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multiple protein kinases and phosphatases control phosphorylation 
levels of glutamate receptors. Recent work identifies fatty acylation, 
such as palmitoylation, as another important type of modification 
at cysteine residues. Lysine residues may also be modified by the 
enzymatic cascades known as ubiquitination and sumoylation. All 
these modifications are noticeably physiological events and sen-
sitive to changing synaptic inputs. They are labile, dynamic and 
reversible in nature, unlike other modifications, such as prenyla-
tion, farnesylation, and geranylation, which are semi-permanent 
and serve to anchor proteins to membranes. Thus, these reversible 
modifications are believed to activity-dependently regulate and 
assure normal expression and function of glutamate receptors. As 
such, malfunction of these modifications is frequently associated 
with the pathogenesis of various neuropsychiatric disorders.

The striatum, i.e., the dorsal caudate putamen and ventral 
nucleus accumbens (NAc), is a central structure in reward circuits 
implicated in drug addiction. This region is enriched with gluta-
matergic innervation and glutamate receptors. The accumulated 
data support the role of striatal glutamatergic transmission in drug 
addiction (Tzschentke and Schmidt, 2003; Hyman et al., 2006). 
Recently, emerging evidence links post-translational modifica-
tions of glutamate receptors to excitatory synaptic plasticity and 
drug-seeking behavior. Generally, modification processes of striatal 
glutamate receptors are sensitive to addictive drugs such as the psy-
chostimulants (cocaine and amphetamine). Altered  modifications 

IntroductIon
The neurotransmitter l-glutamate (glutamate) interacts with spe-
cific ionotropic glutamate receptors (iGluR) or metabotropic gluta-
mate receptors (mGluR; Dingledine et al., 1999; Cull-Candy et al., 
2001). The former are the ligand-gated ion channel and are classi-
fied into N-methyl-d-aspartate receptors (NMDAR), α-amino-3-
hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPAR), 
and kainate receptors. The latter are the G protein-coupled recep-
tor. Through various G proteins, they connect to multiple second 
messenger systems. There are three functional groups of mGluRs 
(group I–III) classified from eight subtypes (mGluR1–8; Conn and 
Pin, 1997). Group I mGluRs (mGluR1/5 subtypes) are positively 
coupled to phospholipase Cβ1 through Gαq proteins. Activation 
of mGluR1/5 increases phosphoinositol hydrolysis, resulting in 
intracellular Ca2+ release and protein kinase C (PKC) activation 
(Conn and Pin, 1997). Both group II (mGluR2/3) and group III 
(mGluR4/6/7/8) receptors are negatively coupled to adenylyl cyclase 
through Gαi/o proteins. Their activation reduces cAMP formation 
and inhibits protein kinase A (PKA).

Diverse post-translational modifications occur at intracellular 
domains of glutamate receptors and represent regulatory mecha-
nisms for controlling many properties of modified receptors. Early 
extensive studies have established a phosphorylation modification 
of both iGluRs and mGluRs (Swope et al., 1999; Wang et al., 2006). 
By targeting specific amino acids (serine, threonine, and tyrosine), 
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contribute to enduring receptor plasticity and the addictive proper-
ties of drugs. This review will primarily discuss post-translational 
modifications of glutamate receptor and their associations with 
drug action, while roles of individual glutamate receptors in drug 
addiction have been thoroughly reviewed elsewhere (Bird and 
Lawrence, 2009; Kalivas, 2009; Bowers et al., 2010; Moussawi and 
Kalivas, 2010; Schmidt and Pierce, 2010). We will focus on sev-
eral major types of modifications appreciated recently, including 
phosphorylation, palmitoylation, ubiquitination, and sumoylation, 
based on the available data linking them to drug addiction. Of 
note, in addition to addiction, abnormalities in the modifications of 
glutamate receptors can be observed in many other disease models, 
such as schizophrenia (Li et al., 2009), anxiety (Delawary et al., 
2010), and Parkinson’s disease (Ba et al., 2006).

PhosPhorylatIon of glutamate recePtors at serIne/
threonIne
α-amIno-3-hydroxy-5-methylIsoxazole-4-ProPIonIc acId 
recePtors
Phosphorylation of AMPARs at serine/threonine has been well 
established (Wang et al., 2006). Most AMPARs become functional 
upon a heteromeric assembly of four subunits (GluA1–4 or GluR1–
4). A tetrameric structure seems to be prototypic and is assembled 
by dimer-of-dimers of GluA2 and either GluA1, GluA3, or GluA4. 
As a membrane-bound receptor, four subunit proteins share the 
same conformation in the plasma membrane: four transmembrane 
domains (TMD; M1-4) with an extracellular N-terminus and an 
intracellular C-terminus. C-termini are variable in length among 
subunits and are intracellular domains for protein–protein interac-
tions and serine/threonine phosphorylation (Carvalho et al., 2000). 
To date, the GluA1 C-terminus has four identified phosphoryla-
tion sites at serine 818 (S818), S831, threonine 840 (T840), and 
S845 (Roche et al., 1996; Barria et al., 1997; Mammen et al., 1997; 
Table 1). Other subunits are also similarly phosphorylated at their 
C-terminal serine and/or threonine residues (Chung et al., 2000; 
Wang et al., 2006). S818 is phosphorylated by PKC (Boehm et al., 
2006) and S831 by both PKC and Ca2+/calmodulin-dependent 
protein kinase II (CaMKII; Roche et al., 1996; Barria et al., 1997; 
Mammen et al., 1997). T840 is not a substrate of the common 
kinases such as PKA, PKC, or CaMKII, but it appears to be a sub-
strate of p70S6 kinase (Delgado et al., 2007). Finally, S845 is specific 
for PKA-mediated phosphorylation (Roche et al., 1996).

