al., 1991, 1998; Aosaki et al., 1994; ). Several mecha-
nisms are likely to contribute to this pause response, through the 
modulation of both intrinsic and synaptic properties of ChIs. It has 
been suggested that these pauses in firing may be due to AHP cur-
rents intrinsically generated via I

h
 transient deactivation following 

cortical excitatory synaptic inputs (Reynolds et al., 2004; Oswald 
et al., 2009). Of interest, I

h
 is regulated by dopamine (Deng et al., 

2007). In fact, it is known that synaptic inputs arising both from 
the dopaminergic nigrostriatal system and from thalamic nuclei 
involved in sensorimotor integration modulate the responsiveness 
of these neurons to reward-related stimuli (Aosaki et al., 1994; 
Matsumoto et al., 2001). High-frequency stimulation (HFS) of 
the substantia nigra during in vivo recordings increases the AHP 
(Reynolds et al., 2004). Similarly, in neurons exhibiting regular firing 
in vitro exogenous application of dopamine causes a prolongation 
of a depolarization-induced pause and an increase in the duration 
of sAHP (Deng et al., 2007). Recent in vitro experimental evidence 
shed further light on the origin of the pause response in striatal ChIs 
(Ding et al., 2010). This report showed that high-frequency thalamic 
stimulation elicits an initial burst followed by a pause in the firing 
activity of ChIs. Both D

2
 dopamine and nicotinic ACh (nACh) recep-

tors were shown to be involved in this response. These data suggest 
that the biphasic response to thalamic stimulation might be driven 
by the initial excitation of ChIs, which induces ACh release and 
activation of presynaptic nACh receptors located on dopaminergic 

The predominant effect of dopamine on ChIs is mediated by 
activation of D2-like D

2
 receptors (Figure 2), which inhibit striatal 

ACh efflux (DeBoer et al., 1996), by reducing both autonomous 
action potential firing and synaptic inputs to ChIs. The former 
effect is achieved by enhancing the slow inactivation of voltage-
dependent Na+ channels (Maurice et al., 2004) and by modulating 
I

h
 current (Deng et al., 2007). The reduction of synaptic inputs 

is achieved through inhibition of HVA Ca2+ channel (Yan and 
Surmeier, 1996; Pisani et al., 2000).

In addition, striatal ChIs express D1-like D
5
 subtype receptors 

(Figure 2; Bergson et al., 1995; Yan and Surmeier, 1997), which 
are mainly somatodendritic and depolarize the cell by promoting 
the non-selective opening of cation channels and the closure of 
K+ channels, thus, in turn, enhancing ACh release (Damsma et al., 
1990; Imperato et al., 1993; DeBoer and Abercrombie, 1996; Aosaki 
et al., 1998; Pisani et al., 2000).

An additional level of control of striatal ACh release is represented 
by M2/M4 muscarinic autoreceptors (Figure 2). Autoreceptor acti-
vation reduces ACh release by closing Ca

V
2 Ca2+ channels which 

mediate exocytosis, and by increasing opening of Kir3 potassium 
channels, which hyperpolarize terminals and further reduce Ca2+ 
channel opening (Yan and Surmeier, 1996; Calabresi et al., 1998b).

Furthermore, ChIs receive extrinsic excitatory serotonergic 
(Lavoie et al., 1989; Bonsi et al., 2007) and noradrenergic affer-
ents (Pazos et al., 1985; Pisani et al., 2003b), and an intrinsic 
inhibitory GABAergic innervation from both MSNs and FS 
interneurons (Bolam et al., 1986; Martone et al., 1992; Aosaki 
et al., 2010).

Postsynaptic potentials evoked by electrical stimulation of 
fibers innervating ChIs are mediated by activation of ionotropic 
NMDA, AMPA, and GABA

A
 receptors. Upon complete inhibition 

of both the glutamatergic and GABAergic synaptic components, 
a slow inhibitory synaptic potential is unmasked, which is medi-
ated by a K+ conductance activated by M2-like receptors (Calabresi 
et al., 1998b).

Figure 2 | Cholinergic control of striatal medium spiny neuron activity. Simplified cartoon of the striatal circuitry reporting the distribution of muscarinic and 
nicotinic receptors. Cholinergic receptors regulate the activity of medium spiny neurons both at the postsynaptic level, and presynaptically, by modulating glutamate, 
dopamine, and acetylcholine neurotransmission.
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In the striatum, different subtypes of nACh receptors have been 
identified, containing a combination of the α4, α6, α7, and β2, β3 
subunits (Wada et al., 1989; Seguela et al., 1993; for review, see Quik 
et al., 2007). In addition, both M1-like and M2-like muscarinic ACh 
(mACh) receptors, predominantly the M1 and M4 subtypes, are 
expressed at high density (Figure 2).

