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Multifunctional scaffolding protein beta-arrestins (βArr) and the G protein-receptor kinases
are involved in the desensitization of several G protein-coupled receptors (GPCR). How-
ever, arrestins can also contribute to GPCR signaling independently from G proteins. In
this review, we focus on the role of βArr in the regulation of dopamine receptor functions
in the striatum. First, we present in vivo evidence supporting a role for these proteins in
the regulation of dopamine receptor desensitization. Second, we provide an overview of
the roles of βArr2 in the regulation of extracellular-signal-regulated kinases/MAP kinases
and Akt/GSK3 signaling pathways downstream of the D1 and D2 dopamine receptors.
Thereafter, we examine the possible involvement of βArr-mediated signaling in the action
of dopaminergic drugs used for the treatment of mental disorders. Finally, we focus on
different potential cellular proteins regulated by βArr-mediated signaling which could con-
tribute to the regulation of behavioral responses to dopamine. Overall, the identification
of a cell signaling function for βArr downstream of dopamine receptors underscores the
intricate complexity of the intertwined mechanisms regulating and mediating cell signaling
in the basal ganglia. Understanding these mechanisms may lead to a better comprehen-
sion of the several roles played by these structures in the regulation of mood and to the
development of new psychoactive drugs having better therapeutic efficacy.
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INTRODUCTION
Dopamine is a catecholamine neurotransmitter that has several
functions in the brain including the regulation of locomotion, cog-
nition, emotions, and endocrine secretion (for review see Carls-
son, 2001). Consequently, abnormal dopamine signaling could
be implicated in many neuropsychiatric disorders such as schiz-
ophrenia, bipolar disorder, depression, Parkinson’s disease, and
drug abuse. This broad functional implication of the dopaminer-
gic system is, at least in part, explained by its prominent cerebral
innervation.

Anatomically, dopamine neurons extend widely in the cen-
tral nervous system and could be dissociated in five sub-systems:
nigrostriatal, mesolimbic, mesocortical, tuberoinfundibular, and
tuberohypophysial (Bannon et al., 1983; Bjorklund and Stenevi,
1984). Among these, one of the major dopamine containing
regions is the nigrostriatal pathway, composed of dopamine neu-
rons originating from substantia nigra and ventral tegmental area
that project respectively to the caudate putamen and nucleus
accumbens, among other areas (Gerfen and Surmeier, 2011).

Dopamine signaling is mediated by two different groups of
G protein-coupled receptors (GPCR). The first category, the D1
family, comprises the D1- and D5-receptors (D1R and D5R). The
second family, named D2-class receptors, is formed by the D3R,
D4R along with the short and long splices variants of the D2R (for a
review see Missale et al., 1998; Beaulieu and Gainetdinov, 2011). In
the basal ganglia, D1R is mostly expressed by GABAergic medium

spiny neurons (MSN) of the caudate putamen (striatum) while
D2R are found in both MSN and dopamine neurons. Recent stud-
ies using bacterial artificial chromosome (BAC) transgenic mice
expressing specific reporters (e.g., eGFP and/or dtTomato) under
the control of the D1R or D2R gene promoters, revealed a high
level of segregation of D1R- and D2R-containing MSN (Figure 1)
of the striatum and nucleus accumbens (Shuen et al., 2008; Valjent
et al., 2009). These data confirmed that MSN could be separated
into two subgroups according to their projection areas and the
type of dopaminergic receptors that they express. One of these
subgroups includes MSN of the direct striatonigral pathway, which
mostly express D1R, and project to the medial globus pallidus and
substantia nigra pars reticulata. The second group is composed
of MSN of the “indirect” striatopallidal track that project to the
lateral globus pallidus and express preferentially D2R (Gerfen and
Surmeier, 2011). In the striatum, activation of D1R appears to
facilitate transmission along the direct pathway while activation
of post-synaptic D2R would inhibit transmission along the indi-
rect pathway (Parent et al., 2000; Kravitz et al., 2010). However,
it is noteworthy that a small subpopulation of MSN synthesizes
both D1R and D2R and may have different dopamine receptor
signaling properties (Rashid et al., 2007; Valjent et al., 2009).

Functionally, dopamine receptors signal through G protein-
dependent cellular processes. D1R is mostly coupled to Gαs/olf
proteins and stimulate the activity of adenylate cyclase and the
production of the second messenger cAMP (Spano et al., 1978;
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FIGURE 1 | D1 and D2 receptors are segregated in different cells in the

striatum and in the nucleus accumbens. The first image (left) shows
striatal cells of the direct striatonigral pathway expressing D1 receptors
(specific reporter dtTomato under the control of D1R promotor). Second
image (middle) show striatal cells of the indirect striatopallidal track
expressing D2 receptors (specific reporter eGFP under the control of D2R
promotor). The third picture (right) shows the lack of colocalization of D1 and
D2 receptors in striatal cells (yellow parts of cells are cell overlap artifacts).

