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Divergent axonal projections are found throughout the central auditory system. Here,
we evaluate these branched projections in terms of their types, distribution, and puta-
tive physiological roles. In general, three patterns of axon collateralization are found:
intricate local branching, long-distance collaterals, and branched axons (BAs) involved in
feedback-control loops. Local collaterals in the auditory cortex may be involved in local pro-
cessing and modulation of neuronal firing, while long-range collaterals are optimized for
wide-dissemination of information. Rarely do axons branch to both ascending and descend-
ing targets. Branched projections to two or more widely separated nuclei or areas are
numerically sparse but widespread. Finally, branching to contralateral targets is evident
at multiple levels of the auditory pathway and may enhance binaural computations for
sound localization. These patterns of axonal branching are comparable to those observed
in other modalities. We conclude that the operations served by BAs are area- and nucleus-
specific and may complement the divergent unbranched projections of local neuronal
populations.
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INTRODUCTION
A cardinal feature of axons is their divergent projections, which
range from sparse branching in the thalamic input to different
auditory cortex (AC) areas (Morel and Imig, 1987; Lee et al.,
2004a; Kishan et al., 2008) to the many collaterals and thousand
of boutons of single spiral Ia cochlear ganglion axons (Brown,
1981). Branched axons (BAs) are present throughout the audi-
tory system (Fekete et al., 1984; Willard and Martin, 1984; Ojima,

Abbreviations: AAF, anterior auditory field; AC, auditory cortex; AI, primary audi-
tory area; AII, second auditory cortex; AVCN, anteroventral cochlear nucleus; BA,
branched axon; CF, characteristic frequency; CN, central nucleus of the IC; CoN,
cochlear nucleus; CT,corticothalamic; CTβ, cholera toxin β fragment; CTβG,cholera
toxin β fragment, gold conjugated; DCoN, dorsal CoN; DL, double-labeled neuron;
DLL, dorsal nucleus of the lateral lemniscus; DlP, dorsolateral periolivary area; DmP,
DMPO, dorsomedial periolivary area; DZ, dorsal auditory zone; ED, dorsal posterior
ectosylvian area; EE, excitatory–excitatory band; EI, excitatory–inhibitory response
band; EI, intermediate posterior ectosylvian area; EV, ventral posterior ectosylvian
area; IC, inferior colliculus; II, V, VI, auditory cortex layers; In, insular cortex; IL,
intermediate nucleus of the lateral lemniscus; LA, lateral amygdaloid nucleus; La, lat-
eral nucleus of the IC; LOC, lateral olivocochlear neurons; LSO, lateral superior olive;
LT, LTB, lateral nucleus of the trapezoid body; MG, medial geniculate body; MGBd,
MGd, dorsal division of the MG; MGBv, MGv, ventral division of the MGv; MGm,
medial division of the MG; MOC, medial olivocochlear system; MSO, medial supe-
rior olive; MTB, medial nucleus of the trapezoid body; NA, nucleus angularis; NL,
nucleus laminaris; NM, nucleus magnocellularis; P, posterior auditory area; PDL,
percentage of double-labeled neurons; PIN, posterior intralaminar nucleus; PON,
periolivary nuclei; PRh, perirhinal area; PVCN, posteroventral cochlear nucleus;
RC, radiate multipolar cell; RP, rostral pole of the MG; SC, superior colliculus; SOC,
superior olivary complex; SPN, superior paraolivary nucleus; TC, thalamocortical;
Te, temporal cortex; Te3, third area of temporal cortex; TRN, thalamic reticular
nucleus; VCN, ventral CoN; Ve, ventral auditory area; VIII, auditory nerve; VNLL,
VL, ventral nucleus of the lateral lemniscus; VPO, ventral periolivary nucleus; VTB,
ventral nucleus of the trapezoid body.

1994; Hazama et al., 2004; Coomes et al., 2005; Kimura et al.,
2005; Lee and Winer, 2008a,b,c) and can take many forms, from
local (Brown et al., 1988a,b) to very distant (Hashikawa et al.,
1995; Cetas et al., 1999; Huang and Winer, 2000), presumably
allowing neurons to synchronize remote events or form multiple
feature-specific representations.

Different patterns of axonal branching prevail at different lev-
els of the auditory system (Figures 1–3). For instance, branching
between different nuclei is common in the pathways to and from
the medial nucleus of the trapezoid body (MTB; Morest, 1968;
Spirou et al., 1990; Kuwabara and Zook, 1991, 1992; Kuwabara
et al., 1991; Smith et al., 1991), while thalamocortical axons rarely
project to different cortical fields, such as the primary auditory
cortex (AI) and the anterior auditory field (AAF; Morel and Imig,
1987; Lee et al., 2004a,b). Other axons have both descending and
ascending projections, e.g., from MTB cell axons projecting to
the cochlear nucleus (CoN) and the inferior colliculus (IC), <1%
project to both (Schofield, 1994).

In discussing the wide variety of branching patterns present
in the auditory system, it is imperative to acknowledge that var-
ious methods allow the detection of different patterns of axonal
branching, and that these different methods have inherent limita-
tions in terms of the conclusions that can be drawn from their use.
Thus, we review the technical considerations inherent in assess-
ing axonal branching. An especially important caveat to establish
at the outset, however, is that dual retrograde injections can only
ascertain axonal branching to the specific regions within the nuclei
injected; conclusions cannot be drawn about other forms of axonal
branching from these studies. Nonetheless, the use of dual retro-
grade tracing has been useful in formulating hypotheses about
neural function.

Frontiers in Neuroanatomy www.frontiersin.org July 2011 | Volume 5 | Article 46 | 1

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/about
http://www.frontiersin.org/Neuroanatomy/10.3389/fnana.2011.00046/abstract
mailto:cclee@lsu.edu
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive
http://www.frontiersin.org/people/charleslee/3390
http://www.frontiersin.org/people/amarkishan/32836


Lee et al. Auditory branched axons

DmP

MT
VPO

MSO

LSO

DlP

LT

AI

AII

In

Te

ED
AAF

V M

D

EV

P

DZ

EI

Ve

VP

DC

CN
LC

Cu
DLL

ILL

VLL

Sa

basal

apical

3A

3E

3B
3D

2C

2A

2B

PVCN

AVCN
DDCCNN

3C

VIII1

2

3

4

FIGURE 1 |The central auditory pathway. Key nuclei in the feline auditory
system and elements of the lemniscal pathway from the medulla (1),
midbrain (2), thalamus (3), and auditory cortex (4). Letters in blue boxes
indicate the pathways depicted in Figures 2 and 3.

Although the functional implications of BAs are numerous
(Morest, 1968; Kuwabara et al., 1991; Ojima et al., 1991, 1992;
Li and Mizuno, 1997a,b; Kuwabara and Zook, 1999; Ye et al.,
2000; Mulders and Robertson, 2002, 2003; Mulders et al., 2007),
we are treating the function of BAs from the perspective of general
organizational principles.

In the first two sections (see Branched Axons in the Auditory
Cortical System, Branched Axons in the Auditory Brainstem and
Midbrain), we review the existence, magnitude, and possible func-
tions of BAs in the auditory cortex and thalamus as compared
with those at earlier levels of the auditory system. These initial
sections review the specifics of axonal branching in the auditory
system, which the general reader may wish to skim in favor of the

final sections (see Technical Considerations, Thematic Perspective,
Alternatives to Collateralization in the Auditory Cortex, Collaterals
in Other Modalities, and Summary), where we examine principles
of axonal branching and evaluate the technical difficulties inherent
in detecting BAs.

BRANCHED AXONS IN THE AUDITORY CORTICAL SYSTEM
THALAMOCORTICAL SYSTEM
All regions of the auditory cortex (AC) receive an input from the
thalamus (Lee and Winer, 2008a). The principal source of auditory
thalamocortical (TC) input, the medial geniculate body (MG),
has tonotopic ventral (MGv) and rostral pole (RP) divisions, and
non-tonotopic dorsal (MGd) and medial (MGm) divisions, which
project in varying degrees to each of the 13 auditory cortical (AC)
areas in the cat (Huang and Winer, 2000). Although focal regions
within a thalamic nucleus can project broadly to multiple cortical
areas based on anterograde tracing studies (Huang and Winer,
2000), axonal divergence of single neurons beyond a few mil-
limeters is quite rare based on retrograde double labeling studies
(Kishan et al., 2008). Thus, axonal branching in the auditory thal-
amocortical system is highly local, but with unique topographical
features.

One of these features is the patchy distribution of TC BAs,
which extend over 300–500 μm in layers IIIb and IV of the primate
AC core (Hashikawa et al., 1995). In the lateral and posteromedial
auditory cortical areas, larger (1000–1500 μm) patches arise from
the MG anterodorsal and/or posterodorsal nuclei. In the rabbit, TC
BAs form patches 1–2 mm apart in AI layers III and IV, with tan-
gential layer I BAs up to 7 mm long (Cetas et al., 1999; Figure 2A).
In the cat, similar patches are seen in AI, AAF, ventral, and the
posterior AC (P) following injections of anterograde tracers into
the MGv (Huang and Winer, 2000). More divergence occurs after
similar MGd and MGm deposits, though not explicitly from BAs.
Thick MGm axons in AC layer Ia project laterally across wide
expanses, and vertical branches in layers II, IVb, and Va have fewer
lateral BAs (Huang and Winer, 2000). Axons in layer IIIb also have
many local BAs shorter than those in layers Ia and VIb.

The patchy distribution of MG afferents in AC may correlate
with parvalbumin immunoreactivity and perhaps with modules
of broadly and narrowly tuned neurons (Read et al., 2008) or bin-
aural excitatory–excitatory/inhibitory (EE, EI) modules, though
physiological–anatomical studies suggest that EE and EI columns
are not linked by BAs (Middlebrooks and Zook, 1983). Similar
patchy distributions in AC areas ostensibly lacking a binaural
columnar arrangement imply that BAs are unrelated to binau-
rality. Intraareal BAs linking EE or EI columns are also sparse
(Middlebrooks and Zook, 1983, but see Brandner and Redies,
1990).