In MSNs, M1 receptor activation enhances NMDA-receptor-
mediated currents, promoting cell depolarization and corticos-
triatal LTP (Calabresi et al., 2000), and increases the synchrony 
in the NMDA-induced network dynamics, via enhancement of 
persistent Na+ current (Carrillo-Reid et al., 2009). In addition, 
M1 receptors modulate HVA Ca2+ currents (Howe and Surmeier, 
1995; Galarraga et al., 1999; Olson et al., 2005; Perez-Rosello 
et al., 2005; Perez-Burgos et al., 2008, 2010). Recently, M1 recep-
tor activation has been suggested to have cell-specific effects on 
striatopallidal vs. striatonigral MSNs, due to specific characteristics 
of the downstream effectors (Chen et al., 2006; Shen et al., 2007; 
Day et al., 2008).

In addition to direct postsynaptic effects on MSNs, presynaptic 
ACh receptors regulate both glutamate and GABA release from 
striatal afferents. While mACh receptors inhibit neurotransmit-
ter release, presynaptic nACh receptors exert the opposite effect 
(Calabresi et al., 1998a; Koos and Tepper, 2002; Zhou et al., 2002; 
Grilli et al., 2009; McClure-Begley et al., 2009).

The autonomous activity of ChIs ensures a sufficient level of 
endogenous ACh to tonically activate mACh and nACh receptors, 
thereby constantly influencing striatal activity. Through mACh 
receptor activation, ACh provides a presynaptic inhibitory tone 
on the excitatory glutamatergic drive onto MSNs (Pakhotin and 
Bracci, 2007). Indeed, a single spike in a ChI is able to induce a 
significant mACh receptor-mediated depression of glutamater-
gic synaptic currents in a MSN. However, a mechanism to limit 
this powerful inhibitory control of ChIs over the glutamater-
gic input to MSNs has been recently proposed to reside in the 
nicotinic excitation of striatal GABAergic interneurons (Sullivan 
et al., 2008).

Overall, nACh and mACh receptors would act to translate the 
pattern of the ongoing cholinergic activity into a strong influence 
over striatal output (Koos and Tepper, 2002): nACh receptor activa-
tion would rapidly affect the activity of MSNs, while the muscarinic 
impact might become more evident on a slower time scale, and 
in particular when additional extrasynaptic volume transmission 
extends the duration of the ACh signal, such as during periods of 
more intense cholinergic activity (Singer et al., 2002).

striatal acetylcholine and synaptic plasticity
Enduring changes in synaptic efficacy at corticostriatal synapses are 
viewed as the cellular basis underlying motor learning and associa-
tive memory processes. HFS of corticostriatal afferents may induce 
either LTD or LTP at MSN synapses, depending on a variety of cell-
specific mechanisms (Calabresi et al., 1992; Lovinger et al., 1993; 
Surmeier et al., 2009). Induction of LTD and LTP requires an intact 
nigrostriatal projection, and depends upon both dopamine and 
ionotropic glutamate receptor subtypes involved (Lovinger, 2010). 
Complex biochemical processes follow the activation of gluta-
matergic and dopaminergic receptors and their mutual interplay 
(Calabresi et al., 1994; Gerdeman et al., 2002).

terminals (Figure 2); hence the stimulation of dopamine release 
and D

2
 receptor activation, which prolongs the AHP by inhibiting 

I
h
 and Na+ channel currents (Aosaki et al., 2010).

Striatal ChIs have been shown, both in vivo and in vitro, to 
undergo long-term plastic changes of synaptic efficacy, which might 
lastingly influence the pattern of firing activity (Suzuki et al., 2001b; 
Bonsi et al., 2004; Reynolds et al., 2004; Fino et al., 2008). In slice 
preparations HFS of glutamatergic afferent fibers induces a long-
term potentiation (LTP) of both the AMPA-mediated excitatory and 
GABAergic inhibitory postsynaptic potentials, which is dependent 
on D

5
 receptor activation, and on a critical level of intracellular Ca2+ 

rise through Ca
V
1 channels (Suzuki et al., 2001b; Bonsi et al., 2004). 

Interestingly, intracellular recordings of ChIs from striatal slices of 
rats that have learned a rewarded, externally cued sensorimotor task 
show an increase in spontaneous GABA

A
-mediated synaptic activity 

with respect to untrained animals (Bonsi et al., 2003), further sug-
gesting a role for GABAergic transmission in the generation of the 
pause response. More recently, spike-timing-dependent plasticity 
(STDP) protocols were shown to induce bidirectional long-term 
plasticity in ChIs (Fino et al., 2008). STDP–LTP was mainly presy-
naptic and involved NMDA-receptor activation, while long-term 
depression (STDP–LTD) had a postsynaptic origin and involved 
metabotropic glutamate receptors.