Kebabian and Calne, 1979). In contrast, D2R is associated to Gαi/o
proteins and inhibit the production of cAMP. The coupling of
dopamine receptors to different G proteins allows this neurotrans-
mitter to act on multiple cell signaling molecules such as kinases
and phosphatases (Beaulieu and Gainetdinov, 2011). As for other
GPCR, activation of dopamine receptors is quickly followed by
their rapid phosphorylation by GPCR kinases (G protein-receptor
kinases, GRK; Premont and Gainetdinov, 2007). This results in
the recruitment of multifunctional scaffolding proteins termed
beta-arrestin 1 and beta-arrestin 2 (βArr1 and βArr2) in order to
desensitize and internalize GPCR (Gainetdinov et al., 2004; Shenoy
and Lefkowitz, 2005). The recruitment of at least βArr2 to D1R
and D2R has also been reported to activate cellular signaling in
a G protein-independent manner by inducing the formation of
functional protein complexes in which βArr acts as a scaffold for
different kinases and phosphatases (Beaulieu et al., 2005; Urs et al.,
2011).

In this review, we provide an overview of our current under-
standing of the different contributions of βArr to dopamine recep-
tor functions putting an emphasis on studies conducted directly in
the mouse striatum. First,we present an outline of in vivo studies of
the involvement of βArr and GRK in dopamine receptor desensi-
tization and internalization. We then summarize different lines of
evidence supporting the implication of βArr-dependent signaling
events downstream of both D1R and D2R. Thereafter, we exam-
ine the possible involvement of βArr and its molecular interactors
in the action of drugs used for treatment of psychiatric disorders.
Finally, we discuss briefly evidences pointing toward possible mol-
ecular mechanisms through which βArr-mediated signaling can
contribute to the regulation of neuronal functions by dopamine.

A ROLE FOR BETA-ARRESTIN IN THE REGULATION OF
DOPAMINE RECEPTOR FUNCTIONS
Following receptor stimulation, homologous GPCR desensitiza-
tion constitutes a crucial mechanism to protect cells against over-
stimulation of the receptors. This phenomenon begins with the
phosphorylation at specific sites of the activated GPCR by GRK.
This first step is followed by the recruitment and the binding
of the multifunctional adaptor proteins arrestins (Lohse et al.,

1990a; Pitcher et al., 1998; Pierce and Lefkowitz, 2001; Gainetdi-
nov et al., 2004; Premont, 2005). Association of βArr to GPCR
prevents further G protein activation therefore ensuing receptor
desensitization (Lohse et al., 1990b). βArr also promote recep-
tor internalization from the cellular membrane to the cytoplasm
through the subsequent binding of arrestins to the clathrin adaptor
protein adaptin (AP2; Laporte et al., 2002) and to clathrin itself
(Krupnick et al., 1997). This process triggers clathrin-mediated
endocytosis of the receptor and either its subsequent recycling to
the cell surface or degradation (Figure 2; Ferguson et al., 1996;
Ferguson, 2001; Claing et al., 2002; Claing and Laporte, 2005).
Dopamine receptor activity is modulated by desensitization via
βArr1 and βArr2. Evidences that support the involvement of βArr1
in the regulation of D1R and D2R, come from in vitro studies (Kim
et al., 2001; Oakley et al., 2001). Furthermore, research conducted
in heterologous cellular systems also indicates a role for βArr2 in
desensitization of D1R, D2R, and D3R (Kim et al., 2001; Oak-
ley et al., 2001; Gainetdinov et al., 2004; Lan et al., 2009). Thus,
βArr proteins could serve as key regulators in dopamine receptor
activity.

In vivo studies using different enhancers of dopamine neuro-
transmission (cocaine and amphetamine) and dopamine agonists
(apomorphine), have resulted in a more complex picture of the
role of arrestins in dopamine receptor functions (Gainetdinov
et al., 2004; Beaulieu et al., 2009). The psychostimulants cocaine
and amphetamine both affect the functions of the dopamine trans-
porter (DAT) and induce an increase of extracellular dopamine
levels, resulting in over-stimulation of dopamine receptors. In nor-
mal mice, enhancement of striatal dopaminergic activity following
acute administration of these drugs leads to a hyperactive locomo-
tion phenotype. Impairment of desensitization by deleting one of
its mediators, GRK6, in GRK6-knock-out mice (GRK6-KO), exac-
erbates psychostimulant-induced hyperactivity as compared to
wild-type (WT) animals (Gainetdinov et al., 2003). Furthermore,
characterization of dopamine receptor functions in these mice
has shown that a lack of GRK6 results in reduced D2R desensiti-
zation. This indicates that impaired desensitization of dopamine
receptors in mice lacking GRK6 actively contributes to enhanced
locomotor response to psychostimulants acting on dopaminergic
neurotransmission.