Another canonical feature of the primary auditory cortical
areas is the orderly spatial arrangement of neurons according
to characteristic frequency (CF), i.e., tonotopy. A question that
naturally arises is whether TC BAs contribute to the creation of
the multiple AC CF maps (Morel and Imig, 1987) from the two
representations in the MG (Imig and Morel, 1985a,b, 1985a,b)?
Based on retrograde studies where different tracers are placed
into matched isofrequency loci in different primary cortical areas,
few double-labeled thalamic neurons are found (Morel and Imig,
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FIGURE 2 | Branched axonal projections in the auditory

forebrain. (A) Clustered and periodic thalamocortical projections
from medial geniculate body subdivisions to area AI (Velenovsky et al.,
2003). (B) Posterior intralaminar (PIN) and dorsal division of the medial
geniculate body branched projections to the non-primary auditory

cortex (Te3/PRh) and lateral amygdala (LA; Doron and LeDoux, 2000).
(C) Local, interlaminar, and collateral projections of an intracellularly
labeled layer II pyramidal cell in AI (Ojima et al., 1991). (D) Avian olivary (SON)
branched input to the laminaris (NL) and angularis (NA) nuclei (Burger et al.,
2005).

1987), with some differences among the MGv and RP (Lee et al.,
2004a; Kishan et al., 2008). Due to the paucity of double labeling
in such studies, it appears that TC BAs do not create multiple CF
maps in these areas.

Finally, the MG and intralaminar nuclei also project widely
to non-auditory cortex. Thalamic BAs targeting both the lateral
amygdaloid nucleus and the perirhinal or primary AC could influ-
ence autonomic and affective responses to auditory and multisen-
sory stimuli (Namura et al., 1997). BAs may link some intralaminar
nuclei with the dorsal (and, less so) ventral perirhinal cortex, and
rarely arise from MGd/m neurons, though up to 17% of MGm
cells project to perirhinal cortex and to the lateral amygdaloid
nucleus (Figure 2B; Table 1). Although MGd cells project to both
the frontal cortex and primary/non-primary AC, these originate
from unbranched sources (Kurokawa and Saito, 1995). Thus, these
TC parts of the auditory and motor pathways are segregated,
despite extensive interdigitation of the projection cells. Overall,
the few studies and diversity of relevant pathways make it diffi-
cult to specify the role of BAs in TC projections to non-auditory
cortex.

CORTICOCORTICAL SYSTEM
Every area of the auditory cortex receives extensive input from
local intrinsic cortical connections and extrinsic connections from
other cortical areas in both hemispheres (Winer and Lee, 2007;
Lee and Winer, 2008b,c), which provide ∼95% of the total input
to an area (Lee et al., 2004a; Lee and Winer, 2011). As with the
thalamocortical system, anterograde, axon-filling, and retrograde
studies each provide complementary evidence about BAs in the
corticocortical system.

On a local level, neurons in the auditory cortex branch within
an area to create extensive divergent laminar circuits. In partic-
ular, layer II and III pyramidal cell axons branch proximally and
distally to the cell body (Ojima et al., 1991; Figure 2C), forming
an axonal network that extends across layers I–V, with two-to-
five thick collaterals in layer III or V in addition to the main
axon descending to the white matter for other cortical targets
(Ojima et al., 1992). The horizontal branches in layer III or V
run parallel to the pia for 500–2500 μm and emit, at a few dis-
tant points, local plexuses of secondary branches extending to
upper and lower layers. This collateralization as a whole forms
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a columnar terminal field in layers I through V with a branch-
sparse gap in layer IV (Figure 2C). Each neuron has a number
of vertical branches distributing around its cell body, forming a
columnar terminal field, which is similar to that formed at distant
points. Some non-projecting pyramidal neurons have thick, bifur-
cated axons with recurrent oblique or horizontal BAs; the latter
extend 1–2 mm in layer V, and oblique branches project heav-
ily in layers II–IV, with weaker input to layers I or II. Such cells
may interact with those producing the synchronized oscillations
arising in layer V (Silva et al., 1991). Several long-range dorsoven-
trally oriented BAs may link or segregate AI isofrequency loci in
the cat (Read et al., 2001). Alternatively, they may synchronize
cells with similar CF response properties, analogously to pyrami-
dal neurons in visual cortex (Gray and Singer, 1989; Gray et al.,
1989). Perhaps TC BAs complement these rich, local periodic
projections.

As with the thalamocortical system, branched corticocortical
projections that link similar CF regions are sparse, comprising
<1% of AI and AAF cells projecting to matched CF regions (Lee
et al., 2004a), although earlier studies using anterograde meth-
ods found extensive interconnections among matched CF regions
(Imig and Reale,1980),perhaps accounted for by neuronal popula-
tions that project in an unbranched manner to matched CF regions
in different areas. Thus, long-range cortical BAs may be more rare
than axon filling studies suggest. This implies that cortical BAs
do not contribute significantly to spectral maps in different AC
areas and illustrates a fundamental difference between the auditory
forebrain and the brainstem, where axons subdivide profusely to
innervate many different targets (Irvine, 1986). Intrinsic intraareal
BAs across frequency laminae are also rare (Kishan et al., 2008),
but may be more prevalent along an isofrequency contour.

Commissural AI axons may also target disparate areas, with
homo- and hetero-topic terminal sites; a dual retrograde study
found that some rat BAs target both sites (Rüttgers et al., 1990).
However, <1% of AI or AAF neurons project commissurally to
frequency-matched loci in both fields, and <4% of non-primary
(AII, Te, and In) neurons project to two loci in their contralateral
counterparts (Kishan et al., 2008).

CORTICOFUGAL PROJECTIONS
The auditory corticofugal system targets many thalamic, midbrain,
and brainstem nuclei (Winer, 2006). Of these, the corticothalamic
(CT) system is massive, with each major MG division receiving
input from four or more AC areas (Winer et al., 2001). Two types
of terminals arise from AI: small endings from thin axons of layer
VI pyramidal neurons and large boutons from thick axons of layer
V pyramidal neurons (Ojima, 1994; Winer et al., 1999; Llano and
Sherman, 2008). Layer VI CT neurons typically project in a feed-
back manner to the thalamic nucleus from which they receives
their major TC input, while layer V CT neurons project in a feed-
forward manner to a higher order thalamic nucleus (Winer et al.,
2001; Sherman and Guillery, 2006).

Layer V CT pyramidal cell targets include MGm, MGd, and
ventrolateral MGv, with thick horizontal BAs occurring in cortical
layers V and VI forming heterogeneous en passant and spine-like
boutons, and thin vertical axons ending above layer IV (Ojima
et al., 1992), and with no BAs to the contralateral AI (Wong and

Kelly, 1981), reserving collateralization to the ipsilateral AC. BAs
crossing the cortical CF axis may enhance inhibition at other CFs,
while those parallel to the isofrequency contours could have local
roles (Ojima et al., 1991; Song et al., 2006).

Layer VI CT neurons branch extensively in both thalamus and
cortex. Some layer VI CT cells have recurrent branches in cortical
layerVI, then ascend to layers III and IV, where their processes form
a dense plexus. In the thalamus, thin fiber BAs form dorsoventrally
elongated bands parallel to MGv CF laminae (Rouiller and de Rib-
aupierre, 1990). Layer VI CT cells may activate local columnar
neurons, while layer V CT neurons target more remote columns at
the same or different CF. In addition, anterograde tracer deposits
at separate frequency loci in the cat label terminals segregated
in the MG, suggesting that microtopography complements BAs
(Takayanagi and Ojima, 2006).

Corticothalamic projections include BAs to the thalamic retic-
ular nucleus (TRN; Lam and Sherman, 2010). Layer V or VI axons
traverse the TRN (Hazama et al., 2004); forming elongated slabs;
these may be BAs of cells targeting the MGv. High- and low-CF
loci in rat primary and non-primary AC areas converge in the
MGv and target different TRN regions (Kimura et al., 2005). The
TRN has inhibitory input to much of the MG, and some TRN neu-
rons project to both the ventrolateral MGv and MGd, or to both
the MGv pars ovoidea and MGm (Crabtree, 1998). This branch-
ing pattern might enable two AC tonotopic areas to convergently
excite one MG region via direct CT projections, while divergently
inhibiting separate MG regions via indirect reticulothalamic pro-
jections (Kimura et al., 2005). The AC also targets the midbrain,
medulla, and striatum (Winer, 2006), and these corticofugal cells
may also have intracortical BAs. Layer V corticostriatal neurons
have vertical and short-range horizontal BAs. The vertical BAs
form a dense network of terminal arbors in layers III and IV, per-
haps reinforcing supragranular, reciprocal connections between
AC CF loci projecting to similar striatal targets.

The corticocollicular system is also a rich substrate for axonal
branching (Winer et al., 1998; Winer, 2006). Rat corticocollicu-
lar cells project to the caudal striatum (Moriizumi and Hattori,
1991b), and some corticofugal cells target the superior olivary
complex (SOC) and IC, or the IC and the CoN, via BAs (Doucet
et al., 2002, 2003). Some corticocollicular cells send BAs to the
nucleus of the brachium of the IC (Saldaña et al., 1996). Retrograde
experiments indicate that ∼5% of layer V neurons project to both
IC (Willard and Martin, 1984; Coomes et al., 2005). Almost half of
contralaterally projecting corticocollicular cells project bilaterally.
Given the conservative estimates provided by retrograde tracers,
all contralaterally projecting cells may target both ICs (Coomes
et al., 2005), though no neurons appear to have BAs targeting both
the IC and MG (Wong and Kelly, 1981).