Thus, it is plausible that long-term changes of both glutamater-
gic and GABAergic synaptic potential amplitude are also involved in 
the generation of the firing activity pattern (Aosaki et al., 2010).

The pattern of spiking and pauses of ChIs is able to filter the 
striatal output, by directly and indirectly influencing MSN activity 
(Phelps et al., 1985; Izzo and Bolam, 1988; Chang and Kita, 1992; 
Wang et al., 2006; Pakhotin and Bracci, 2007; Bonsi et al., 2008). 
There is experimental evidence indicating that the pauses in ChIs 
activity might powerfully enhance the salience of dopamine signal-
ing (Threlfell et al., 2010) and transform the reward signal arising 
from dopaminergic neurons into a gating signal for LTD induction 
at MSNs (Wang et al., 2006). Further, the thalamic-induced burst-
pause response of ChIs might provide a neural substrate for atten-
tional shift and cessation of ongoing motor activity (Ding et al., 
2010). Indeed, the patterned activity of ChIs has been suggested to 
differentially gate the cortical drive to striatopallidal and striatoni-
gral MSNs. Upon thalamic stimulation, the initial burst response of 
ChIs triggers the transient suppression of cortical inputs to MSNs, 
through presynaptic muscarinic M2-class receptor activation, but 
also initiate a slower, muscarinic M1 receptor-dependent postsyn-
aptic facilitation of striatopallidal MSNs. This facilitation extends 
during the pause response, when the cortical drive resumes, thus 
creating a late temporal window when the corticostriatal input can 
selectively drive activity in the striatopallidal network thought to 
control action suppression (Ding et al., 2010).

Muscarinic and nicotinic Modulation of Msn activity
A very dense cholinergic innervation of the striatum arises from 
intrinsic ChIs. By tonically firing action potentials at about 5 Hz, 
these interneurons provide an ongoing ACh signal, that is rapidly 
terminated by acetylcholinesterase (AChE). ACh may act both at 
synaptic sites, predominantly onto distal dendrites and spine necks 
(Bolam et al., 1984; Phelps et al., 1985), and via volume transmis-
sion (Descarries et al., 1997; Koos and Tepper, 2002).
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ChIs excitability. Moreover, they show that this impaired cou-
pling is caused by the selective upregulation of RGS4 expression 
(Ding et al., 2006).

A very recent paper by Ding et al. (2011) has suggested unex-
pected roles for ChIs also in the adverse motor effects, dyskine-
sias, induced by prolonged treatment of PD patients with the 
dopamine replacing agent 3,4-l-dihydroxphenylalanine methyl 
ester (l-DOPA). These authors have shown in PD rodent models 
that repeated l-DOPA exposure causes activation of extracellular 
signal-regulated kinase 1/2 (ERK) and, in turn, an increased basal 
firing rate and dopamine-dependent excitation in striatal ChIs. 
These specific responses of ChIs to chronic l-DOPA treatment cor-
related with the expression of dyskinesia. Accordingly, muscarinic 
receptor antagonism reduced l-DOPA-induced dyskinesia.

dystonia
As in PD, anticholinergic drugs targeting mACh receptors are also 
effective in the treatment of another movement disorder, dystonia. 
DYT1 dystonia is a severe form of inherited dystonia, character-
ized by involuntary twisting movements and abnormal postures. 
Although the pathogenesis of this disabling disorder remains to be 
fully elucidated, an altered coupling of dopaminergic and cholin-
ergic signaling has been recently demonstrated in the striatum of 
mice over-expressing the human protein torsinA with the mutation 
responsible for DYT1 dystonia (Pisani et al., 2006). In these mice, 
D

2
 receptor activation induces an excitatory, rather than inhibi-

tory, effect in ChIs. This paradoxical effect was associated to an 
increase in the functional representation of Ca

V
2 Ca2+ channels, 

that regulate Ca2+ entry and the physiological pacemaking activity 
of these interneurons, likely enhancing ACh release. Indeed, the 
activity of endogenous AChE was increased in the striatum of DYT1 
mice, suggesting a compensatory mechanism to reduce an increased 
cholinergic tone. In accordance to the proposed role of ACh levels 
in determining the direction of corticostriatal synaptic plasticity 
(Bonsi et al., 2008), the elevation in cholinergic tone in DYT1 mice 
was correlated to the loss of LTD and synaptic depotentiation, and 
the enhancement of LTP (Martella et al., 2009). This notion was 
supported by the observation that these alterations were normal-
ized by lowering ACh tone with hemicholinium-3, a depletor of 
endogenous ACh. Moreover, the clinical drug trihexyphenidyl as 
well as pirenzepine, both mACh M1 receptor antagonists, were 
effective in restoring normal synaptic plasticity. These observa-
tions might explain the efficacy of anticholinergic drugs in the 
treatment of dystonia.