Phosphorylation is one of the post-translational modifications 
that are labile and reversible. In fact, AMPAR phosphorylation is 
subject to the vigorous regulation by synaptic signals. Regulated 
phosphorylation in turn adjusts expression, distribution (synap-
tic delivery) and function of the receptor usually in a site-specific 
fashion. Acute phosphorylation of GluA1 S818 by PKC pro-
moted GluA1 synaptic incorporation and an activity-dependent 
form of synaptic plasticity, long-term potentiation (LTP; Boehm 
et al., 2006). PKC/CaMKII-sensitive S831 and PKA-sensitive S845 
phosphorylation potentiated AMPAR currents and augmented 
LTP (Roche et al., 1996; Derkach et al., 1999; Banke et al., 2000). 
Activity-driven PKA phosphorylation of S845 also drove AMPARs 
to synapses, which was necessary for LTP (Estaban et al., 2003). 
T840 is dephosphorylated by NMDAR signals, which is implicated 
in long-term depression (LTD; Delgado et al., 2007).

AMPARs are densely expressed in striatal medium spiny output 
neurons and certain types of interneurons (Martin et al., 1993; 
Bernard et al., 1997). These postsynaptic receptors are present 
in the perikarya, dendrites, and spines with a significant amount 
of extrasynaptic receptors on these subcellular specializations. 
The site-specific phosphorylation of striatal GluA1 subunits in 
response to drug exposure has been extensively studied. It is appar-
ent that dopamine is a strong regulator of their phosphorylation. 
By stimulating D1 dopamine receptors and associated cAMP/
PKA pathways, the D1 agonist and psychostimulants (cocaine and 
amphetamines) increased GluA1 phosphorylation preferentially at 
S845 in striatal neurons (Price et al., 1999; Snyder et al., 2000; Chao 
et al., 2002). This facilitated surface/synaptic delivery of AMPARs 
and potentiated efficacy and strength of excitatory synapses (Price 
et al., 1999; Mangiavacchi and Wolf, 2004; Swayze et al., 2004). In 
contrast to D1 signals, the D2 receptor inhibits S845 phosphoryla-
tion (Hakansson et al., 2006).

Plastic changes in AMPAR phosphorylation may constitute an 
important layer of underlying mechanisms for receptor plasticity 
and drug addiction. Several studies in chronic drug administra-
tion models (passive repeated administration or operant self-
administration) have established an association (correlation) 
between AMPAR phosphorylation and enduring behavioral 
plasticity (behavioral sensitization and more significantly drug-
seeking behavior), although a causal link between them remains 
to be proven experimentally. For instance, cocaine-sensitized or 
heroin self-administering rodents were associated with increased 
phosphorylation at S845 in the NAc (Zhang et al., 2007; Edwards 
et al., 2009; Chen et al., 2010; but Mattson et al., 2005; Chen and 
Manev, 2010) and at S831 in the CPu (Kim et al., 2009). Increased 
accumbens shell S831 phosphorylation was seen in animals show-
ing reinstatement of cocaine-seeking (Anderson et al., 2008). In 
addition to GluA1, elevated GluA2 S880 phosphorylation in the 
NAc was related to reinstatement of cocaine-seeking (Famous 
et al., 2008). These results imply a phosphorylation-dependent 
mechanism for AMPAR plasticity and drug-seeking. S845/S831 
phosphorylation is likely to be upregulated to increase surface 
AMPAR expression and thereby enhance AMPAR transmission 
related to behavioral plasticity (Boudreau and Wolf, 2005; Conrad 
et al., 2008). However, self-administration of cocaine induced 
lesser S845 phosphorylation in the striatum as compared to acute 
cocaine injection, establishing a tolerance of S845 phosphorylation 
in response to chronic cocaine (Edwards et al., 2007). This toler-
ance may reflect a downregulated GluA1 function in accumbens 
neurons and may contribute to cocaine sensitization and cocaine-
seeking behavior (Sutton et al., 2003; Bachtell et al., 2008). These 
results underscore the complexity of AMPARs’ roles in drug action. 
Distinct roles of the receptor may derive from differences in sub-
sets of synapses, subpopulations of projection and interneurons, 
subdivisions of the NAc (core versus shell), early or late withdrawal 
times and addiction stages, different administration/test regimens, 
and types of behavior surveyed.

N-methyl-D-asPartate recePtors
Like AMPARs, NMDARs are tetrameric assemblies of two oblig-
atory GluN1 subunits and two modulatory GluN2 subunits 
(Dingledine et al., 1999; Cull-Candy et al., 2001). The difference 
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Table 1 | Post-translational modifications of glutamate receptors.

Modification Receptor Subtype Site Enzyme Physiological/

pathophysiological impact

References

Phosphorylation AMPAR GluA1 S818 (CT) PKC Promote synaptic 

incorporation and critical for 

LTP

Boehm et al. (2006)

S831 (CT) PKC/CaMKII Increase currents and channel 

conductance

Roche et al. (1996), Barria et al. 