BRANCHED AXONS IN THE AUDITORY BRAINSTEM AND
MIDBRAIN
BRAINSTEM PROJECTIONS
Now, we consider the axonal branching patterns observed in the
auditory brainstem and midbrain, in comparison with those of the
auditory cortical systems described previously. Do similar branch-
ing patterns and principles apply across multiple stages of the
auditory pathway? The numerous connections among brainstem
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FIGURE 3 | Branched axonal projections in the auditory

brainstem and midbrain. (A) Collateral projections from the medial
nucleus of the trapezoid body to olivary and lateral lemniscal targets
(Kuwabara and Zook, 1992). (B) Anteroventral cochlear nucleus
collateral input to the ventral nucleus of the trapezoid body (VTB) and
dorsomedial periolivary nucleus (Smith et al., 1991). (C) Cochlear

nucleus branched projections to the inferior colliculus (IC; Schofield and Cant,
1996a; Schofield, 2002). (D) Branched ascending and descending
projections from the superior paraolivary nucleus to the cochlear nucleus
(CoN) and IC (Schofield, 1995). (E) Periolivary (PON) projections to the
inferior colliculus (IC) and CoN. Dashed line in all panels represents the
midline.

and midbrain nuclei might suggest different patterns of axonal
branching exist at these stages. As noted in morphological studies,
auditory BAs begin in the periphery (Lorente de Nó, 1981). At the
earliest levels, type I auditory nerve fibers branch extensively in
the CoN (Fekete et al., 1984). One main branch targets the ventral
cochlear nucleus (VCoN) and the other ends in the dorsal cochlear

nucleus (DCoN). Near this bifurcation, the parent trunk has few
collaterals at low CFs, while axons at higher CFs have more numer-
ous and complex axonal branches. Descending axons have 14–30
collaterals and, in the DCoN, the main trunk often makes parallel
branches ending within 100 μm. Many BAs end in simple, en pas-
sant swellings, and others terminate diffusely in the neuropil. BAs
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have regional morphologic variations, e.g., in the posteroventral
cochlear nucleus, some have en passant swellings, while in the cen-
tral part of the nucleus, fibers with a CF >4 kHz have many BAs
that extend for hundreds of microns. These are parallel to octo-
pus cell primary dendrites and could enhance the sharpness of
tuning near the intensity threshold and broaden tuning at higher
intensities. The ascending branch has 4–16 collaterals and ends
in calyces of Held. These collaterals form complex, endbulb-like
endings or en passant swellings and often remain within 100 μm
of the parent branch, though one-third end in the anteroventral
CoN. Small branches from high- and low-CF fiber may create het-
erotopic high frequency response zones in the VCoN (Fekete et al.,
1984).

Cochlear nucleus afferents also branch. VCoN neurons send
branches to matching frequency loci in the cat IC and contralat-
eral DCoN (Adams, 1983a). Planar and radiate multipolar cells (T-
and D-stellate cells, respectively) in the anterior VCoN branch to
the DCoN and posterior VCoN, mainly to the multipolar cell area
(Oertel et al., 1990). Radiate multipolar cells project to both the
ipsilateral DCoN and the contralateral CoN (Doucet and Ryugo,
2006). Up to half the cells projecting to CoN also target the thal-
amic ventrobasal complex and may provide information about
head and body position useful in sound localization or for somatic
sensory–auditory interactions (Li and Mizuno, 1997a).

A prominent CoN target is the contralateral MTB (Morest,
1968), whose principal cells provide glycinergic input to the ipsilat-
eral lateral superior olive (LSO) for interaural intensity difference
computations (Smith et al., 1998). CoN projections form calyces of
Held endings on MTB principal cells (Smith et al.,1991) and collat-
eralize ipsilateral to the CoN of origin, targeting the lateral nucleus
of the trapezoid body (LTB), posterior periolivary nucleus, or ven-
trolateral periolivary nucleus and end in large terminal swellings
of variable shapes (Figure 3B; Spirou et al., 1990). En passant
swellings are rare.

Most CoN BAs are precalycine. These traverse the MTB and
ventral nucleus of the trapezoid body (VTB) toward the lat-
eral lemniscus, forming branches in the anterolateral periolivary
nucleus, the rostral LTB, and the VTB. Some fibers form collat-
erals at their branch point near the abducens nerve root, and
branch sparsely before ending in the nucleus paragigantocellu-
laris lateralis. Other precalycine collaterals target the dorsomedial
and ventral periolivary nuclei and branch repeatedly within it
(Kuwabara et al., 1991). About 40% of ipsilateral calyciferous
branches end axosomatically in the ventral periolivary nucleus
(VPO), 20% in the LTB and LSO, and 7% near the MTB in an area
associated with the medial olivocochlear system (MOC). All axons
have extensive BAs within the MTB, perhaps contributing to lat-
eral inhibition. Other BAs end diffusely in the adjacent periolivary
nuclei, the LTB, and the LSO, and 25% reach the lateral lemniscus
(Figure 3A). Of the calycine collaterals, all terminate 20–80 μm
from their origin in varicosities. Thus, ascending input to the MTB
reaches parts of the ipsilateral lateral and medial olivocochlear
system and diverse contralateral brain stem nuclei. MOC BAs to
the CoN often converge with type II auditory nerve fiber endings
(Benson and Brown, 2004), and areas targeted by such axons also
project to the MOC, forming another prospective feedback-gain
loop (Ye et al., 2000).

Perhaps unsurprisingly for brainstem projections, MTB axons
are also collateralized (Figure 3A; Morest, 1968; Kuwabara et al.,
1991). Principal cell axons send 2–6 BAs to the periolivary nuclei,
superior paraolivary nucleus (SPN; the rodent homolog of the
cat dorsomedial periolivary nucleus), and the VTB. Half of these
axons also branch to the medial superior olive (MSO), and 25%
branch to the lateral lemniscus. Recurrent MTB collaterals are also
seen. The main axon often ends in a cascade of terminal BAs in the
LSO; sometimes forming 1–2 thick perpendicular branches and
then arborizing in the neuropil. MTB branches to the MSO are
tonotopically organized (Smith et al., 1998).

Many brain stem neurons sample both the outputs of the MTB
as well as collaterals bifurcating from input to the MTB,perhaps for
monitoring or instructing gain control (Morest, 1968; Kuwabara
et al., 1991). LSO-projecting neurons from the LTB also have
collaterals to MSO (except in big brown bats), which, like MTB
BAs, have axosomatic input on bipolar cells (Kuwabara and Zook,
1992). These inhibitory inputs may complement excitatory CoN
afferents, perhaps preceding excitatory inputs because the con-
tralateral calyciferous axons are much thicker than the CoN axons
directly projecting to the contralateral MSO. Cell filling experi-
ments in gerbil brain stem slices demonstrate that the MSO input
to the SPN is highly branched, with >40% of thick, ascending
MSO axons having one or more short BAs from their main trunk
that ramify sparsely in the SPN (Kuwabara and Zook, 1999).

Not all brain stem projections have BAs. While some CoN
efferent axons in the guinea pig target both CoN-projecting and
IC-projecting cells in the SPN, their BAs may not be extensive
(Schofield, 1995). Further, <1% of MTB neurons project to both
the IC and CoN ipsilaterally, contralaterally, or have one ipsilateral
and one contralateral target (Schofield, 1994).

PROJECTIONS OF THE INFERIOR COLLICULUS
The IC is the midbrain target for auditory input arising from ear-
lier brainstem sources, e.g., the CoN, SOC, lateral lemniscal nuclei,
AC, and many other non-auditory structures. The tonotopic cen-
tral nucleus of the IC (CN) contains narrowly tuned neurons,while
the cells in the dorsal cortex and lateral cortex (La) have broader
frequency-tuning and multisensory properties. The IC projects to
the MG, CoN, SOC, dorsal column nuclei, superior colliculi (SC),
and other nuclei (for review see Winer and Schreiner, 2005).

The projection from the ventral nucleus of the lateral lemnis-
cus to the CN has few BAs to different high- and low-frequency
regions in the rat CN (Merchán and Berbel, 1996).

Such tonotopic precision is implicit in the narrow frequency
tuning of anteroventral CoN cells (Bourk et al., 1981). In addition,
in the rat lateral lemniscal nuclei, no neurons project to both the
IC and the SC, or to both SCs, though cells in the dorsal nucleus of
the lateral lemniscus may project to the SC deep layers for acoustic
motor reflexes and head orientation (Tanaka et al., 1985).

The proportion of brainstem afferents that target both ICs via
BAs may be species specific. In the cat IC, only 2% of LSO olivocol-
licular neurons project to both IC, while surprisingly, in the opos-
sum, 20–25% of LSO olivocollicular neurons and almost all MSO
olivocollicular cells project to both (Willard and Martin, 1984).
Similar work in the guinea pig finds no branched projections in
the LSO, MSO, or VCoN, but in the DCoN, 68% of ipsilateral
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Table 1 | Retrograde studies of auditory branched projections.

System Study and species Method Results

Thalamocortical Middlebrooks and Zook

(1983), Cat

EI band in AI: NY

EE band in AI: PI (same CF)

Middle EE band in AI: NY

Ventral EE band in AI: PI (same CF)

MGv: none mentioned (n = 3)

MGv: no%, but reported (n = 1)

Morel and Imig (1987), Cat AI: HRP

AAF: 3H-BSA

AI: 3H-HRP

P: BSA

MGv: 6.5 (n = 5, 6 sections)

RP: 6.0 (n = 6, 5 sections)

MGv: 6.4 (n = 1, 2 sections)

Brandner and Redies (1990),

Cat

Dorsal AI: NY

Ventral and/or central AI: Bb

NY and Bb along AI isofrequency contour

MGv: no %, mentioned in one case

(n = 4)

MGv: none mentioned (n = 2)

Kurokawa and Saito (1995),

Rat

Te3: FG

Fr1: FB

Te1: NY

Fr1: FB

MGd: 0 (n = 6)

MGd: 0 (n = 6)

Namura et al. (1997), Rat Dorsal perirhinal: DY

Lateral amygdaloid nucleus: FB

Ventral perirhinal: DY

Lateral amygdaloid nucleus: FB

Te1: DY

Lateral amygdaloid nucleus: FB

Perirhinal: DY

Central amygdaloid nucleus: FB

PIN: 3.3

MGd1: 5

SPFp: 11.3

SPFm: 6.0

MGm: 1.2 (n = 1)

PIN: 1.7

MGd: 2.1

SPFp: 3.7

SPFm: 0

MGm: 0 (n = 1)

0 (n = 7)

0 (n = 3)

Kishan et al. (2008), Cat AI: CTβ

AAF: CTβG

Injected in frequency – matched loci

AI

Injected CTβ, CTβG at sites 3.3 mm apart

AII

Injected CTβ, CTβG at sites 3.3 mm apart

Te

Injected CTβ, CTβG at sites 1.7 mm apart

In

Injected CTβ, CTβG at sites 3.3 mm apart

MGd: 1.5

MGm: 2.1

MGv: 1.4

RP: 2.8 (n = 4)

MGd: 1.2

MGm: 2.8

MGv: 0.6

RP: 0 (n = 1)

MGd: 2.2

MGm: 3.9

MGv: 2.1

RP: 4.5 (n = 1)

MGd: 6.7

MGm: 4.9

MGv: 5.8

RP: 0.00 (n = 1)

MGd: 3.9

MGm: 5.1

MGv: 1.4

RP: 0.00 (n = 1)

(Continued)
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Table 1 | Continued