Surprisingly, inactivation of other components of the desen-
sitization machinery such as βArr1 and βArr2 does not repro-
duce the behavioral effects observed in GRK6-KO mice after
dopaminergic drugs exposure. Indeed, βArr1-KO and βArr2-
KO mice both display a reduced behavioral responsiveness to
the non-selective dopamine agonist apomorphine (Gainetdinov
et al., 2004; Beaulieu et al., 2005). In addition, reduced locomotor
responsiveness to amphetamine has also been reported in βArr2-
KO mice (Beaulieu et al., 2005) while behavioral responsiveness
to cocaine does not appear to be affected by an absence of either
βArr1 or βArr2 (Bohn et al., 2003; Gainetdinov et al., 2004). βArr2
also appears to contribute to the dopamine-dependent effect of
the opiate drug morphine. Administration of morphine in mice
produces locomotor hyperactivity by increasing dopamine release
from the presynaptic terminals (Kuschinsky and Hornykiewicz,
1974). Interestingly, this behavioral effect of enhanced dopamine
neurotransmission resulting from morphine administration has
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FIGURE 2 | Schematic representation of dopaminergic desensitization

and signaling. (A) After stimulation, GPCR/DAR regulates different
second messengers like adenylate cyclase (AC), cyclic adenosine
monophosphate (cAMP), protein kinase A (PKA) in a G protein-dependent
way (step1). Signaling induces the recruitment of G protein-receptor
kinases family (GRK) and of multifunctional scaffolding protein βarrestin,
which induce the formation of the receptor/protein complex
(GPCR/AP2/βarrestin/clathrin; step2). GPCR-associated protein complex is

internalized in clathrin coated-pits and complex is disassembled (step3).
Internalized GPCR is recycled to membrane or degradated by proteasome
(step4). (B) D1 and D2 receptors can regulate several molecular pathways
through different G protein-independent signalling. D1 receptor (D1R) may
regulates protein complex composed of βarrestin 2/Erk/Raf/MEK and
induces Erk activation. D2 receptor (D2R) modulates the Akt/βarrestin
2/PP2A protein complex and the Akt downstream substrate GSK3 that is
inhibited by Akt.

also been reported to be reduced in mice deficient for βArr2
(Bohn et al., 2003). Finally, the locomotor consequences of a
genetic enhancement of dopamine tones also appear to be par-
tially counteracted by a loss of βArr2. In mice, genetic deletion of
the DAT abolishes dopamine reuptake (Jones et al., 1998). This
induces an increase of extra synaptic dopamine levels and sub-
sequent hyperactive phenotype (Giros et al., 1996; Gainetdinov
et al., 1999). However, double mutant mice lacking both βArr2
and the DAT display a reduction in this novelty-induced locomo-
tor hyperactivity phenotype (Beaulieu et al., 2005). Overall, results
from these different studies indicate that a lack of βArr1 or βArr2
leads to a reduction in the locomotor response to dopamine recep-
tor stimulation. The only major exception is locomotor response
to acute cocaine, which is not overtly affected by a lack of either
βArr1 or βArr2. The reasons these discrepancies remain obscure.
One possibility is that acute cocaine administration may trigger
locomotors responses by acting also on other neurotransmitter
systems. In line with this, it is of interest that acute but not chronic
locomotors response to cocaine has been shown to be severely
reduced in mice expressing low levels of the glutamate/NMDA
receptor subunit NR1 while locomotors responses to ampheta-
mine were left essentially unaffected in these mice (Ramsey et al.,
2008).

In conclusion, while βAR and GRK appear to play a role in
dopamine receptor desensitization and internalization in cul-
tured cells systems, this role is only clearly supported at the
behavioral level by data obtained in GRK6-KO mice. In con-
trast, lack of βArr has either a minimal effect or reduced the
behavioral responsiveness to certain drugs acting on dopamine
functions therefore suggesting that βArr may be implicated in

different cellular processes regulating dopaminergic signaling and
locomotor behaviors (Beaulieu et al., 2005, 2007a; Urs et al., 2011).

REGULATION OF ERK/MAP KINASE SIGNALING BY βArr2
AND D1R
Dopamine receptor-regulated behaviors are frequently associ-
ated to the activation of extracellular-signal-regulated kinases
(ERK)/MAP kinase signaling (Beaulieu et al., 2006; Girault et al.,
2007; Beaulieu and Gainetdinov, 2011). The serine threonine
kinase ERK is positively regulated following its phosphorylation
by the MAP kinase–kinase, MAPK/ERK kinase (MEK) that is
itself activated by the MAP kinase–kinase–kinase RAF follow-
ing the activation of different types of receptors including several
receptor tyrosine kinases (RTK) and GPCR (Girault et al., 2007).
Different lines of evidence have demonstrated the importance of
ERK-mediated signaling in the maintenance of dopamine recep-
tor functions. For instance, activation of D1R has been shown
to activate ERK in the mouse striatum while conversely inhibi-
tion of ERK leads to reductions of hyper-locomotor responses in
DAT-KO mice or following administration of amphetamine or
cocaine (Berhow et al., 1996; Valjent et al., 2000, 2006a; Beaulieu
et al., 2006; Girault et al., 2007). Furthermore, activation of ERK by
dopamine receptors also appears to play an important role in long-
term changes in synaptic plasticity in response to drug of abuse
(Miller and Marshall, 2005) or in response to l-DOPA therapy for
Parkinson’s disease (Santini et al., 2007).