(1997), Mammen et al. (1997)

T840 (CT) p70S6 Dephosphorylation links to 

LTD

Delgado et al. (2007)

S845 (CT) PKA Increase synaptic delivery/peak 

currents and critical for LTP

Roche et al. (1996), Estaban 

et al. (2003)

GluA2 S880 (CT) PKC Disrupt GRIP1/2 binding and 

promote endocytosis and LTD

Chung et al. (2000)

GluA2 Y876 (CT) Src Disrupt GRIP1/2 binding and 

promote endocytosis and LTD

Hayashi and Huganir (2004), 

Ahmadian et al. (2004), Fox 

et al. (2007)

NMDAR GluN1 S890 (CT) PKC Disperse surface clustering Tingley et al. (1997)

S896 (CT) PKC ND Tingley et al. (1997)

S897 (CT) PKA ND Tingley et al. (1997)

GluN2A Y1325 (CT) Src Increase NMDAR activity and 

contribute to depression

Taniguchi et al. (2009)

GluN2B S1303 (CT) PKC/CaMKII Enhance NMDAR function Omkumar et al. (1996), Liao 

et al. (2001)

S1323 (CT) PKC Enhance NMDAR function Liao et al. (2001)

S1480 (CT) CK2 Increase endocytosis Sanz-Clemente et al. (2010)

Y1336 (CT) Fyn Increase calpain cleavage Wu et al. (2007)

Y1472 (CT) Fyn Link to LTP Nakazawa et al. (2001)

GluNC S1244 (CT) PKA/PKC Regulate channel kinetics Chen et al. (2006)

S1096 (CT) PKB/Akt Increase surface expression Chen and Roche (2009)

mGluR mGluR1a T695 (IL2) PKC Desensitization Medler and Bruch (1999), 

Francesconi and Duvoisin 

(2000)

mGluR5 T840/S839 (CT) PKC Generate oscillatory Ca2+ 

responses

Kawabata et al. (1996), Kim 

et al. (2005)

mGluR5 T606/S613 

(IL1), T665/

T681 (IL2), 

S881/S890 (CT)

PKC Desensitization Gereau and Heinemann 

(1998)

mGluR5 T1164/S1167 

(CT)

CDK5 Increase Homer binding Orlando et al. (2009)

mGluR2 S843 (CT) PKA Inhibit function Schaffhauser et al. (2000)

mGluR3 S845 (CT) PKA Inhibit function Cai et al. (2001)

mGluR4a/7a/8a S859/S862/

S855 (CT)

PKA Inhibit function Cai et al. (2001)

mGluR7 S862 (CT) PKC Inhibit calmodulin binding and 

increase surface expression

Airas et al. (2001), Suh et al. 

(2008)

Palmitoylation AMPAR GluA1/2/3/4 C585/C610/

C615/C611 

(TMD2)

GODZ/

DHHC3

Golgi retention Hayashi et al. (2005)

GluA1/2/3/4 C811/C836/

C841/C817 (CT)

ND Disrupt 4.1N binding and 

promote endocytosis

Hayashi et al. (2005)

(Continued)
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the receptor. PKC phosphorylation of S890 dispersed the surface 
clusters of GluN1 (Tingley et al., 1997). PKC-sensitive phosphoryla-
tion of GluN1 and GluN2B (S1303 and S1323) enhanced NMDAR 
function (Hisatsune et al., 1997; Liao et al., 2001). CK2 phosphor-
ylation of GluN2B S1480 drove GluN2B endocytosis and facilitated 
developmental switch from GluN2B to GluN2A at synapses (Sanz-
Clemente et al., 2010). PKB phosphorylation of GluN2C S1096 
enhanced surface expression of GluN2C-containing NMDARs and 
supported neuronal survival (Chen and Roche, 2009).

GluN2A and GluN2B are the predominant GluN2 subunits in 
the striatum. Major tetrameric subtypes of NMDARs in this region 
are therefore thought to be 2GluN1/2GluN2A, 2GluN1/2GluN2B, 
or 2GluN1/1GluN2A/1GluN2B, in addition to some binary sub-
types containing one GluN1 and one GluN2A or GluN2B subunit 
(Dunah et al., 2000; Dunah and Standaert, 2003). Both striatonigral 
and striatopallidal projection neurons and cholinergic interneu-
rons express a high level of NMDARs (Landwehrmeyer et al., 1995; 
Chen et al., 1996). Most GluN1/GluN2A receptors are incorporated 
into synapses, while GluN1/GluN2B receptors are present at both 
synaptic and extrasynaptic sites (Tovar and Westbrook, 1999). 

in GluN2 subunit compositions (GluN2A–D) largely determines 
the distinct gating and pharmacology of the channel. As a trans-
membrane receptor, each NMDAR subunit shares an extracellu-
lar N-terminus and an intracellular C-terminus. The C-terminal 
region is large especially for GluN2A and GluN2B, which provides 
a spacious area for protein kinase interactions and serine/threo-
nine phosphorylation. Indeed, three NMDAR subunits (GluN1, 
GluN2B, and GluN2C) have been found to undergo active phos-
phorylation at distinct serine/threonine sites. Within the GluN1 
C-terminal domain, PKC phosphorylates S890 and S896 (Tingley 
et al., 1997). An S896-neighboring site, S897, is a substrate of PKA 
(Tingley et al., 1997). GluN2B S1303 is subject to phosphorylation 
by CaMKII (Omkumar et al., 1996). PKC may be another kinase for 
this site as well as S1323 (Liao et al., 2001). A more recently identi-
fied site on the GluN2B C-terminus, S1480, is within a PDZ-binding 
domain and is sensitive to casein kinase (CK2; Sanz-Clemente et al., 
2010). The GluN2C C-terminus is phosphorylated at S1244 by both 
PKA and PKC (Chen et al., 2006) and at S1096 by protein kinase 
B (PKB)/Akt (Chen and Roche, 2009). The phosphorylation level 
at these sites has a significant impact on some key properties of 

NMDAR GluN2A C848/C853/

C870 (CT, 1st 

cluster)

GODZ/

DHHC3

Increase tyrosine 

phosphorylation and surface 

expression

Hayashi et al. (2009)