System Study and species Method Results

Corticocortical Rüttgers et al. (1990), Rat DY and FB in regions of terminations of homotopic and

heterotopic commissural projections

AI: no %, but reported

Kishan et al. (2008), Cat AI: CTβ

AAF: CTβG

AI (i): 0.8

AAF (i): 0.6

Injected in frequency – matched loci

AI

Injected CTβ, CTβG at sites 3.3 mm apart from each other

AII

Injected CTβ, CTβG at sites 3.3 mm apart from each other

Te

Injected CTβ, CTβG at sites 1.7 mm apart from each other

In

Injected CTβ, CTβG at sites 3.3 mm apart from each other

AI (c): 0.8

AAF (c): 0.6 (n = 4)

AI (i): 0.1

AI (c): 1.4 (n = 1)

AII (i): 1.5

AII (c): 3.7 (n = 1)

Te (i): 1.3

Te (c): 1.8 (n = 1)

In (i): 0.6

In (c): 1.1 (n = 1)

Corticofugal Wong and Kelly (1981), Cat MG: HRP or NY

Contra AI: NY or HRP

IC: HRP or NY

MG: NY or HRP

AI, layer V: 0 (n = 12)

AI, layer V: 0 (n = 4)

Crabtree (1998), Cat MGv, ventrolateral: FB or NY

MGd: FB or NY

MGv, pars ovoidea: FB or NY

MGm: FB or NY

TRN: no %, always saw DLs (n = 3)

TRN: no %, always saw DLs

(n = 3)

Moriizumi and Hattori, 1991a, Rat IC: TB

Caudal striatum: DY

AI, layerV: 6.4% of IC projecting cells

(n = 4, pooled)

Doucet et al. (2002), Rat CoN: FB

SOC: DY

AI: <10% (n = 2, pooled)

Doucet et al. (2003), Rat CoN: FB

IC: DY

SOC: FB

IC: DY

AI: 10–20 (n = 4)

AI: 10–20 (n = 3)

Coomes et al. (2005), Guinea pig Various combinations of FB, FG, red/green beads into both

IC

Layer V of AC: 5.2 (n = 5)

Brain stem Adams (1983b), Cat DCoN (c): EB or NY

IC: HRP or EB (frequency matched with anatomical

position)

VCoN (i): no %, but reported (n = 2)

Schofield (1994), Guinea pig Various combinations of FB, FG, green beads into CoN and

IC

CoN (i), IC (c) or CoN (c), IC (i) (same tracers)

MTB: <1% (n = 3)

MTB: <1% (n = 13)

Li and Mizuno (1997a), Rat CoN: FG

VB (c): TMRDA

Dorsal column (i): 50.7% of CoN-

projecting

STN: 30% of CoN-projecting (n = 1,

from figure)

Doucet and Ryugo (2006), Rat DCoN: BDA

CoN (c): DY (large)

VCoN: 3.6% of planar multipolar

No % for RC-multipolar, but reported

(n = 3)

IC afferents Glendenning and Masterton (1983),

Cat

Various combinations of DB, NY, Bb, PI, and DPD into both

IC

LSO: 2% (n = 18)

Tanaka et al. (1985), Rat DAPI and PI into both IC

IC: PI or DAPI

SC: DAPI or PI

LL: no %, but reported (n = 3)

LL: 0 (n = 3)

(Continued)
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Table 1 | Continued

System Study and species Method Results

Willard and Martin (1984), Opossum TB and NY into both IC AC: 6

CoN: <3%

Dorsal columns: 6.67–12

DLL: <5

LSO core: 20–25%

MSO: 100% (n = 8)

Moriizumi and Hattori (1991), Rat AC (widely): TB

IC: DY

Caudal globus pallidus: 0 (n = 2)

Schofield (1991), Guinea pig Various combinations of FB, FG, green beads into

CoN and IC

SPN:

1.7% of IC-projecting

3.3% of CoN-projecting (n = 3)

Schofield and Cant (1992), Guinea

pig

CoN (i), IC (c) or CoN (c), IC (i) (same tracers)

Various combinations of FB, FG, green beads into both IC

SPN: 0 (n = 4 each)

DLPO, LTB: <1%

LSO, MSO: 0 (n = 4)

Schofield and Cant (1996a), Guinea

pig

Various combinations of FB, FG, red/green beads into CoN

(c) and IC

DCoN: 68.4% to IC (i) also project to

IC (c)

VCoN: 0

Merchán and Berbel (1996), Rat High frequency CNIC: HRP

Low frequency CNIC: Biocytin

VLL: no %, very few reported

Li and Mizuno (1997b), Rat VB: TMRDA

La: FG

Dorsal column nuclei and STN: no %,

many reported (n = 8)

Li and Mizuno (1997a), Rat CoN (i): FG

IC (c): TMRDA

CoN (c): FG

IC (c): TMRDA

Gr: 60% of CoN-projecting

Cu: 72.4% of CoN-projecting

STN: 42.9% of CoN-projecting

(n = 1, from figure)

Gr: 60% of CoN-projecting

Cu: 61.5% of CoN-projecting

STN: 36.4% of CoN-projecting

(n = 1, from figure)

IC efferents Hashikawa (1983), Cat CoN: PI, NY, Pr, or Bb

MG: PI, NY, Pr, or Bb

CoN: PI, NY, Pr, or Bb

MG (c): PI, NY, Pr, or Bb

PN: PI, NY, Pr, or Bb

SC: PI, NY, Pr, or Bb

IC: 0 (n = 1)

IC: 0 (n = 1)

IC: <1% (n = 1)

González-Hernández et al. (1991),

Rat

IC (c): NY

MG: FB

IC: 5–10% of tectothalamic (n = 7)

Schofield (2001), Guinea pig Various combinations of FB, FG, red/green beads into both

CoN

IC: <1% (n = 12)

Coomes and Schofield (2004),

Guinea pig

Various combinations of FB, FD, FG, FR, red/green beads

into CoN, MG

CoN (c), MG (i) (same tracers)

CoN (i), MG (c) (same tracers)

CoN (c), MG (c) (same tracers)

CoN (c), MG (c) (same tracers)

IC: <1% (n = 6)

IC: <1% (n = 5)

IC: <1% (n = 3)

IC: 0 (n = 4)

IC: 0 (n = 4)

Okoyama et al. (2006), Rat FG and FR into MG and CoN

FG and FR into IC (c), MG

FG and FR into CoN, IC (c)

IC: 0 (n = 11)

IC: <1% (n = 8)

IC: 0 (n = 10)

(Continued)
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Table 1 | Continued

System Study and species Method Results

FG and FR into both CoN

FG and FR into CoN (c), SOC

IC: 0 (n = 6)

IC: 0 (n = 3)

1Originally counted as being part of the suprageniculate nucleus, which is considered as part of the MGd; c, contralateral; i, ipsilateral; 3H-BSA, tritiated bovine serum

albumin; AAF, anterior auditory field; AC, auditory cortex; AI, primary auditory area; AII, second auditory cortex; Bb, bisbenzimide; BSA, bovine serum albumin; CoN,

cochlear nucleus; CN, central nucleus of the IC; CTβ, β subunit of cholera toxin; CTβG, gold conjugate of CTβ; Cu, cuneate nucleus; DCoN, dorsal CN; DLPO, dorsolat-

eral periolivary nucleus; DNLL, dorsal nucleus of the LL; DY, diamidino yellow; EB, Evans blue; EE, excitatory–excitatory band; EI, excitatory–inhibitory response band;

FB, fast blue; FD, fluorescein–dextran; FG, fluorogold; FR, fluororuby; Fr1, frontal cortex; Gr, gracile nucleus; HRP, horseradish peroxidase; IC, inferior colliculus; La,

lateral nucleus of the IC; In, insular cortex; LL, lateral lemniscus; LTB, lateral nucleus of the trapezoid body; LOC, lateral olivocochlear neurons; LSO, lateral superior

olive; MG, medial geniculate body; MGd, dorsal division of the MG; MGm, medial division of the MG; MGv, ventral division of the MGv; MTB, medial nucleus of

the trapezoid body; MOC, medial olivocochlear system; MSO, medial superior olive; NY, nuclear yellow; PI, propidium iodide; PIN, posterior intralaminar nucleus;

PN, pontine nuclei; Pr, primulin; RC-multipolar, radiate multipolar cells projecting contralaterally; RP, rostral pole of the MG; SC, superior colliculus; SOC, superior

olivary complex; SPFm, medial portion of the subparafascicular nucleus; SPFp, posterior portion of the subparafascicular nucleus; STN, spinal trigeminal nucleus; TB,

true blue; Te, temporal cortex; Te1, primary auditory area; Te3, non-auditory temporal cortex; TMRDA, tetramethylrhodamine–dextran amine; TRN, thalamic reticular

nucleus; VCN, ventral CN; VNLL, ventral nucleus of the LL.

IC-projecting cells have BAs to the contralateral IC (Figure 3C;
Schofield and Cant, 1996b). Compared with the corticofugal sys-
tem (see above), in both the guinea pig and the opossum, ∼6% of
AC neurons project bilaterally to the IC.

Branched brainstem projections to the IC and other targets
are also rare. In the SPN, ∼2% of IC-projecting cells branch to
the CoN (Figure 3D; Schofield, 1991). Similarly, in the guinea
pig SOC, only 1% of IC-projecting neurons send axons to the
CoN (Figure 3E; Schofield, 2002). These few branched projec-
tions originate in the ventral periolivary region, including the
anteroventral periolivary nucleus and the VTB, but no cells project
to both targets contralaterally, or to one ipsilaterally – and the
other contralaterally. In addition, some non-auditory afferents
also have BAs (Moriizumi and Hattori, 1991a,b; Li and Mizuno,
1997a,b).

Within the IC itself, local connections are highly collateral-
ized as revealed by intracellular filling studies in the cat (Oliver
et al., 1991). These intrinsic BAs sometimes parallel the dendrites,
extending for hundreds of microns (as in the CoN), while other IC
neurons have non-oriented CN BAs. This diversity suggests exten-
sive IC computational roles for local BAs and interneurons (Oliver
et al., 1991). Axons of these cells extend toward the brachium of
the IC, and many likely project to the MG (Winer et al., 1996).
Some of these tectothalamic neurons are inhibitory (Winer et al.,
1996; Peruzzi et al., 1997; Bartlett and Smith, 2002; Lee and Sher-
man, 2010), providing a source of feedforward inhibition that is
unique to the auditory system.