In transfected cells, βArr2 can support the formation of a mito-
gen activated protein kinase (MAP kinase) complex composed
of βArr2 and the MAP kinase pathway kinases RAF, MEK, and
ERK in response to GPCR activation (Ahn et al., 2004; Shenoy
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and Lefkowitz, 2005) resulting in an activation of ERK (Luttrell
et al., 2001; Wei et al., 2004; Luttrell and Gesty-Palmer, 2010).
Therefore, βArr2 may serve to promote ERK-mediated signal-
ing underlying dopamine-regulated behaviors. Recent evidence
suggests that βArr2 may participate in locomotor response and
activation of ERK in response to D1R stimulation. Urs et al. (2011)
have reported that acute morphine administration increases the
interaction between βArr2 and ERK in the striatum of WT but
not of D1R-KO mice as measured by co-immunoprecipitation
assays. In addition, morphine-dependent locomotion and activa-
tion of striatal ERK2 by morphine were curtailed in mice lacking
either the D1R or βArr2. Finally, co-administration of the indi-
rect ERK inhibitor SL327 along with morphine to WT mice also
reduced the locomotor response to morphine. This suggests that
the D1R may regulate ERK signaling and may contribute to the
dopamine-mediated locomotor responses to morphine by acting
via a βArr2-dependent mechanism. However, there is also strong
evidence for a role of canonical G protein/cAMP-mediated mech-
anisms in the regulation of ERK activity by D1R (Girault et al.,
2007). Therefore, results obtained in this study following admin-
istration of SL327 or in D1R-KO mice may also reflect an effect
of these experimental conditions on other D1R receptor signaling
mechanisms and further studies are needed to establish the con-
tribution of G protein and βArr2 in the regulation of ERK activity
and behavior by D1R.

THE REGULATION OF Akt AND GSK3 BY DOPAMINE AND
BETA-ARRESTIN 2
Over the years, several lines of evidence have pointed toward the
contribution of βArr-mediated mechanisms in the regulation of
Akt and GSK3, two serine/threonine kinases, by dopamine.

Akt, also termed protein kinase B, is known to be involved in
various cellular processes such as transcription, glucose metabo-
lism, proliferation, migration, and with insulin and neurotrophin
action through the stimulation of RTK (Cross et al., 1995;
Alessi et al., 1996; Scheid and Woodgett, 2001). Activation of
RTK and some GPCR regulates the phosphoinositol-3 kinase
(PI3K), which converts phophatidyl-inositol-2-phosphate (PIP2)
to phosphatidyl-inositol-3-phosphate (PIP3; For review, Martelli
et al., 2010). Then, the newly formed PIP3 interacts with the pleck-
strin homology domain of Akt, inducing its recruitment to the
plasma membrane. This cellular process results in the phospho-
rylation of Akt at threonine 308 and serine 473 residues by two
phosphatidyl-dependent kinases, PDK1 and PDK2/rictor-mTOR,
respectively (Scheid and Woodgett, 2001; Jacinto et al., 2006). Once
activated, Akt phosphorylates in turn several substrates including
GSK3 (Rossig et al., 2002).

Originally known for its role in the control of glycogenesis in
response to insulin, GSK3 is implicated in numerous physiologi-
cal processes such as embryonic development, cell differentiation,
cell survival, Wnt signaling, apoptosis as well as serotonin, and
dopamine receptor signaling (Woodgett, 2003; Beaulieu et al.,
2004, 2008b; Li et al., 2004). Mammalian cells express two isoforms
of GSK3, GSK3α, and GSK3β, which are constitutively active and
can phosphorylate several cellular substrates (Woodgett, 1990).
GSK3α and GSK3β are negatively regulated by several kinases
involved in PI3K and MAP kinases signaling pathways (Frame

and Cohen, 2001). Additionally, Akt phosphorylation inhibits the
two isoforms of GSK3 in response to growth factors and hor-
mones, including BDNF, IGF, and insulin (Yamada et al., 2002;
Altar et al., 2008). Specifically, Akt phosphorylates specific residues
serine 21 for GSK3α and serine 9 for GSK3β that are located in
the N-terminal domains of both GSK3 isoforms (Stambolic and
Woodgett, 1994; Frame and Cohen, 2001). Therefore, Akt is an
important regulator of various signaling cascades involving GSK3.

Experiments using DAT-KO mice, dopamine depletion or
dopamine receptors agonist/antagonists have provided converging
evidence for a negative regulation of Akt resulting in an activa-
tion of GSK3 isoforms by D2-class receptors in mammals and
other vertebrates (Beaulieu et al., 2004; Bychkov et al., 2007; Chen
et al., 2007; Souza et al., 2011). Consequently, pharmacological
D2-class receptors antagonists induce Akt activation and subse-
quent GSK3 inhibition (Beaulieu et al., 2004; Emamian et al.,
2004). Furthermore, experiments conducted using mice lacking
different dopamine receptors showed that a loss of D2R but not
D1R prevented the inactivation of striatal Akt by drugs acting on
dopamine neurotransmission (Beaulieu et al., 2007b). In contrast,
mice deficient for the D3R exhibit a reduced responsiveness of Akt
phosphorylation to dopaminergic drugs. Therefore, D2R would
be crucial for the inhibition of Akt by dopamine, while the D3R
appears to potentiate the D2R dopamine response (Beaulieu et al.,
2007b).