GluN2A C1214/C1217/

C1236/C1239 

(CT, 2nd cluster)

GODZ/

DHHC3

Golgi retention Hayashi et al. (2009)

GluN2B C848/C854/

C871 (CT, 1st 

cluster)

GODZ/

DHHC3

Increase tyrosine 

phosphorylation and surface 

expression

Hayashi et al. (2009)

GluN2B C1215/C1218/

C1239/C1242/

C1245 (CT, 2nd 

cluster)

GODZ/

DHHC3

Golgi retention Hayashi et al. (2009)

Kainate GluK6 C827/C840 (CT) ND Regulate PKC phosphorylation 

of GluK6

Pickering et al. (1995)

mGluR mGluR4 ND ND ND Alaluf et al. (1995)

Ubiquitination NMDAR GluN1 ND ND Decrease expression Ratnam and Teichberg (2005), 

Kato et al. (2005)

GluN2B ND Mind 

bomb-2

Decrease NMDAR activity Jurd et al. (2008)

Kainate GluK6 ND (I884 is 

critical for 

binding 

enzyme)

ND Decrease surface expression Salinas et al. (2006)

mGluR mGluR1a/5 ND Siah1A Decrease expression Moriyoshi et al. (2004)

Sumoylation Kainate GluK6 K886 (CT) PIAS3 Agonist-induced endocytosis Martin et al. (2007)

Kainate GluK7 ND SUMO-1 ND Wilkinson et al. (2008)

mGluR mGluR8 K882 (CT) PIAS1 ND Tang et al. (2005)

mGluR mGluR4/6/7 ND SUMO-1 ND Wilkinson et al. (2008

ND, not determined; IL1, intracellular loop 1; IL2, intracellular loop 2; CT, C-terminus. See text for other abbreviations. 

Table 1 | Continued

Modification Receptor Subtype Site Enzyme Physiological/

pathophysiological impact

References
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Group II/III mGluRs are also phosphorylated at serine/threo-
nine. PKA phosphorylates mGluR2 S843, mGluR3 S845, mGluR4a 
S859, mGluR7a S862, and mGluR8a S855 on the C-terminal tail to 
inhibit their function as presynaptic receptors (Schaffhauser et al., 
2000; Cai et al., 2001). PKC phosphorylates a conserved site (S862) 
on mGluR7 C-termini to inhibit calmodulin binding in vitro (Airas 
et al., 2001). In addition, mGluR7 S862 phosphorylation, in com-
bination with the binding of the PDZ domain-containing protein 
PICK1, stabilized surface mGluR7 expression in vivo (Suh et al., 
2008). At present, studies on the regulation of mGluR phosphoryla-
tion by addictive drugs are limited, partially due to the lack of phos-
pho- and site-specific antibodies. One study revealed that relative 
serine phosphorylation of the mGluR2/3 monomer was elevated in 
both the NAc and prefrontal cortex after repeated cocaine, which 
was associated with an enduring reduction of mGluR2/3 function 
in inhibiting glutamate release (Xi et al., 2002). How phosphoryla-
tion modifications of mGluRs precisely contribute to drug-induced 
mGluR plasticity and drug-seeking behavior remains an interesting 
topic in future studies.

PhosPhorylatIon of glutamate recePtors at 
tyrosIne
In addition to serine and threonine, tyrosine is another phos-
phorylation site on glutamate receptors. GluA1 and GluA2 
intracellular domains are tyrosine-phosporylated (Hayashi and 
Huganir, 2004; Wu et al., 2004). The distal region of the GluA2 
C-terminus possesses multiple tyrosine residues. Non-receptor 
Src family tyrosine kinases phosphorylate tyrosine 876 (Y876; 
Hayashi and Huganir, 2004), the last tyrosine residue near the 
end of C-terminus that lies within the PDZ ligand motif. Y876 
phosphorylation disrupted the association of GluA2 with the 
PDZ domain-containing proteins, such as glutamate receptor 
interacting proteins 1 and 2 (GRIP1/2), and thereby promoted 
endocytosis of GluA2 (Hayashi and Huganir, 2004) and LTD 
(Ahmadian et al., 2004; Fox et al., 2007). GluN2, although not 
GluN1, subunits are also tyrosine-phosphorylated in their 
C-termini (Lau and Huganir, 1995; Menegoz et al., 1995; Dunah 
et al., 2000). Both Src-family tyrosine kinases (Src and Fyn) and 
Src-independent tyrosine kinases can carry out the phosphor-
ylation (Suzuki and Okumura-Noji, 1995; Zheng et al., 1998; 
Xu et al., 2009). Multiple tyrosine residues (7 of 25, includ-
ing 1252, 1336, and 1472) within the GluN2B C-terminus are 
responsive to phosphorylation. Y1472 seems to be a major site 
(Nakazawa et al., 2001) comparable to a major site (Y1325) on 
GluN2A (Taniguchi et al., 2009). GluN2 phosphorylation usually 
enhances NMDAR-mediated currents and NMDAR-dependent 
LTP via mechanisms involving the regulation of trafficking and 
protein–protein interactions (Wang and Salter, 1994; Lau and 
Huganir, 1995; Rostas et al., 1996; Dunah et al., 2004). Moreover, 
the influence of tyrosine phosphorylation can be site-selective. 
Y1472 and Y1336 phosphorylation was associated with enrich-
ment of synaptic and extrasynaptic NMDARs, respectively 
(Goebel-Goody et al., 2009). Fyn-mediated Y1336 phosphor-
ylation site-dependently controlled GluN2B cleavage by calpain 
(Wu et al., 2007). Regarding mGluRs, mGluR5 was abundantly 
tyrosine-phosphorylated in striatal neurons in vivo, based on 
pharmacological studies with tyrosine kinase or  phosphatase 