However, most long-range IC projections have few BAs. Few
colliculobulbar neurons target both CoNs in the guinea pig
(Schofield, 2001) and rat (Okoyama et al., 2006). Instead, the IC
may exert descending divergent influence disynaptically through
contact with cells that projecting bilaterally to the CoN, particu-
larly in the VTB and anteroventral periolivary nucleus (Schofield
and Cant, 1999). As in the brain stem, IC neurons with ascend-
ing and descending projections are rare, with reports suggesting
that no or few cells project to both the CoN and the MG in the
cat (Hashikawa, 1983), rat (Okoyama et al., 2006), and guinea pig
(Coomes and Schofield, 2004), and <1% project to both the SC
and the pontine nuclei (Hashikawa, 1983). IC neurons branching

to the MG and the contralateral IC also target the contralateral
CoN, and comprise 1–10% of all tectothalamic cells (González-
Hernández et al., 1991; Okoyama et al., 2006). Similarly, few axons
target both the contralateral IC and the SOC or CoN.

TECHNICAL CONSIDERATIONS
Many approaches have been used to characterize BAs. Dual retro-
grade tract tracing (Hayes and Rustioni, 1979; Kuypers et al., 1980;
Jones, 1983) can provide a profile of BA projections, as the many
labeled cells permit quantitative analyses (Table 1). However, these
studies presume equivalent uptake affinity, injection site size and
efficacy, visualization methods, the interaction of damage with
uptake, and transport rate (Schofield et al., 2007). To label signif-
icant numbers of cells, sufficiently large deposits can complicate
the collection of quantitative data. Thus, for example, injections
restricted to a single binaural response bands may be too small
to label sufficient cells to provide reliable statistically appropriate
estimates of double-labeled cells (DLs; Kishan et al., 2008).

Negative results are also problematic. Few DLs suggest that the
injected regions do not receive BAs, though other areas might, or
that the tracers were neither equivalent spatially nor equally likely
to be transported. If BAs are oriented selectively, and the injections
are not aligned appropriately, DL estimates would be spurious.
Finally, dual retrograde tracing methods are limited since BAs to
only a few sites can be detected, even if multiple targets are present.
Thus, dual retrograde tracing likely underestimates the divergence
of axonal projections.

In comparison, focal anterograde injections may overesti-
mate the degree of single axon divergence by labeling fibers-
of-passage or filling closely apposed neurons that project to
separate loci. However, both anterograde and axon filling
studies can demonstrate recurrent, local, and distant BAs.
Some BAs are too near their source to be detected reliably
by retrograde means (Winer, 1986), and anterograde or fill-
ing approaches do not require a precise or systematic injec-
tion orientation to reveal them. Anterograde studies may not
reveal the full range of targets since incomplete filling of fine
or long processes or insufficient transport time may confound
estimates.
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Intracellular filling studies are highly constrained by sample
size (Fekete et al., 1984; Ojima et al., 1991). While a few axons
may have collaterals (or, alternatively, lack branches), it is uncer-
tain whether these are representative. As in anterograde studies,
incomplete staining or insufficient transport time can constrain
firm conclusions or population values except when many axons
can be filled and their targets visualized (Brown, 1981; Humphrey
et al., 1985).

THEMATIC PERSPECTIVE
Branched axons are common in the auditory cortical system, as
well as in the auditory midbrain and brainstem. However, several
general principles are evident from a comparison across processing
levels. First, most axons branch according to one of three patterns:
intricate local BAs, long-distance collaterals, and BAs involved
in feedback-control loops. Second, cells rarely project to both
ascending and descending targets, suggesting that these streams
are well segregated and that descending projections play specific
roles rather than merely feedback or modulatory ones (Guinan,
2006; Winer, 2006). Third, some neurons have both ascending
and contralateral targets, e.g., CoN neurons projecting to the IC
and the contralateral CoN (Adams, 1983b), and IC neurons target-
ing the MG and the contralateral IC (González-Hernández et al.,
1991). Most projections are contra- or ipsi-lateral because of the
acoustic chiasm (Glendenning and Masterton, 1983); thus, these
BAs may enhance binaural computations for sound localization or
otherwise modulate ascending input from an ear with contralat-
eral influence. This may not pertain to descending projections
since corticothalamic neurons are not commissural (Wong and
Kelly, 1981). Fourth, bilateral projection neurons are part of at
least the corticofugal and olivocochlear streams, with ∼5% of
corticocollicular neurons projecting to both IC (Willard and Mar-
tin, 1984; Coomes and Schofield, 2004), and a similar proportion
of MOC cells targeting both cochleae (Thompson and Thomp-
son, 1986; Robertson et al., 1987a,1987a,b; Aschoff and Ostwald,
1988). Such bilaterally projecting neurons in ascending pathways
are differentially distributed in various nuclei.

ALTERNATIVES TO COLLATERALIZATION IN THE AUDITORY
CORTEX
In the auditory cortex, one might predict that BAs would be
an ideal way to create multiple independent representations of
frequency, aurality, amplitopy, or other dimensions required for
computation (Ehret, 1997). It is somewhat unexpected that BAs
to matched frequency regions are comparatively rare, especially in
the forebrain (Lee et al., 2004a), where the emergence of multiple
CF maps (Reale and Imig, 1980) suggest that they might be more
common.

A robust alternative mechanism is provided by heterotopic pro-
jections that arise from interleaved thalamic and cortical neurons
situated in close proximity and serving presumably similar phys-
iologic roles but whose targets are separated widely (Lee et al.,
2004b; Lee and Winer, 2005). Three obvious advantages accrue
to this arrangement. First, precise branching to multiple targets is
unnecessary, and neurons that target multiple cortical areas can
migrate as a group and assemble their connectivity with compar-
ative ease relative to the precision required by multiple branches

that must terminate in exact register in different targets. Second,
and perhaps most critically, heterotopic arrangements enable easy
coordination of activity across large spatial territories, a prospec-
tively problematic issue when coordinating diverse spatiotemporal
patterns across vast expanses of brain (Lee et al., 2004b; Winer
et al., 2004). Third, they provide a simple mechanism enabling the
precise coordination of discharge patterns among resident thal-
amic or cortical neurons, either via local circuit neurons or, in
their absence (Winer and Larue, 1996), via the BAs of excitatory
neurons.

A second alternative is that the terminal plexus of many axons
is highly divergent, and can span wide arrays, as in the TC axons
in visual (Ferster and LeVay, 1978), somatic sensory (Landry and
Deschênes, 1981), and auditory (Velenovsky et al., 2003) cortex.
Such axons engage large areas and could readily initiate or sus-
tain parallel intracortical and corticocortical modularity (DeFelipe
et al., 1986) in networks larger than the comparatively finer scale of
interneuronal projections (Kisvárday et al., 1994). The complex-
ity of these axons belies point-to-point models of connectivity
(Brandner and Redies, 1990).

COLLATERALS IN OTHER MODALITIES
Comparable, and perhaps even more extensive, collaterals systems
exist in other modalities. The complexity of the subcortical audi-
tory pathway frustrates direct comparisons with the visual, somatic
sensory, or autonomic systems. Nonetheless, some comparisons
can be drawn. For example, primary phrenic afferents send BAs
to different spinal cord laminae (Goshgarian and Roubal, 1986),
as do Ia muscle spindle (Brown and Fyffe, 1978), and Ib Golgi
tendon organ (Brown and Fyffe, 1978) afferents. Many cuneate
nucleus inputs are collateralized (Weinberg et al., 1990), resem-
bling type I ganglion cell axons near the CoN. Retinofugal fibers
to the lateral geniculate nucleus (LGN) ramify within the LGN
(Conley and Fitzpatrick, 1989), resembling type I ganglion axons
within the CoN.

Forebrain connections are compared more readily. The visual
TC system may have more interareal BAs and intraareal BAs to
matched functional domains than the somatic sensory or audi-
tory systems. Retinotopically matched deposits in areas 17 and
18 double label 3–16% of neurons in the LGN A lamina (Bul-
lier, 1984; Birnbacher and Albus, 1987; Salin et al., 1989), while
matched somatotopic injections (SI) in the primary and secondary
somatosensory areas only double label 2.3% of cells (Fisher et al.,
1983).

Horizontal BAs are also present in all modalities. In the visual
system, extensive lateral collaterals, similar to those seen in AI
link loci with similar functional properties (Gilbert and Wiesel,
1979; Michalski et al., 1983; LeVay, 1988). There are also horizon-
tal connections in higher-level areas such as the macaque inferior
temporal cortex (Tanigawa et al., 2005), and long-range horizon-
tal collaterals from SI pyramidal cells may target neurons in other
fields (DeFelipe et al., 1986).

As in AI, some rat SI CT cells have local collaterals to neu-
rons in the same column, while others project remotely (Zhang
and Deschênes, 1997). Mirroring the absence of AI corticofugal
BAs to diverse targets, <2% of SI cells have BAs to the corticos-
triatal, corticorubral, corticopontine, and corticospinal pathways
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(Akintunde and Buxton, 1992). In the somatic sensory (Bourassa
et al., 1995) and visual (Bourassa and Deschênes, 1995) systems,
the CT fibers arising from axons of layer V neurons in V1 or SI
were collaterals of corticotectal or corticopontine axons, unlike
the auditory CT system. This suggests modality specific rules for
BAs, whose ontogeny and functional specificity remain for further
investigation.

SUMMARY
The floridness of axonal branching throughout the central audi-
tory system, and other modalities, is indicative of the functional
importance of divergent processing in sensory systems. Such
branching ranges across scales, from intrinsic branches that mod-
ulate firing in local circuits, to long-range collaterals that widely
disseminate information. Yet, it remains an open question whether
BAs as a wiring principle is more efficient from an ontological
and developmental standpoint, compared with the targeting of
separate loci by unbranched neuronal ensembles. In addition, the

degree to which separate branches have similar synaptic proper-
ties and efficacy in terms of transmitting auditory information
remains to be investigated. Indeed, widely varying synaptic prop-
erties at separate axonal branches would have profound effects
on the divergent dissemination of auditory information. Thus,
defining the functional role of axonal divergence will require a
convergence of future theory and experiments.

ACKNOWLEDGMENTS
This work is dedicated to the late Jeffery A. Winer, who served
as a mentor and inspirational figure for innumerable students,
colleagues, and friends, and without whom this work would not
have reached fruition. The void left by his absence testifies to the
breadth and depth of his scholarship, friendship, and humanity.
Jeff, we miss you greatly. We also thank David T. Larue for helpful
discussions and assistance with the figures. This work was sup-
ported by NIH Grants R03 DC 11361 (Charles C. Lee) and R01
DC 2319 (Jeffery A. Winer).