It has been demonstrated that βArr2 is actively involved in
dopamine-regulated Akt inhibition (Beaulieu et al., 2004, 2005).
The role of βArr2 in mediating the regulation of Akt and GSK3
by D2R is supported both by behavioral and direct in vivo bio-
chemical observations in pharmacological and genetic models of
enhanced dopamine neurotransmission. At the behavioral level,
βArr2-KO mice present lower locomotor activity in response to
the dopamine-dependent action of amphetamine and apomor-
phine (Gainetdinov et al., 2004; Beaulieu et al., 2005). In line with
this, increased locomotor activity observed in mice lacking the
DAT is also antagonized by the absence of βArr2 in double knock-
out animals (Beaulieu et al., 2005). At the biochemical level, both
amphetamine and apomorphine have been shown to inhibit the
phosphorylation and activation of Akt in the striatum of WT mice
while these two drugs failed to inhibit Akt in βArr2-KO mice.
Furthermore, genetically increased dopaminergic tones were also
shown not to affect Akt activity in mice deficient for both DAT
and βArr2, suggesting an important role of this scaffolding pro-
tein in Akt regulation by dopamine. Further characterization of the
molecular mechanisms underlying the regulation of Akt by D2R
following receptor stimulation has shown that βArr2 is involved in
the formation of a protein complex composed of Akt, βArr2, and
protein phosphatase 2A (PP2A; Beaulieu et al., 2005). Once in the
complex, PP2A dephosphorylates and deactivates Akt, resulting in
the activation of GSK3 (Beaulieu et al., 2004, 2005).

One interesting observation emerging from the regulation of
this pathway is a difference of kinetics that points toward the
existence of two modalities of cell signaling responses to slow
synaptic neurotransmission. Indeed, inhibition of Akt is a slower
and more persistent phenomenon than events mediated by the
cAMP–PKA pathway (Beaulieu et al., 2004, 2005, 2007a). On
the one hand, administration of amphetamine in mice induces
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a cAMP-dependent phosphorylation of ERK and DARPP-32 dur-
ing the first 30 min after drug administration (Valjent et al., 2005).
On the other hand, Akt inhibition following acute treatment with
amphetamine becomes significant after 30 min and persists over
the duration of the drug behavioral effects (Beaulieu et al., 2007a,
2005). These different kinetics suggest that dopamine-regulated
behaviors and action of dopaminergic drugs depend, at least in
part, from different and temporally successive waves of GPCR
signaling mediated respectively by G proteins and the βArr2.

ARRESTIN/Akt/GSK3, DOPAMINE SIGNALING AS A TARGET
FOR MOOD STABILIZERS
The most prescribed and studied mood stabilizer, lithium, is
known for its therapeutic effects in the treatment of bipolar disor-
ders (Cade, 1949; Schou et al., 1954; Phiel and Klein, 2001; Blanco
et al., 2002). However more than 60 years after its introduction,
the molecular mechanisms underlying the therapeutic actions of
lithium are still unknown. Among other proposed mechanisms,
lithium can directly and indirectly inhibit the activity of GSK3
(Stambolic et al., 1996; O’Brien and Klein, 2009). In mice, indirect
inhibition of GSK3 occurs following the activation of its direct reg-
ulator Akt (Chalecka-Franaszek and Chuang, 1999; Beaulieu et al.,
2004, 2008a). It has recently been demonstrated that this effect
of lithium on the activity of Akt could be mediated by βArr2, at
least in the mouse striatum (Beaulieu et al., 2008a). Biochemi-
cally, lithium disrupts the βArr2/Akt/PP2A signaling complex that
is regulated by D2R (Figure 3). This leads to an overactivation
of Akt and subsequent indirect GSK3 inhibition. In βArr2-KO
mice, lithium fails to inhibit GSK3 and to activate Akt as it does
in the striatum of WT mice (Beaulieu et al., 2008a). Furthermore,
in these mutant mice, chronic treatment with lithium does not
exert antimanic and antidepressant-like effects seen in control
animals. This finding provides strong correlative evidence that
lithium could exerts some of its biochemical and behavioral effects
by interfering with the dopamine associated-βArr2 signaling com-
plex involved in the regulation of Akt and GSK3. This possible
mechanism of action is further supported by recent observations
indicating that expression of the Akt isoform Akt1 is also essential
for the regulation of some behaviors by lithium in mice (Pan et al.,
2011). Interestingly, other mood stabilizers such as valproic acid
and lamotrigine might also modulate Akt/GSK3 signaling (Chen
et al., 1999; Li et al., 2002; Beaulieu and Caron, 2008). Indeed,
both mood stabilizers decrease the phosphorylation of GSK3 sub-
strates (Gould and Manji, 2005). However, these different drugs
have to be further studied to investigate a possible involvement of
Akt/GSK3 signaling in their therapeutic effects.