Enriched expression of NMDARs in the striatum implies their 
roles in drug action and provides an opportunity to investigate 
adaptive changes in the receptor phosphorylation in response to 
psychostimulants. Acute amphetamine increased GluN1 S896 
phosphorylation primarily in D1 receptor-bearing striatonigral 
neurons (Liu et al., 2004). Direct stimulation of D1 receptors with 
D1 agonists enhanced PKA-sensitive GluN1 S897 phosphorylation 
through the D1/cAMP/PKA pathway (Dudman et al., 2003). The 
enhanced S897 phosphorylation seems to lead to a cytosolic Ca2+ 
rise, which synergizes with the cAMP/PKA signals to activate the 
transcription factor Ca2+/cAMP response element binding protein 
(CREB) to facilitate gene expression. These results show the ability 
of psychostimulants to modify NMDAR phosphorylation. Through 
modifying the receptor, stimulants regulate gene expression and 
construct transcription-dependent neuroadaptations essential for 
long-lasting drug action.

In addition to the D1 receptor, the D2 receptor is involved in 
the regulation of NMDAR phosphorylation (Liu et al., 2006). A 
single dose of cocaine induced a heteroreceptor complex formation 
between D2 receptors and GluN2B in D2 receptor-bearing striat-
opallidal neurons. The interaction of D2 receptors with GluN2B 
disrupted the association of CaMKII with GluN2B, thereby reduc-
ing phosphorylation at the CaMKII-sensitive site S1303 and inhibit-
ing NMDAR currents. Behaviorally, this phosphorylation-involved 
D2–GluN2B interaction suppressed the inhibitory indirect pathway 
to promote a full motor response to cocaine.

Chronic cocaine reduced GluN1 S896 phosphorylation in the rat 
frontal cortex at 24 h, although not 14 days, of withdrawal (Loftis 
and Janowsky, 2002). However, cocaine self-administration had 
a minimal influence over S896 phosphorylation in the monkey 
striatum (Hemby et al., 2005). Acute, repeated, and self administra-
tion of cocaine increased GluN1 S897 phosphorylation in the rat 
striatum (Edwards et al., 2007). These results demonstrate that in 
the striatum at least S897 is a sensitive site modified by cocaine. 
Future studies are needed to elucidate how S897 phosphorylation 
mediates NMDAR plasticity and drug craving.

metabotroPIc glutamate recePtors
The mGluR is an equally sensitive substrate for phosphorylation 
and PKC’s roles in mGluR phosphorylation have been the most 
extensively studied (Kim et al., 2008; Mao et al., 2008). The long 
form group I mGluRs (1a, 5a, and 5b) have a characteristically large 
C-terminal tail. A threonine residue (T840) or an adjacent S839 
in the proximal region of mGluR5a C-terminus undergoes PKC-
mediated phosphorylation (Kawabata et al., 1996; Kim et al., 2005). 
This single site phosphorylation determines the pattern of Ca2+ 
responses to mGluR5 stimulation (Kawabata et al., 1996; Uchino 
et al., 2004). PKC also possibly phosphorylates other serine/threo-
nine sites (T606, S613, T665, T681, S881, and S890 for mGluR5a; 
T695 for mGluR1a). Phosphorylation at these sites is involved in 
rapid desensitization of the receptor (Gereau and Heinemann, 
1998; Medler and Bruch, 1999; Francesconi and Duvoisin, 2000). 
In addition to PKC, cyclin-dependent kinase 5 (CDK5) phosphor-
ylates two residues (T1164/S1167) within the domain of mGluR1/5 
C-termini that interacts with the scaffold protein Homer (Orlando 
et al., 2009). This phosphorylation increased the binding of the 
receptor to Homer.
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HEK 293T cells, cultured cortical neurons, and striatal neurons 
in vivo (Hayashi et al., 2005; Van Dolah et al., 2011). Two conserved 
cysteine residues on these subunits undergo reliable palmitoyla-
tion: one within C-terminal regions (GluA1-C811, GluA2-C836, 
GluA3-C841, and GluA4-C817) and another within the TMD 
2 (GluA1-C585, GluA2-C610, GluA3-C615, and GluA4-C611; 
Hayashi et al., 2005). These sites are surrounded by basic and 
hydrophobic residues. They are adjacent to TMD, consistent with a 
pattern of palmitoylation for transmembrane proteins, i.e., palmi-
toylation at intracellular cysteines near TMD (El-Husseini and 
Bredt, 2002). Regarding potential PAT subtypes catalyzing AMPAR 
palmitoylation, a Golgi-specific protein with a DHHC zinc finger 
domain (GODZ, also known as DHHC3) promoted the palmi-
toylation on the TMD 2 site, while the exact PAT subtype for the 
C-terminal site remains to be identified (Hayashi et al., 2005). In 
addition to DHHC3, a dendritically localized DHHC2 activity-
dependently translocated to the postsynaptic density (PSD) to 
induce rapid palmitoylation of PSD-95 in cultured hippocampal 
neurons (Noritake et al., 2009).

As aforementioned, palmitoylation controls redistribution of 
modified proteins usually in an activity-sensitive fashion. According 
to Hayashi et al. (2005), GODZ increases palmitoylation of AMPARs 
on the TMD 2 site and retains the receptor in the Golgi apparatus. 
In contrast, depalmitoylation releases the receptor from the Golgi 
for surface delivery. On the C-terminal site, palmitoylation dis-
rupts the interaction of receptors with 4.1N, a synapse-enriched 
cytoskeletal protein that stabilizes surface AMPAR expression, and 
enhances susceptibility to agonist-induced internalization traf-
ficking. Depalmitoylation increases the receptor affinity for 4.1N 
and stabilizes the receptor on surface membrane. Apparently, the 
balance of palmitoylation and depalmitoylation is regulated by 
synaptic activity. Such regulatable balance determines subcellular 
distribution of the receptor.