REFERENCES
Adams, J. C. (1983a). Cytology of peri-

olivary cells and the organization of
their projections in the cat. J. Comp.
Neurol. 215, 275–289.

Adams, J. C. (1983b). Multipolar cells in
the ventral cochlear nucleus project
to the dorsal cochlear nucleus and
the inferior colliculus. Neurosci. Lett.
37, 205–208.

Akintunde, A., and Buxton, D. F.
(1992). Origins and collateraliza-
tion of corticospinal, corticopon-
tine, corticorubral and corticostri-
atal tracts: a multiple retrograde flu-
orescent tracing study. Brain Res.
586, 208–218.

Aschoff, A., and Ostwald, J. (1988). Dif-
ferent origins of cochlear efferents
in some bat species, rats, and guinea
pigs. J. Comp. Neurol. 264, 56–72.

Bartlett, E. L., and Smith, P. H. (2002).
Effects of paired-pulse and repeti-
tive stimulation on neurons in the
rat medial geniculate body. Neuro-
science 113, 957–974.

Benson, T. E., and Brown, M. C. (2004).
Postsynaptic targets of type II audi-
tory nerve fibers in the cochlear
nucleus. J. Assoc. Res. Otolaryngol. 5,
111–125.

Birnbacher, D., and Albus, K. (1987).
Divergence of single axons in affer-
ent projections to the cat’s visual
cortical areas 17, 18, and 19: a para-
metric study. J. Comp. Neurol. 261,
543–561.

Bourassa, J., and Deschênes, M. (1995).
Corticothalamic projections from
the primary visual cortex in rats: a
single fiber study using biocytin as
an anterograde tracer. Neuroscience
66, 253–263.

Bourassa, J., Pinault, D., and Deschênes,
M. (1995). Corticothalamic

projections from the cortical
barrel field to the somatosensory
thalamus in rats: a single-fibre
study using biocytin as an antero-
grade tracer. Eur. J. Neurosci. 7,
19–30.

Bourk, T. R., Mielcarz, J. P., and Nor-
ris, B. E. (1981). Tonotopic organi-
zation of the anteroventral cochlear
nucleus of the cat. Hear. Res. 4,
215–241.

Brandner, S., and Redies, H. (1990). The
projection of the medial geniculate
body to field AI: organization in the
isofrequency dimension. J. Neurosci.
10, 50–61.

Brown,A. G. (1981). Organization in the
Spinal Cord. Berlin: Springer-Verlag.

Brown, A. G., and Fyffe, R. W. (1978).
The morphology of group Ia muscle
afferent fibre collaterals. J. Physiol.
(Lond.) 278, 111–127.

Brown, M. C., Berglund, A. M., Kiang,
N. Y. S., and Ryugo, D. K. (1988a).
Central trajectories of type II spiral
ganglion cells. J. Comp. Neurol. 278,
581–590.

Brown, M. C., Liberman, M. C., Ben-
son, T. E., and Ryugo, D. K. (1988b).
Brainstem branches from olivo-
cochlear axons in cats and rodents.
J. Comp. Neurol. 278, 591–603.

Bullier, J. (1984). “Axonal bifurcation
in the afferents to cortical areas of
the visual system,” in Visual Neu-
roscience, eds J. D. Pettigrew, K. J.
Sanderson, and W. R. Levick (Lon-
don: Cambridge University Press),
239–259.

Burger, R. M., Cramer, K. S., Pfeif-
fer, J. D., and Rubel, E. W. (2005).
Avian superior olivary nucleus pro-
vides divergent inhibitory input to
parallel auditory pathways. J. Comp.
Neurol. 481, 6–18.

Cetas, J. S., de Venecia, R. K., and
McMullen, N. T. (1999). Thalamo-
cortical afferents of Lorente de Nó:
medial geniculate axons that project
to primary auditory cortex have col-
lateral branches to layer I. Brain Res.
830, 203–208.

Conley, M., and Fitzpatrick, D. (1989).
Morphology of retinogeniculate
axons in the macaque. Vis. Neurosci.
2, 287–296.

Coomes, D. L., and Schofield, B. R.
(2004). Separate projections from
the inferior colliculus to the cochlear
nucleus and thalamus in guinea pigs.
Hear. Res. 191, 67–78.

Coomes, D. L., Schofield, R. M., and
Schofield, B. R. (2005). Unilateral
and bilateral projections from cor-
tical cells to the inferior colliculus in
guinea pigs. Brain Res. 1042, 62–72.

Crabtree, J. W. (1998). Organization
in the auditory sector of the cat’s
thalamic reticular nucleus. J. Comp.
Neurol. 390, 167–182.

DeFelipe, J., Conley, M., and Jones,
E. G. (1986). Long-range focal
collateralization of axons arising
from corticocortical cells in monkey
sensory-motor cortex. J. Neurosci. 6,
3749–3766.

Doron, N. N., and LeDoux, J. E.
(2000). Cells in the posterior thal-
amus project to both amygdala and
temporal cortex: a quantitative ret-
rograde double-labeling study in the
rat. J. Comp. Neurol. 425, 257–274.

Doucet, J. R., Molavi, D. L., and Ryugo,
D. K. (2003). The source of cortico-
collicular and corticobulbar projec-
tions in area Te1 of the rat. Exp. Brain
Res. 153, 477–485.

Doucet, J. R., Rose, L., and Ryugo, D.
K. (2002). The cellular origin of cor-
ticofugal projections to the superior

olivary complex in the rat. Brain Res.
925, 28–41.

Doucet, J. R., and Ryugo, D. K. (2006).
Structural and functional classes
of multipolar cells in the ventral
cochlear nucleus. Anat. Rec. 288,
331–344.

Ehret, G. (1997). The auditory cortex. J.
Comp. Physiol. A 181, 547–557.

Fekete, D. M., Rouiller, E. M., Liberman,
M. C., and Ryugo, D. K. (1984). The
central projections of intracellularly
labeled auditory nerve fibers in cats.
J. Comp. Neurol. 229, 432–450.

Ferster, D., and LeVay, S. (1978). The
axonal arborizations of lateral genic-
ulate neurons in the striate cortex
of the cat. J. Comp. Neurol. 182,
923–944.

Fisher, G. R., Freeman, B., and
Rowe, M. J. (1983). Organi-
zation of parallel projections
from Pacinian afferent fibers to
somatosensory cortical areas I and
II in the cat. J. Neurophysiol. 49,
75–97.

Gilbert, C. D., and Wiesel, T. N.
(1979). Morphology and intra-
cortical projections of function-
ally characterised neurones in the
cat visual cortex. Nature 280,
120–125.

Glendenning, K. K., and Masterton, R.
B. (1983). Acoustic chiasm: efferent
projections of the lateral superior
olive. J. Neurosci. 3, 1521–1537.

González-Hernández, T. H., Galindo-
Mireles, D., Castañeyra-Perdomo,
A., and Ferres-Torres, R. (1991).
Divergent projections of project-
ing neurons of the inferior collicu-
lus to the medial geniculate body
and the contralateral inferior col-
liculus in the rat. Hear. Res. 52,
17–22.

Frontiers in Neuroanatomy www.frontiersin.org July 2011 | Volume 5 | Article 46 | 12

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Lee et al. Auditory branched axons

Goshgarian, H. G., and Roubal, P.
J. (1986). Origin and distribu-
tion of phrenic primary afferent
nerve fibers in the spinal cord
of the adult rat. Exp. Neurol. 92,
624–638.

Gray, C. M., Konig, P., Engel, A.
K., and Singer, W. (1989). Oscilla-
tory responses in cat visual cortex
exhibit inter-columnar synchroniza-
tion which reflects global stimulus
properties. Nature 338, 334–338.

Gray, C. M., and Singer, W. (1989).
Stimulus-specific neuronal oscilla-
tions in orientation columns of cat
visual cortex. Proc. Natl. Acad. Sci.
U.S.A. 86, 1698–1702.

Guinan, J. J. (2006). Olivocochlear effer-
ents: anatomy, physiology, function,
and the measurement of efferent
effects. Ear Hear. 27, 589–607.

Hashikawa, T. (1983). The inferior col-
liculopontine neurons of the cat in
relation to other collicular descend-
ing neurons. J. Comp. Neurol. 219,
241–249.

Hashikawa, T., Molinari, M., Rausell,
E., and Jones, E. G. (1995). Patchy
and laminar terminations of medial
geniculate axons in monkey audi-
tory cortex. J. Comp. Neurol. 362,
195–208.

Hayes, N. L., and Rustioni, A. (1979).
Dual projections of single neurons
are visualized simultaneously: use
of enzymatically inactive [3]HRP.
Brain Res. 165, 321–326.

Hazama, M., Kimura, A., Donishi, T.,
Sakoda, T., and Tamai, Y. (2004).
Topography of corticothalamic pro-
jections from the auditory cor-
tex of the rat. Neuroscience 124,
655–667.

Huang, C. L., and Winer, J. A. (2000).
Auditory thalamocortical projec-
tions in the cat: laminar and areal
patterns of input. J. Comp. Neurol.
427, 302–331.

Humphrey, A. L., Sur, M., Uhlrich, D.
J., and Sherman, S. M. (1985). Pro-
jection patterns of individual X- and
Y-cell axons from the lateral genicu-
late nucleus to cortical area 17 in the
cat. J. Comp. Neurol. 233, 159–189.

Imig, T. J., and Morel, A. (1985a). Tono-
topic organization in ventral nucleus
of medial geniculate body in the cat.
J. Neurophysiol. 53, 309–340.

Imig, T. J., and Morel, A. (1985b). Tono-
topic organization in lateral part of
posterior group of thalamic nuclei in
the cat. J. Neurophysiol. 53, 836–851.

Imig, T. J., and Reale, R. A. (1980).
Patterns of cortico-cortical connec-
tions related to tonotopic maps in
cat auditory cortex. J. Comp. Neurol.
192, 293–332.

Irvine, D. R. F. (1986). “The audi-
tory brainstem. A review of the
structure and function of auditory
brainstem processing mechanisms,”
in Progress in Sensory Physiology, eds
H. Autrum, D. Ottoson, E. R. Perl,
R. F. Schmidt, H. Shimazu, and W.
D. Willis (Berlin: Springer-Verlag),
1–279.