A ROLE FOR Akt AND GSK3-MEDIATED DOPAMINE
SIGNALING IN THE ACTION OF ANTIPSYCHOTICS
Antipsychotics are a heterogeneous family of drugs used for the
treatment of several psychiatric disorders, mostly schizophrenia.
Among these drugs, so called first generation or “typical” antipsy-
chotics like haloperidol and chlorpromazine are believed to exert
most of their therapeutic action in schizophrenia by blocking D2-
class receptors (Snyder, 1976). In addition, more recent second
generation or “atypical” antipsychotics (AA) like clozapine have
been shown to retain D2-class receptor antagonist functions while

FIGURE 3 |The mood stabilizer lithium disrupts the D2R-associated

protein complex composed of Akt, PP2A, and beta-arrestin 2. The
consequences are an overactivation of Akt, inhibition of GSK3 and
correlated Akt/GSK3-regulated behaviors.

also acting on other “non-dopamine” receptor types (Meltzer,
1991; Kapur and Remington, 2001). Considering the role of D2R
in regulating the βArr2/Akt/GSK3 pathway, it is not surprising that
antipsychotics with D2R antagonist properties have been reported
to activate Akt and inhibit GSK3 in vivo (Emamian et al., 2004;
Alimohamad et al., 2005; Beaulieu et al., 2007a; Li et al., 2007).
Among these, haloperidol prevents the inhibition of Akt and con-
comitant activation of GSK3 by dopamine (Beaulieu et al., 2004;
Emamian et al., 2004). Similarly AA such as clozapine, olanza-
pine, risperidone, quetiapine, and ziprasidone, have been shown
to activate Akt or mimic its activity by increasing GSK3α and
GSK3β phosphorylation in the striatum, cortex, and hippocam-
pus (Alimohamad et al., 2005; Li et al., 2007; Beaulieu et al., 2009).
Unfortunately, the functional involvement of βArr2 has not been
explored in these in vivo studies. However, in vitro experiments
using bioluminescent resonance energy transfer (BRET) have sug-
gested that both typical and AA may induce some of their effects
by antagonizing the recruitment of βArr2 to the D2R long iso-
form (D2LR; Masri et al., 2008). More specifically, this study has
shown three different effects of antipsychotics on the inhibition
of cAMP-synthesis and arrestin recruitment in response to D2LR
stimulation. Some drugs, like haloperidol, antagonized both the
regulation of cAMP and the recruitment of βArr2 to the D2LR
with a similar efficacy. In contrast, other drugs like clozapine
appeared to be stronger antagonists of βArr2 recruitment than
of cAMP modulation. Finally, other antipsychotics like aripipra-
zole acted as partial antagonists of cAMP regulation while fully
inhibiting βArr2 recruitment. Taken together, these results suggest
that antipsychotics share common antagonistic properties toward
D2R/βArr2-mediated signaling while having different effects on
the control of cAMP production by this same receptor, at least
in transfected cells. It would thus be interesting to explore the
physiological action of each of these drugs on Akt and GSK3 in vivo
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to establish whether the effects of these psychoactive drugs are
closely related to D2R/βArr2/Akt/GSK3 signaling.

It should be noted however, the implication of D2R in the
regulation of Akt and GSK3 by AA can also be explained by
other mechanisms. One alternative could involve serotonin neuro-
transmission. Indeed, most AAs are 5-HT2A receptors antagonists
(Kapur and Remington, 2001). Interestingly, the 5-HT2A agonist
2,5-dimethoxy-4-iodoamphetamine (DOI) activates GSK3 in vivo
(Li et al., 2004) while AA have the opposite effect on the activity of
this kinase (Li et al., 2007). Furthermore, enhancers of serotonin
neurotransmissions like serotonin reuptake inhibitors and fenflu-
ramine or genetic manipulations decreasing serotonin synthesis
have also been shown to affect GSK3 activity in vivo (Li et al.,
2007; Beaulieu et al., 2008b; Figure 4). Additional characteriza-
tion is therefore needed to determine the relative contribution of
dopamine and serotonin receptors in the modulation of Akt/GSK3
by AA drugs and to define the roles that they may have in psychotic
disorders.

MOLECULAR TARGETS OF DOPAMINE REGULATED BY βArr2,
Akt, AND GSK3 SIGNALING
While several lines of evidence indicate a role for βArr2, Akt,
and GSK3 in dopamine receptor signaling, there is little infor-
mation on the nature of the molecular targets of these kinases that
are affected by dopamine receptors in the basal ganglia or other
brain regions. Akt and GSK3 have various substrates involved in
numerous cellular processes linked to mental illnesses-associated
physiological functions like cytoskeleton organization, trafficking,
cell survival, apoptosis, and DNA transcription (Frame and Cohen,
2001; Woodgett, 2001). Here, we present three different molecular

systems that are regulated by GSK3 and for which there are some
evidences for direct involvement of dopamine receptor signal-
ing: the direct GSK3 substrate β-catenin, ionotropic glutamate
receptors, and the regulation of circadian rhythms.