N-methyl-d-aspartate receptors GluN2A and GluN2B subunits 
have two distinct clusters of palmitoylation sites in their C-terminal 
regions (Hayashi et al., 2009). The first cluster is proximal to mem-
brane (GluN2A: C848, C853, and C870; GluN2B: C849, C854, and 
C871). Palmitoylation of these sites increased tyrosine phosphor-
ylation, leading to enhanced surface expression of the receptor. The 
second cluster resides in the middle of C terminus (GluN2A: C1214, 
C1217, C1236, and C1239; GluN2B: C1215, C1218, C1239, C1242, 
and C1245). Their palmitoylation caused receptors to accumulate 
in the Golgi apparatus and reduced receptor surface expression. 
Recombinant kainate receptor GluK6 subunits expressed in HEK 
cells are palmitoylated at C-terminal C827 and C840 (Pickering 
et al., 1995). mGluR palmitoylation has been less extensively 
studied. Available data show that mGluR4 but not mGluR1α is 
palmitoylated in heterologous cells transfected with these subtypes 
(Alaluf et al., 1995; Pickering et al., 1995). Little is known about the 
palmitoylation status of endogenous mGluRs in neurons.

Palmitate is the most abundant fatty acid in the brain. Thus, 
inducible, regulatable, and reversible palmitoylation could be a 
common mechanism for regulating normal glutamate receptors 
and excitatory synapses. An attractive speculation is that glutamate 
receptor palmitoylation could also be plastic in response to drug 
exposure and is thus involved in enduring synaptic and behavioral 
plasticity. At present, the study linking palmitoylation to addiction 

inhibitors and immunoprecipitation experiments with anti-
phosphotyrosine antibodies (Orlando et al., 2002), although 
accurate site(s) among a few tyrosine residues on the mGluR5 
C-terminus have not been determined.

D1 receptor signals increased synaptic delivery of tyrosine-
phosphorylated GluN2A and GluN2B in striatal neurons (Dunah 
and Standaert, 2001). This event is tyrosine phosphorylation-
dependent because the tyrosine kinase inhibitor genistein blocked 
it and the phosphatase inhibitor pervanadate mimicked D1 signals 
to induce the delivery. In cultured neurons, D1 receptor stimula-
tion increased GluN2B phosphorylation at Y1472, which increased 
surface expression of GluN2B/NMDARs in prefrontal cortical 
neurons (Guo and Wolf, 2008) and facilitated the clustering of 
GluN2B along the dendritic spine shaft in striatal neurons (Hallett 
et al., 2006). In addition to D1 signals, brain-derived neurotrophic 
factor (BDNF) rapidly increased Fyn-sensitive Y1472 phospho-
rylation and NMDAR activity (Xu et al., 2006). In studies with 
addictive drugs, acute cocaine increased Src-dependent tyrosine 
phosphorylation of GluN2A, leading to elevated NMDAR expres-
sion and activity in the ventral tegmental area (Schumann et al., 
2009). Repeated administration of alcohol elevated Fyn activity, 
Y1472 phosphorylation, and GluN2B–NMDAR function in the 
dorsomedial striatum (Wang et al., 2010). Inhibition of Src family 
tyrosine kinases decreased self-administration of alcohol (Wang 
et al., 2010). Thus, plastic changes in Y1472 phosphorylation can 
be a critical element linking NMDAR plasticity to drug-taking. In 
general, available data indicate the linkage between tyrosine phos-
phorylation of NMDAR GluN2 and drug action. As for AMPARs 
and mGluRs, little is known about how tyrosine phosphorylation 
of these receptors responds to drugs and the role of tyrosine phos-
phorylation might play in determining drug-induced receptor and 
behavioral adaptations.

PalmItoylatIon of glutamate recePtors at cysteIne
Like phosphorylation, fatty acylation, such as palmitoylation, is 
another important type of modification. Palmitoylation is the 
covalent attachment of a 16 carbon saturated fatty acid, palmi-
tate (palmitic acid), to a cysteine residue most commonly via a 
thioester bond. This process is an enzymatic event and is catalyzed 
by a family of palmitoyl acyltransferases (PATs). All PATs contain a 
signature Asp-His-His-Cys (DHHC) Cys-rich domain conserved 
from yeast to mammals (Planey and Zacharias, 2009). At least 
23 mammalian DHHC-containing PATs (DHHC1-23) have been 
identified. These PATs have distinct substrate selectivity, although 
it is unclear yet if there exists a consensus PAT palmitoylation 
motif (Planey and Zacharias, 2009). As one type of lipidation, 
palmitoylation increases the lipophilicity or hydrophobicity of 
modified proteins. As such, it often results in an altered protein 
affinity for the plasma membrane, leading to protein trafficking 
from one membrane system to another. Additionally, palmitoyla-
tion can alter interactions of modified proteins with their bind-
ing partners, thereby regulating their subcellular distribution and 
function. Like phosphorylation and unlike other forms of lipida-
tion, palmitoylation (the thioester bond) is labile and reversible. 
This nature situates it well as an activity-dependent regulator of 
synaptic proteins, including glutamate receptors. All four AMPAR 
subunits (GluA1-4) are palmitoylated constitutively in transfected 
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Given the regulatory role of ubiquitination and degradation in 
synaptic plasticity, it is intriguing to explore whether ubiquitina-
tion is directly involved in the remodeling of excitatory synapses 
and behavioral plasticity in response to drug exposure. Mao et al. 
(2009) have recently found that chronic amphetamine administra-
tion enhanced ubiquitin conjugation to synaptic proteins in the 
rat striatum. The specific substrates sensitive to the drug in their 
ubiquitination include Shank and GKAP. Since these two scaf-
fold proteins are known to anchor PSD-95 and PSD-95-linked 
GluN2B to the PSD microdomain, the ubiquitination-dependent 
removal of Shank/GKAP may have a significant impact on the 
stability of PSD-95/GluN2B, even though PSD-95/GluN2B are 
not direct ubiquitin targets. In fact, striatal PSD-95 (Yao et al., 
2004) and GluN2B proteins were reduced in parallel with reduced 
levels of Shank and GKAP (Mao et al., 2009). Inhibition of protea-
somes reversed the reduction of all four proteins (Shank, GKAP, 
PSD-95, and GluN2B) in the striatum of amphetamine-treated 
rats. Destabilization of GluN2B through this mechanism further 
translates to the inhibitory modulation of synaptic plasticity in 
the form of LTD at cortico-accumbal glutamatergic synapses and 
contributes to behavioral sensitization. These data link ubiquiti-
nation to glutamate receptor plasticity in relation to drug action 
and pave the way for further studies to characterize this new layer 
of mechanisms.