Jones, E. G. (1983). Lack of collateral
thalamocortical projections to fields
of the first somatic sensory cor-
tex in monkeys. Exp. Brain Res. 52,
375–384.

Kimura, A., Donishi, T., Okamoto, K.,
and Tamai, Y. (2005). Topography
of projections from the primary and
non-primary auditory cortical areas
to the medial geniculate body and
thalamic reticular nucleus in the rat.
Neuroscience 135, 1325–1342.

Kishan, A. U., Lee, C. C., and Winer, J. A.
(2008). Branched projections in the
auditory thalamocortical and cortic-
ocortical systems. Neuroscience 154,
283–293.

Kisvárday, Z. F., Kim, D.-S., Eysel, U. T.,
and Bonhoeffer, T. (1994). Relation-
ship between lateral inhibitory con-
nections and the topography of the
orientation map in cat visual cortex.
Eur. J. Neurosci. 6, 1619–1632.

Kurokawa, T., and Saito, H. (1995). Ret-
rograde axonal transport of different
fluorescent tracers from the neocor-
tex to the suprageniculate nucleus in
the rat. Hear. Res. 85, 103–108.

Kuwabara, N., DiCaprio, R. A., and
Zook, J. M. (1991). Afferents to the
medial nucleus of the trapezoid body
and their collateral projections. J.
Comp. Neurol. 314, 684–706.

Kuwabara, N., and Zook, J. M. (1991).
Classification of the principal cells
of the medial nucleus of the trape-
zoid body. J. Comp. Neurol. 314,
707–720.

Kuwabara, N., and Zook, J. M. (1992).
Projections to the medial superior
olive from the medial and lateral
nuclei of the trapezoid body in
rodents and bats. J. Comp. Neurol.
324, 522–538.

Kuwabara, N., and Zook, J. M. (1999).
Local collateral projections from the
medial superior olive to the superior
paraolivary nucleus in the gerbil.
Brain Res. 846, 59–71.

Kuypers, H. G. J. M., Bentivoglio,
M., Catsman-Berrevoets, C. E., and
Bharos, A. T. (1980). Double ret-
rograde labeling through divergent
axons collaterals, using two fluores-
cent tracers with the same excitation
wavelength which label different fea-
tures of the cell. Exp. Brain Res. 40,
383–392.

Lam, Y. W., and Sherman, S. M.
(2010). Functional organization of
the somatosensory cortical layer 6
feedback to the thalamus. Cereb.
Cortex 20, 13–24.

Landry, P., and Deschênes, M. (1981).
Intracortical arborizations and
receptive fields of identified ven-
trobasal thalamocortical afferents to
the primary somatic sensory cortex
in the cat. J. Comp. Neurol. 199,
345–372.

Lee, C. C., Imaizumi, K., Schreiner, C.
E., and Winer, J. A. (2004a). Concur-
rent tonotopic processing streams in
auditory cortex. Cereb. Cortex 14,
441–451.

Lee, C. C., Schreiner, C. E., Imaizumi, K.,
and Winer, J. A. (2004b). Tonotopic
and heterotopic projection systems
in physiologically defined auditory
cortex. Neuroscience 128, 871–887.

Lee, C. C., and Sherman, S. M.
(2010). Topography and physiology
of ascending streams in the auditory
tectothalamic pathway. Proc. Natl.
Acad. Sci. U.S.A. 107, 372–377.

Lee, C. C., and Winer, J. A. (2005).
Principles governing auditory fore-
brain connections. Cereb. Cortex 15,
1804–1814.

Lee, C. C., and Winer, J. A. (2008a).
Connections of cat auditory cortex:
I. Thalamocortical system. J. Comp.
Neurol. 507, 1879–1900.

Lee, C. C., and Winer, J. A. (2008b).
Connections of cat auditory cortex:
II. Commissural system. J. Comp.
Neurol. 507, 1901–1919.

Lee, C. C., and Winer, J. A. (2008c).
Connections of cat auditory cortex:
III. Corticocortical system. J. Comp.
Neurol. 507, 1920–1943.

Lee, C. C., and Winer, J. A. (2011).
Convergence of thalamic and corti-
cal pathways in cat auditory cortex.
Hear. Res. 274, 85–94.

LeVay, S. (1988). The patchy intrinsic
projections of visual cortex. Prog.
Brain Res. 75, 147–161.

Li, H., and Mizuno, N. (1997a). Col-
lateral projections from single neu-
rons in the dorsal column nuclei
to the inferior colliculus and the
ventrobasal thalamus: a retrograde
double-labeling study in the rat.
Neurosci. Lett. 225, 21–24.

Li, H., and Mizuno, N. (1997b). Direct
projections from nucleus X to the
external cortex of the inferior col-
liculus in the rat. Brain Res. 774,
200–206.

Llano, D. A., and Sherman, S. M.
(2008). Evidence for non-reciprocal
organization of the mouse auditory
thalamocortical-corticothalamic
projection systems. J. Comp. Neurol.

507, 1209–1227.
Lorente de Nó, R. (1981). The Primary

Acoustic Nuclei. New York: Raven
Press.

Merchán, M. A., and Berbel, P. (1996).
Anatomy of the ventral nucleus
of the lateral lemniscus in rats: a
nucleus with a concentric laminar
organization. J. Comp. Neurol. 372,
245–263.

Michalski, A., Gerstein, G. L.,
Czarkowska, J., and Tarnecki,
R. (1983). Interactions between cat
striate cortex neurons. Exp. Brain
Res. 51, 97–107.

Middlebrooks, J. C., and Zook, J. M.
(1983). Intrinsic organization of the
cat’s medial geniculate body iden-
tified by projections to binaural
response-specific bands in the pri-
mary auditory cortex. J. Neurosci. 3,
203–225.

Morel, A., and Imig, T. J. (1987). Thal-
amic projections to fields A, AI, P,
and VP in the cat auditory cortex. J.
Comp. Neurol. 265, 119–144.

Morest, D. K. (1968). The collateral sys-
tem of the medial nucleus of the
trapezoid body of the cat, its neu-
ronal architecture and relation to the
olivo-cochlear bundle. Brain Res. 9,
288–311.

Moriizumi, T., and Hattori, T. (1991a).
Non-dopaminergic projection from
the subparafascicular area to the
temporal cortex in the rat. Neurosci.
Lett. 129, 127–130.

Moriizumi, T., and Hattori, T. (1991b).
Pyramidal cells in rat temporoaudi-
tory cortex project to both striatum
and inferior colliculus. Brain Res.
Bull. 27, 141–144.

Mulders, W. H. A. M., Harvey, A. R., and
Robertson, D. (2007). Electrically
evoked responses in onset chop-
per neurons in guinea pig cochlear
nucleus. J. Neurophysiol. 97, 3288–
3297.

Mulders,W. H. A. M., and Robertson, D.
(2002). Inputs from the cochlea and
the inferior colliculus converge on
olivocochlear neurones. Hear. Res.
167, 206–213.

Mulders, W. H. A. M., and Robertson,
D. (2003). Olivocochlear collaterals
evoke excitatory effects in onset neu-
rones of the rat cochlear nucleus.
Hear. Res. 176, 113–121.

Namura, S., Takada, M., Kikuchi, H.,
and Mizuno, N. (1997). Collat-
eral projections of single neurons
in the posterior thalamic region
to both the temporal cortex and
the amygdala: a fluorescent ret-
rograde double-labeling study in
the rat. J. Comp. Neurol. 384,
59–70.

Frontiers in Neuroanatomy www.frontiersin.org July 2011 | Volume 5 | Article 46 | 13

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Lee et al. Auditory branched axons

Oertel, D., Wu, S. H., Garb, M. W., and
Dizack, C. (1990). Morphology and
physiology of cells in slice prepara-
tions of the posteroventral cochlear
nucleus of mice. J. Comp. Neurol.
295, 136–154.

Ojima, H. (1994). Terminal morphol-
ogy and distribution of corticothal-
amic fibers originating from layers 5
and 6 of cat primary auditory cortex.
Cereb. Cortex 6, 646–663.

Ojima, H., Honda, C. N., and Jones, E.
G. (1991). Patterns of axon collat-
eralization of identified supragran-
ular pyramidal neurons in the cat
auditory cortex. Cereb. Cortex 1,
80–94.

Ojima, H., Honda, C. N., and Jones,
E. G. (1992). Characteristics of
intracellularly injected infragranu-
lar pyramidal neurons in cat pri-
mary auditory cortex. Cereb. Cortex
2, 197–216.

Okoyama, S., Ohbayashi, M., Ito, M.,
and Harada, S. (2006). Neuronal
organization of the rat inferior col-
liculus participating in four major
auditory pathways. Hear. Res. 218,
72–80.

Oliver, D. L., Kuwada, S., Yin, T. C. T.,
Haberly, L. B., and Henkel, C. K.
(1991). Dendritic and axonal mor-
phology of HRP-injected neurons in
the inferior colliculus of the cat. J.
Comp. Neurol. 303, 75–100.

Peruzzi, D., Bartlett, E., Smith, P. H., and
Oliver, D. L. (1997). A monosynap-
tic GABAergic input from the infe-
rior colliculus to the medial genic-
ulate body in rat. J. Neurosci. 17,
3766–3777.

Read, H. L., Miller, L. M., Schreiner,
C. E., and Winer, J. A. (2008).
Two thalamic pathways to primary
auditory cortex. Neuroscience 152,
151–159.

Read, H. L., Winer, J. A., and Schreiner,
C. E. (2001). Modular organization
of intrinsic connections associated
with spectral tuning in cat auditory
cortex. Proc. Natl. Acad. Sci. U.S.A.
98, 8042–8047.

Reale, R. A., and Imig, T. J. (1980). Tono-
topic organization in auditory cor-
tex of the cat. J. Comp. Neurol. 192,
265–291.

Robertson, D.,Anderson, C. J., and Cole,
K. S. (1987a). Segregation of effer-
ent projections to different turns of
the guinea pig cochlea. Hear. Res. 25,
69–76.

Robertson, D., Cole, K. S., and
Corbett, K. (1987b). Quantitative
estimates of bilaterally projecting
medial olivocochlear neurones in the
guinea pig brainstem. Hear. Res. 27,
177–181.