β-CATENIN
β-catenin has multiple roles in the cell. This protein functions as a
transcription factor and a scaffolding protein, which anchors the
actin cytoskeleton as a mediator of adherent junctions. β-catenin is
a common component of the Wnt and Akt/GSK3 signaling path-
way (For review: Freyberg et al., 2010). In the absence of Wnt
stimulation, β-catenin forms a complex with GSK3 and several
other proteins. This induces the phosphorylation of β-catenin
by GSK3 and then its ubiquitination and proteasomal degra-
dation (Doble and Woodgett, 2003). Conversely, activation of
the Wnt receptor Frizzled leads to the disruption of this com-
plex by the protein Disheveld (Dvl). Free β-catenin can then
translocate to the nucleus and affect gene expression (Fuku-
moto et al., 2001). Interestingly, the regulation of the Akt/GSK3
signaling cascade by D2R and βArr2 may affect β-catenin activ-
ity. Interestingly, chronic treatment with the mood stabilizer
lithium in mice increases β-catenin levels in different brain regions
such as the amygdala, striatum, hypothalamus, and hippocam-
pus (O’Brien et al., 2004; Beaulieu et al., 2008a). It is has been
shown that increased levels of striatal β-catenin in response
to lithium is dependent upon the expression of βArr2 there-
fore suggesting that changes in β-catenin in response to lithium
may arise from a disruption of βArr2-mediated D2R signaling
(Beaulieu et al., 2008a). In addition, overexpression of β-catenin
in mice reproduces the behavioral effects of the GSK3 inhibition

FIGURE 4 | Regulation of Akt/GSK3 signaling by drugs affecting dopamine and 5-HT neurotransmitter systems. Monoamines-dependent behaviors have
been discovered in Akt1- and βArr2-KO mice and in GSK3β heterozygous mice.

Frontiers in Neuroanatomy www.frontiersin.org September 2011 | Volume 5 | Article 58 | 6

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Del’Guidice et al. Beta-arrestin-mediated dopamine receptor signaling

by lithium on dopamine-dependent locomotor hyperactivity and
in tests evaluating antidepressant and anxiolytic effects of drugs
in rodents (Gould et al., 2008). The functional consequences
of these drugs could be mediated by the striatum, since the β-
catenin forebrain-specific conditional knock-out mouse shows
little behavioral changes (Gould et al., 2008). However, this still
has to be established.

GLUTAMATE RECEPTORS
The modulation of GSK3 signaling by dopamine receptors also
appears to regulate some functions of NMDA ionotropic glu-
tamate receptors and associated synaptic plasticity (Chen et al.,
2007). In particular, GSK3 activity modulates the development
of long-term depression (LTD) in rat hippocampal slices, two
processes regulated by ionotropic glutamate receptors (Zhu et al.,
2007; Peineau et al., 2008). Furthermore, Akt/GSK3-mediated sig-
naling appears to be responsible for the regulation of NMDA
receptors by D2R in response to high levels of dopamine in the
rat frontal cortex (Li et al., 2009). Briefly, application of high con-
centrations of dopamine induces a reduction of NMDA current
associated with the internalization of the NMDA receptor subunit
NR2B both in cortical slice preparations and in vivo. The effect
of elevated dopamine on NMDA receptor functions is dependent
of D2R, GSK3, and PP2A and is not affected by inhibition of G
proteins, therefore suggesting an involvement of βArr2-mediated
signaling (Li et al., 2009). However, the contribution of βArr2 to
the regulation of NMDA receptor functions as a result of elevated
dopamine levels has not been confirmed. Also, it remains unclear
whether this type of regulation occurs in the striatum or if it is
restricted to cortical neurons.

REGULATION OF CLOCK GENE SIGNALING
The deregulation of circadian rhythm is thought to be an integral
part of human mental diseases like bipolar disorders and in partic-
ular seasonal affective disorders (Benedetti et al., 2004; Mansour
et al., 2005). One of the first studies associating GSK3 to the regu-
lation of circadian rhythm has been made in drosophila. Yuan et al.
(2005) have shown that the fly GSK3 ortholog, Shaggy, is regulated
by serotonin and affects the circadian cycle. Then, numerous stud-
ies have demonstrated the regulation of clock genes by GSK3 in
mammals (Iitaka et al., 2005; Lamont et al., 2007). For example, the
GSK3 inhibitor lithium affects the transcription of the clock gene
Bmal1 (Lamont et al., 2007). In line with this, GSK3β can also
regulate mammalian circadian protein functions in vitro (Iitaka
et al.,2005). Interestingly, circadian rhythm-regulated gene expres-
sion and associated-behaviors can also be modulated by the D2R,
which is known to regulate GSK3 (Doi et al., 2006; Yujnovsky et al.,
2006). D2R is highly expressed in the retina and plays an important
role in neural adaptation to light (Doi et al., 2006). Accordingly,
activation of D2R stimulates CLOCK:BMAL1 functions through
MAP Kinases pathways and could possibly regulate circadian gene
expression through βArr2/Akt/GSK3 signaling (Sahar et al., 2010).
This suggests a putative relevant link between circadian rhythm
and dopamine receptor functions.