other MoveMent disorders
Functional imaging and post-mortem studies have revealed a sig-
nificant loss of striatal cholinergic markers in different basal ganglia 
disorders (Suzuki et al., 2002; Warren et al., 2005; Smith et al., 2006; 
Kataoka et al., 2010). Huntington’s disease (HD) is an autosomal 
dominant neurodegenerative disease, caused by a mutation in the 
gene encoding Huntingtin, characterized by involuntary chorei-
form movements, behavioral and cognitive impairment. Though 
striatal ChIs have been reported to be spared during striatal degen-
eration in HD (Graveland et al., 1985), recent studies suggest that 
they might be functionally altered. Indeed, the levels of both the 
vesicular ACh transporter (VAChT) and choline acetyltransferase 

M1 mACh receptors are abundantly expressed on dendrites 
and spines of MSNs (Figure 2), and are therefore likely to exert a 
relevant influence on synaptic plasticity (Hersch et al., 1994; Yan 
et al., 2001). In fact, activation of postsynaptic M1 muscarinic 
receptors increases MSN excitability, by reducing dendritic K+ cur-
rents (Galarraga et al., 1999; Shen et al., 2005). As a consequence, 
M1 receptor activation promotes MSN depolarization and plays 
a permissive role in corticostriatal LTP (Calabresi et al., 1999). 
Accordingly, the M1 receptor antagonist pirenzepine prevents LTP, 
whilst methoctramine, an M2-like receptor blocker, enhances the 
magnitude of this form of synaptic plasticity (Calabresi et al., 2000). 
In addition, M1 receptor activation reduces the opening of Ca

V
1 

channels, in response to depolarization, that is necessary for LTD 
induction (Calabresi et al., 1994; Choi and Lovinger, 1997; Kreitzer 
and Malenka, 2005). Indeed, LTD induction requires D

2
 recep-

tor activation in order to pause ChI firing activity and reduce M1 
receptor tone (Wang et al., 2006).

In summary, manipulation of ACh tone is expected to affect 
the direction of corticostriatal synaptic plasticity. In fact, loss of 
autoreceptor function in M2/M4 receptor knockout mice increases 
striatal ACh tone and impairs selectively LTD induction at MSN 
synapses. Accordingly, in these mice LTD can be restored by reduc-
ing ACh levels with hemicholinium-3, which depletes endogenous 
ACh (Bonsi et al., 2008).

cholinergic signaling in disease states
parkinson’s disease
In the early 1960s anticholinergic drugs were introduced in the 
pharmacological treatment of PD, according to the evidence of 
an imbalance between dopaminergic and cholinergic transmission 
within the striatum (Barbeau, 1962; Duvoisin, 1967; Hornykiewicz 
and Kish, 1987).

Although the increased striatal ACh level has long been attrib-
uted to the removal of tonic inhibitory control by D

2
 receptors on 

ChIs (Maurice et al., 2004), recent experimental work has inves-
tigated in more detail ChI function in acute dopamine depletion 
models of PD (Fino et al., 2007; Salin et al., 2009). As expected, in 
dopamine-depleted animals ChIs displayed an increased excitability 
in vitro (Fino et al., 2007), and became highly synchronized in firing 
rhythmic bursts in vivo (Raz et al., 1996, 2001). This altered pattern 
of activity might result in periodic outbreaks of ACh release into 
the striatum which might not be readily hydrolyzed by AChE. Such 
alterations in ACh input are likely to underlie the loss of synaptic 
plasticity (Pisani et al., 2005) and to contribute to the pruning 
of spines (Shen et al., 2007) reported in MSNs from dopamine-
depleted animals, contributing to imbalanced striatal outflow in 
the parkinsonian state.

Interestingly, recent experimental evidence revealed a novel 
mechanism by which mACh receptor signaling would disrupt 
striatal activity (Ding et al., 2006). “Regulators of G protein 
signaling” (RGS) proteins are GTPase accelerating proteins 
(GAPs), which terminate G protein coupling between recep-
tors and effectors. Alterations in dopamine content have been 
shown to rapidly modify the expression of several RGS proteins. 
These authors report that dopamine depletion does not alter D

2
 

dopamine receptor signaling in ChIs, but leads to a decreased 
mACh M4 receptor coupling to Ca2+ channels, thereby modifying 
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