NAC-1 is a transcription factor in brain cells and is localized in 
the nucleus. Its mRNA levels were increased in the rat NAc 3 weeks 
after chronic cocaine self-administration (Cha et al., 1997). NAC-1 
is deemed to play an important role in modifying long-term behav-
ioral effects of cocaine (Mackler et al., 2000). Interestingly, NAC-1 
forms complexes with proteins in the UPS (Shen et al., 2007). 
NAC-1 and the proteasome were cotranslocated from the nucleus 
into dendritic spines and the PSD microdomain when synaptic 
activity was disinhibited by bicuculline (Shen et al., 2007). Thus, 
NAC-1 has a potential to modify drug-induced synaptic plasticity 
via recruiting the UPS into synaptic sites.

sumoylatIon of glutamate recePtors at lysIne
Analogous to ubiquitination, sumoylation is a sequential enzymatic 
modification of proteins at lysine residues. Through a defined cas-
cade involving three enzymes (E1–3), small ubiquitin-like modifier 
or SUMO proteins, a family of small proteins similar to ubiquitin, 
are covalently attached to and detached from target proteins (Geiss-
Friedlander and Melchior, 2007; Heun, 2007). Specifically, at the 
final step, the C-terminal glycine of SUMO forms an isopeptide 
bond with an acceptor lysine on the target protein. In contrast to 
ubiquitin, SUMO is not used to tag proteins for degradation. It 
instead has diverse functions most frequently linked to protein 
protection from ubiquitination (stability), protein–protein inter-
actions, cytosol-nuclear transport, and transcriptional regula-
tion (Zhao, 2007). These functions are directly derived from the 
sumoylation-induced changes in trafficking/subcellular redistribu-
tion and binding properties of modified proteins with their inter-
actors. Typically, sumoylation is carried out at a consensus motif. 
Most modified proteins contain the tetrapeptide consensus motif 
ψ–K-x-D/E where ψ is a hydrophobic residue, K is the lysine conju-
gated to SUMO, x is any amino acid, D or E is an acidic residue. Free 
online engines, such as SUMOplot or SUMOsp (Ren et al., 2009), 

is limited partially due to the lack of palmito- and site-specific 
antibodies that are needed to detect site-specific palmitoylation 
responses to drugs in in vivo adult rodent brains. Nevertheless, 
one recent study shows that palmitoylation of AMPARs is subject 
to the regulation by a psychostimulant (Van Dolah et al., 2011). 
Acute cocaine induced a transient and reversible increase in overall 
GluA1 and GluA3 palmitoylation in the rat NAc, while cocaine 
did not affect GluA2 and GluA4 palmitoylation. This increase 
was correlated well with a temporary loss of surface GluA1/3. 
Pharmacological inhibition of protein palmitoylation reversed the 
loss of local GluA1/3. Thus, the increased palmitoylation appears 
to cause reduction of GluA1/3 surface expression, probably via an 
enhanced internalization rate due to disrupted interactions with the 
surface-stabilizing protein 4.1N (see above). Noticeably, AMPAR 
palmitoylation contributes to the regulation of behavioral sensi-
tivity to cocaine. Since blocking AMPAR palmitoylation responses 
to cocaine augmented motor responses to the drug, the induced 
palmitoylation may downregulate surface AMPAR expression to 
prevent motor overstimulation. It will be interesting to explore how 
palmitoylation of AMPARs responds to chronic drug administra-
tion and whether palmitoylation is another modification that needs 
to be investigated for elucidating mechanisms underlying AMPAR 
plasticity and drug addiction.