CONCLUSION AND PERSPECTIVES
The relatively recent identification of G protein-independent
βArr-mediated signaling of GPCR has radically changed our

perception of the roles played by these molecules in dopamine
receptor functions. From simple desensitization molecules, βArr
are now seen as polyvalent GPCR-associated scaffolding pro-
teins having complex and multiple functions in regulating the
final outcome of receptor stimulation (Wei et al., 2003; Gesty-
Palmer et al., 2006). Extensive and elegant research efforts have
shown how downstream targets of dopamine receptors such as
DARPP-32 can act as integrators and coincidence detectors mod-
ulating the outcome of dopamine receptor signaling in function
of the activation of other neurotransmitter systems (Svennings-
son et al., 2004). When put in this context, the dual functions
of βArr add an extra layer of complexity to dopamine recep-
tor signaling. Indeed the co-occurrence of G protein-dependent
and βArr-mediated responses reveals that dopamine receptors also
exhibit signaling diversity. Through such diversity, a given recep-
tor may regulate several modalities of signaling under different
conditions or during different periods of its activation cycle. This
can have several important physiological consequences and raises
many pending questions that will have to be addressed further in
future research.

First, signal diversity downstream of dopamine receptors may
have a considerable impact on the development of pharmaco-
logical approaches to manipulate dopamine receptor functions.
The assumption that a receptor is engaged in exclusively one
type of signaling event regardless of its cellular composition has
been the basis of the definition of the intrinsic drug efficacy
(Galandrin et al., 2007). However, a context where dopamine
receptor can elicit different cell signaling responses involving G
protein, βArr, or other signaling molecules has led to the sug-
gestion that it may be possible to generate new biased ligands
for dopamine receptors that would modulate one or another
cell signaling mechanism preferentially (Beaulieu et al., 2007a).
It is believed that such biased agonism can have important
implications for drug development because intracellular signal-
ing events mediated by these parallel pathways may have distinct
physiological consequences. As discussed above, D2R has been
shown to be one of the best examples of this duality in recep-
tor signaling, because it is involved in the regulation of the G
protein-mediated functions and the βArr2-mediated Akt/GSK3
signaling cascade (Beaulieu et al., 2009). Although there are
no known D2R ligands affecting specifically one or the other
of these signaling modalities, it may be possible to develop
drugs to selectively target one of these pathways. In fact, the
ability of the mood stabilizer drug lithium to disrupt βArr2-
mediated Akt/GSK3 signaling and to suppress the behavioral
effects that are related to enhanced dopaminergic transmission
provides the first evidence for the activity of clinically effec-
tive compounds on βArr2 scaffolded signaling complexes down-
stream of the D2R (Beaulieu et al., 2008a, 2009; Rajagopal et al.,
2010).

Prior to develop drugs acting preferentially on one or another
cell signaling response, it would be important to decipher what
is the relative role of these different modalities of signaling in
regulating the final physiological outcome of dopamine recep-
tor activation. This can be particularly important in the context
of MAP kinase regulation. Indeed, ERK can be regulated by
both G protein/DARPP-32 and βArr2-mediated signaling events
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downstream of D1R (Valjent et al., 2006b; Urs et al., 2011). Consid-
ering the important role of this kinase in regulating both acute and
long-term consequences of dopamine receptor signaling (Beaulieu
et al., 2006; Valjent et al., 2006b), it would be important to estab-
lish what is the level of segregation (if any) between the functions
exerted by ERK when it is activated by either mechanisms. This
can be important since association with a βArr signaling com-
plex may affect the subcellular localization of activated ERK and
therefore change the nature of its substrates (Pierce and Lefkowitz,
2001). The same observations can also be made for the regulation
of Akt and GSK3 by D2R since alternative mechanisms such as the
transactivation of the BDNF receptor TrkB by dopamine receptors
(Swift et al., 2011) may also affect Akt and GSK3 activity in specific
neuronal populations.

Another pending issue is the nature of the contribution of βArr1
in mediating dopamine receptor signaling. As of today, most of
the attention has been focused on the role played by βArr2 in both
D1R- and D2R-mediated signaling. However, behavioral evidence
indicates that βArr1-KO mice also exhibit behavioral responses to
dopamine drugs that are compatible with a major role of βArr1
in mediating some signaling responses in addition to its prob-
able function in canonical homologous receptor desensitization
(Gainetdinov et al., 2004).

In conclusion, the identification of cell signaling functions asso-
ciated to βArr downstream of dopamine receptors underscores
the intricate complexity of the intertwined mechanisms regulating
and mediating neuronal communication in the basal ganglia. This
is an essential step to understand the several roles played by these
structures in the regulation of mood, cognition, affect, and move-
ment. Furthermore, understanding these mechanisms may lead
to the development of new drugs having the desired therapeutic
effect and avoiding aversive and undesired side effects.
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