Rouiller, E. M., and de Ribaupierre, F.
(1990). Arborization of corticothal-
amic axons in the auditory thalamus
of the cat: a PHA-L tracing study.
Neurosci. Lett. 108, 29–35.

Rüttgers, K., Aschoff, A., and Friauf,
E. (1990). Commissural connections
between the auditory cortices of the
rat. Brain Res. 509, 71–79.

Saldaña, E., Feliciano, M., and Mug-
naini, E. (1996). Distribution of
descending projections from pri-
mary auditory neocortex to inferior
colliculus mimics the topography of
intracollicular projections. J. Comp.
Neurol. 371, 15–40.

Salin, P. A., Bullier, J., and Kennedy, H.
(1989). Convergence and divergence
in the afferent projections to cat area
17. J. Comp. Neurol. 283, 486–512.

Schofield, B. R. (1991). Superior parao-
livary nucleus in the pigmented
guinea pig: separate classes of neu-
rons project to the inferior colliculus
and the cochlear nucleus. J. Comp.
Neurol. 312, 68–76.

Schofield, B. R. (1994). Projections to
the cochlear nuclei from principal
cells in the medial nucleus of the
trapezoid body in guinea pigs. J.
Comp. Neurol. 344, 83–100.

Schofield, B. R. (1995). Projections from
the cochlear nucleus to the superior
paraolivary nucleus in guinea pigs. J.
Comp. Neurol. 360, 135–149.

Schofield, B. R. (2001). Origins of pro-
jections from the inferior colliculus
to the cochlear nucleus in guinea
pigs. J. Comp. Neurol. 429, 206–220.

Schofield, B. R. (2002). Ascending and
descending projections from the
superior olivary complex in guinea
pigs: different cells project to the
cochlear nucleus and the inferior
colliculus. J. Comp. Neurol. 453,
217–225.

Schofield, B. R., and Cant, N. B. (1992).
Organization of the superior olivary
complex in the guinea pig: II. Pat-
terns of projection from the perioli-
vary nuclei to the inferior colliculus.
J. Comp. Neurol. 317, 438–455.

Schofield, B. R., and Cant, N. B.
(1996a). Projections from the ven-
tral cochlear nucleus to the infe-
rior colliculus and the contralat-
eral cochlear nucleus in guinea pigs.
Hear. Res. 102, 1–14.

Schofield, B. R., and Cant, N. B. (1996b).
Origins and targets of commissural
connections between cochlear nuclei
in guinea pigs. J. Comp. Neurol. 375,
128–146.

Schofield, B. R., and Cant, N. B.
(1999). Descending auditory path-
ways: projections from the inferior
colliculus contact superior olivary

cells that project bilaterally to the
cochlear nuclei. J. Comp. Neurol. 409,
210–223.

Schofield, B. R., Schofield, R. M.,
Sorensen, K. A., and Motts, S. D.
(2007). On the use of retrograde
tracers for identification of axon
collaterals with multiple fluorescent
retrograde tracers. Neuroscience 146,
773–783.

Sherman, S. M., and Guillery, R. W.
(2006). Exploring the Thalamus and
Its Role in Cortical Function. MIT
Press, Cambridge.

Silva, L. R., Amitai, Y., and Connors,
B. W. (1991). Intrinsic oscillations
of neocortex generated by layer
5 pyramidal neurons. Science 251,
432–435.

Smith, P. H., Joris, P. X., Carney, L.
H., and Yin, T. C. T. (1991). Pro-
jections of physiologically character-
ized globular bushy cell axons from
the cochlear nucleus of the cat. J.
Comp. Neurol. 304, 387–407.

Smith, P. H., Joris, P. X., and Yin, T.
C. T. (1998). Anatomy and phys-
iology of principal cells of the
medial nucleus of the trapezoid body
(MNTB) of the cat. J. Neurophysiol.
79, 3127–3142.

Song, W.-J., Kawaguchi, H., Totoki,
S., Inoue, Y., Katura, T., Maeda,
S., Inagaki, S., Shirasawa, H., and
Nishimura, M. (2006). Cortical
intrinsic circuits can support activ-
ity propagation through an isofre-
quency strip of the guinea pig pri-
mary auditory cortex. Cereb. Cortex
16, 718–729.

Spirou, G. A., Brownell, W. E., and
Zidanic, M. (1990). Recordings from
cat trapezoid body and HRP label-
ing of globular bushy cell axons. J.
Neurophysiol. 63, 1169–1190.

Takayanagi, M., and Ojima, H. (2006).
Microtopography of the dual cor-
ticothalamic projections originat-
ing from domains along the fre-
quency axis of the cat primary
auditory cortex. Neuroscience 142,
769–780.

Tanaka, K., Katsumi, O., Tokunaga, A.,
and Sugita, S. (1985). The organi-
zation of neurons in the nucleus
of the lateral lemniscus projecting
to the superior and inferior col-
liculi in the rat. Brain Res. 341,
252–260.

Tanigawa, H., Wang, Q., and Fujita, I.
(2005). Organization of horizontal
axons in the inferior temporal cor-
tex and primary visual cortex of the
macaque monkey. Cereb. Cortex 15,
1887–1899.

Thompson, G. C., and Thompson,A. M.
(1986). Olivocochlear neurons in the

squirrel monkey brainstem. J. Comp.
Neurol. 254, 246–258.

Velenovsky, D. S., Cetas, J. S., Price,
R. O., Sinex, D. G., and McMullen,
N. T. (2003). Functional subregions
in primary auditory cortex defined
by thalamocortical terminal arbors:
an electrophysiological and antero-
grade labeling study. J. Neurosci. 23,
308–316.

Weinberg, R., Pierce, J., and Rus-
tioni, A. (1990). Single fiber studies
of ascending input to the cuneate
nucleus of cats: I. Morphometry
of primary afferent fibers. J. Comp.
Neurol. 300, 113–133.

Willard, F. H., and Martin, G. F. (1984).
Collateral innervation of the infe-
rior colliculus in the North Amer-
ican opossum: a study using flu-
orescent markers in the double-
labeling paradigm. Brain Res. 303,
171–182.

Winer, J. A. (1986). Neurons accumulat-
ing [3H]gamma-aminobutyric acid
(GABA) in supragranular layers of
cat primary auditory cortex (AI).
Neuroscience 19, 771–793.

Winer, J. A. (2006). Decoding the audi-
tory corticofugal systems. Hear. Res.
212, 1–8.

Winer, J. A., Diehl, J. J., and Larue,
D. T. (2001). Projections of audi-
tory cortex to the medial geniculate
body of the cat. J. Comp. Neurol. 430,
27–55.

Winer, J. A., and Larue, D. T. (1996).
Evolution of GABAergic circuitry in
the mammalian medial geniculate
body. Proc. Natl. Acad. Sci. U.S.A. 93,
3083–3087.

Winer, J. A., Larue, D. T., Diehl, J. J.,
and Hefti, B. J. (1998). Auditory
cortical projections to the cat infe-
rior colliculus. J. Comp. Neurol. 400,
147–174.

Winer, J. A., Larue, D. T., and Huang,
C. L. (1999). Two systems of
giant axon terminals in the cat
medial geniculate body: conver-
gence of cortical and GABAer-
gic inputs. J. Comp. Neurol. 413,
181–197.

Winer, J. A., and Lee, C. C. (2007). The
distributed auditory cortex. Hear.
Res. 229, 3–13.

Winer, J. A., Lee, C. C., Imaizumi, K., and
Schreiner, C. E. (2004). “Challenges
to a theory of neuroanatomical the-
ory of forebrain auditory plasticity,”
in Plasticity and Signal Representa-
tion in the Auditory System, eds J.
Syka and M. M. Merzenich (New
York: Kluwer/Academic Plenum
Publishers), 99–107.

Winer, J. A., Saint Marie, R. L., Larue,
D. T., and Oliver, D. L. (1996).

Frontiers in Neuroanatomy www.frontiersin.org July 2011 | Volume 5 | Article 46 | 14

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Lee et al. Auditory branched axons

GABAergic feedforward projec-
tions from the inferior colliculus
to the medial geniculate body.
Proc. Natl. Acad. Sci. U.S.A. 93,
8005–8010.

Winer, J. A., and Schreiner, C. E. (2005).
“The central auditory system: a func-
tional analysis,” in The Inferior Col-
liculus, eds J. A. Winer and C.
E. Schreiner (New York: Springer-
Verlag), 1–68.

Wong, D., and Kelly, J. P. (1981). Differ-
entially projecting cells in individual

layers of the auditory cortex: a
double-labeling study. Brain Res.
230, 362–366.

Ye, Y., Machado, D. G., and Kim, D. O.
(2000). Projection of the marginal
shell of the anteroventral cochlear
nucleus to olivocochlear neurons in
the cat. J. Comp. Neurol. 420, 127–
138.

Zhang, Z. W., and Deschênes, M.
(1997). Intracortical axonal
projections of lamina VI cells
of the primary somatosensory

cortex in the rat: a single-cell
labeling study. J. Neurosci. 17,
6365–6379.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 12 May 2011; accepted: 09 July
2011; published online: 28 July 2011.

Citation: Lee CC, Kishan AU and
Winer JA (2011) Wiring of diver-
gent networks in the central auditory
system. Front. Neuroanat. 5:46. doi:
10.3389/fnana.2011.00046
Copyright © 2011 Lee, Kishan and Winer.
This is an open-access article subject
to a non-exclusive license between the
authors and Frontiers Media SA, which
permits use, distribution and reproduc-
tion in other forums, provided the original
authors and source are credited and other
Frontiers conditions are complied with.

Frontiers in Neuroanatomy www.frontiersin.org July 2011 | Volume 5 | Article 46 | 15

http://dx.doi.org/10.3389/fnana.2011.00046
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive

	Wiring of divergent networks in the central auditory system
	INTRODUCTION
	BRANCHED AXONS IN THE AUDITORY CORTICAL SYSTEM
	THALAMOCORTICAL SYSTEM
	CORTICOCORTICAL SYSTEM
	CORTICOFUGAL PROJECTIONS

	BRANCHED AXONS IN THE AUDITORY BRAINSTEM ANDMIDBRAIN
	BRAINSTEM PROJECTIONS
	PROJECTIONS OF THE INFERIOR COLLICULUS

	TECHNICAL CONSIDERATIONS
	THEMATIC PERSPECTIVE
	ALTERNATIVES TO COLLATERALIZATION IN THE AUDITORYCORTEX
	COLLATERALS IN OTHER MODALITIES
	SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