ubIquItInatIon of glutamate recePtors at lysIne
Ubiquitination is a stepwise enzymatic process carried out by a set 
of three enzymes. Initially, a small regulatory protein ubiquitin is 
activated by the ubiquitin-activating enzyme (E1). Active ubiqui-
tin is then transferred to the ubiquitin-conjugating enzyme (E2). 
Finally, the C-terminal glycine of ubiquitin recognizes and binds the 
lysine in the modified protein via the ubiquitin-protein ligase (E3). 
The whole process can be repeated until a short chain of ubiquitin 
is formed (polyubiquitination) to target the modified protein to 
degradation by proteasomes. The ubiquitin-proteasome system 
(UPS) serves as a fundamental mechanism for the regulation of 
protein expression and function. Increasing evidence supports its 
role as an important regulator of synaptic plasticity (Yi and Ehlers, 
2005). To date, a subset of synaptic scaffolds, including Shank, gua-
nylate kinase-associated protein (GKAP) and A-kinase anchoring 
protein (AKAP), have been found to be polyubiquitinated in cul-
tured hippocampal or cortical neurons (Ehlers, 2003) or in the rat 
striatum in vivo (Mao et al., 2009). PSD-95 may arguably be ubiqui-
tinated (Colledge et al., 2003; Bingol and Schuman, 2004). Among 
glutamate receptor subtypes surveyed, there is evidence showing 
that GluN1 and GluN2B could be the direct targets of ubiquitin 
in heterologous cells or in cultured neurons, although results are 
not always consistent (Ehlers, 2003; Kato et al., 2005; Ratnam and 
Teichberg, 2005; Jurd et al., 2008). GluK6 is ubiquitinated (Salinas 
et al., 2006). Group I mGluRs (mGluR1α and mGluR5) can also 
undergo polyubiquitination in heterologous cells via a specific E3 
ligase, seven in absentia homolog 1A (Siah1A; Moriyoshi et al., 
2004). Multiple lysine sites at mGluR5 intracellular loops and the 
C-terminal tail are among the sites ubiquitinated, although the 
exact sites remain to be identified. Functionally, polyubiquitina-
tion determines the degradation rate and expression level of the 
receptor, while mono-ubiquitination may carry out some non-
proteolytic roles, including the regulation of receptor endocytosis.
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residues. Such phosphorylation is important for regulating traf-
ficking and function of modified receptors. Reversible palmitoyla-
tion also occurs to glutamate receptor cysteine residues, which like 
phosphorylation regulates expression and activity of the receptor. 
Ubiquitination and sumoylation at lysine residues are other types 
of glutamate receptor modifications. These modifications control 
degradation or endocytosis of surface receptors and thus adjust 
surface expression levels of modified receptors. All these types of 
modifications are regulated by cellular and synaptic signals. In 
response to psychostimulants, glutamate receptors in striatal neu-
rons show marked and dynamic changes in phosphorylation and 
palmitoylation. Even though limited studies have been attempted 
at present, emerging evidence indicates the linkage between these 
protein modifications and persistent drug-related plasticity at both 
receptor and behavioral levels.

In addition to phosphorylation, palmitoylation, ubiquitination 
and sumoylation summarized in this review, other types of protein 
modification may be substantial for the regulation of glutamate 
receptors. These potential modifications include nitrosylation 
(cysteine), sulfhydration (cysteine), acetylation (lysine), etc. (Sen 
and Snyder, 2010). Recently, these modifications are appreciated 
to impact far more proteins than expected and could influence 
glutamate receptors or their adaptor proteins as prominently and 
efficiently as phosphorylation. Additionally, different modifications 
are thought to interact with each other, especially when modifica-
tions occur at the same or proximal sites. This could pair two dif-
ferent modifications as a reciprocal process, such as palmitoylation 
and nitrosylation on cysteines or ubiquitination and sumoylation 
on lysines. It is anticipated that modification biology will grow 
rapidly and more modification models on glutamate receptors 
will be characterized in vivo. This will ultimately inform glutamate 
receptor modifications as to their clinical relevance, and assist in 
our understanding the pathogenesis of psychiatric illnesses and in 
developing therapeutic agents for drug addiction.
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can be accessed to predict and score potential sumoylation sites 
for a given protein of interest. Of note, sumoylation can also be 
reversibly regulated by desumoylating enzymes.

Early work focused on nuclear proteins. It is now appreci-
ated that proteins in all subcellular compartments are subject to 
sumoylation, including synaptic proteins such as glutamate recep-
tors (Scheschonka et al., 2007; Sen and Snyder, 2010). GluK6 is a 
SUMO substrate in rat hippocampal neurons (Martin et al., 2007). 
GluK6 sumoylation is required for agonist-evoked endocytosis of 
the receptor. Noticeably, GluK6 is sumoylated at the C-terminal 
K886 site (Martin et al., 2007), which is adjacent to I884 critical 
for binding and formation of a complex for GluK6 ubiquitina-
tion (Salinas et al., 2006). The proximity of two types of modi-
fications implies possible crosstalk. mGluR8 is sumoylated at its 
C-terminal K882 site (Tang et al., 2005). Other group III mGluRs 
(mGluR4/6/7) and GluK7 may also undergo reliable sumoylation 
(Wilkinson et al., 2008).

A striatum-enriched small G-protein ras homolog enriched in 
striatum (Rhes) has recently been found to act as a physiologi-
cal regulator of protein sumoylation (Subramaniam et al., 2010). 
Rhes-deleted mice exhibited marked and selective reduction of 
protein sumoylation in the striatum (Subramaniam et al., 2009). 
Rhes expression is regulated by dopamine signals. Dopamine deple-
tion reduced its mRNA and protein expression in the rat striatum 
(Harrison and LaHoste, 2006; Harrison et al., 2008). However, 
dopamine stimulation by acute amphetamine did not alter Rhes 
mRNA levels in the striatum (Schwendt and McGinty, 2010).

At present, sumoylation in drug action almost represents an 
uncharted area. It is possible that sumoylation of synaptic pro-
teins including glutamate receptors is regulated by drug exposure. 
Altered sumoylation may contribute to the regulation of striatal 
signaling and drug addiction.

conclusIon
Glutamate receptors have long been appreciated to be subject to 
various post-translational modifications. Extensive studies have 
established glutamate receptors as direct substrates of protein 
kinases for robust phosphorylation at serine, threonine, or tyrosine 
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