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Larger mammalian cerebral cortices tend to have increasingly folded surfaces, often con-
sidered to result from the lateral expansion of the gray matter (GM), which, in a volume
constrained by the cranium, causes mechanical compression that is relieved by inward
folding of the white matter (WM), or to result from differential expansion of cortical layers.
Across species, thinner cortices, presumably more pliable, would offer less resistance and
hence become more folded than thicker cortices of a same size. However, such models do
not acknowledge evidence in favor of a tension-based pull onto the GM from the inside,
holding it in place even when the constraint imposed by the cranium is removed. Here
we propose a testable, quantitative model of cortical folding driven by tension along the
length of axons in the WM that assumes that connections through the WM are formed
early in development, at the same time as the GM becomes folded, and considers that
axonal connections through the WM generate tension that leads to inward folding of the
WM surface, which pulls the GM surface inward. As an important necessary simplifying
hypothesis, we assume that axons leaving or entering the WM do so approximately per-
pendicularly to the WM–GM interface. Cortical folding is thus driven by WM connectivity,
and is a function of the fraction of cortical neurons connected through theWM, the average
length, and the average cross-sectional area of the axons in the WM. Our model predicts
that the different scaling of cortical folding across mammalian orders corresponds to differ-
ent combinations of scaling of connectivity, axonal cross-sectional area, and tension along
WM axons, instead of being a simple function of the number of GM neurons. Our model
also explains variations in average cortical thickness as a result of the factors that lead to
cortical folding, rather than as a determinant of folding; predicts that for a same tension,
folding increases with connectivity through the WM and increased axonal cross-section;
and that, for a same number of neurons, higher connectivity through the WM leads to a
higher degree of folding as well as an on average thinner GM across species.
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thickness

INTRODUCTION
Across different mammalian orders and species, adult brain cere-
bral cortices vary over several orders of magnitude in size,
becoming more folded as their size increases. Already in the late

Abbreviations: a, average cross-section area of myelinated axons in WM; AE,
Exposed surface area of cerebral cortex; AT, Total surface area of cerebral cortex;
AW, White–gray matter interface surface area; C, Cortical estimated computational
capacity; F G = AT/AE, Cortical folding index; FW = AI/4πRW

2, white matter fold-
ing index; GM, cerebral cortical gray matter; l, average length of myelinated axons
in WM; L = l n·NN, total length of myelinated axons in WM; MG, mass of cere-
bral cortex GM; MW, mass of cerebral cortex subcortical WM; n, GM connectivity
through the WM, defined as the fraction of neurons in GM with myelinated axon
in WM; N, Number of neurons in GM; O, number of other (non-neuronal) cells in
WM; RW(3V W/4π)1/3, WM “radius” (or, more properly, length scale); T = V G/AT,
average thickness of cerebral cortex GM; V, volume of cerebral cortex (GM + WM);
V G, volume of cerebral cortex gray matter (GM); V W, volume of cerebral cortex
white matter (WM); WM, subcortical white matter.

eighteenth century, Franz Gall acknowledged that cortical folding,
and thus the non-isometrical expansion of the cerebral cortical
gray matter (GM), allowed a faster increase in number of neu-
rons than would be granted by increased cranial volume alone if
the cortical surface expanded isometrically, or simply as a balloon
would (Gross, 1999). Later, His (1874) considered that cerebral
shape could be explained by unequal growth, competing volume
demands, and resulting tension of different brain structures.

Cortical folding has since been considered to increase with
brain size as the GM expands laterally and supposedly pushes
inward the underlying white matter (WM; Le Gros Clark, 1945),
specially given the constraint imposed by the skull (Welker, 1990).
Because the distribution of neurons beneath the cortical surface
has traditionally been considered to be constant across species
(Rockel et al., 1980), cortical folding would thus be a direct func-
tion of the number of neurons in the cortex. This is in line with the
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usual expectation that elephants and large cetaceans, with larger
brains than humans, have larger numbers of cortical neurons in
their more folded cortices than humans do.

Contrary to these traditional views, however, we have recently
shown that cortical size is not a uniform function of the number
of cortical neurons across mammals. Using the isotropic fraction-
ator to determine numbers of brain neurons (Herculano-Houzel
and Lent, 2005), we find that cortical mass increases much faster
in rodents than in primates as the cerebral cortex gains neurons
across species (Herculano-Houzel et al., 2006, 2007, 2011; Gabi
et al., 2010), which is due to an increase in average neuronal cell
size in larger-brained rodents while there is barely any increase in
average neuronal cell size in larger-brained primates (Herculano-
Houzel, 2011). As a result, neuronal densities are larger in primate
cortices than in rodent cortices of a comparable size (Herculano-
Houzel, 2011). Moreover, we recently showed that the number
of neurons beneath the cortical surface is not constant across
primate species as previously thought (Herculano-Houzel et al.,
2008), and is also not constant across rodents, actually decreasing
in larger brains (Ventura, Mota, and Herculano-Houzel, to be sub-
mitted), which means that there is not a single relationship that
applies between cortical surface area and number of cortical neu-
rons across mammals. The combination of these findings leaves
one no longer any reason to expect cortical folding to be a simple,
homogeneous function of increased numbers of cortical neurons
across mammals. For instance, although large cetacean and artio-
dactyla brains have more folded cerebral cortices than similar sized
primate brains, they probably have not more but rather far fewer
neurons in the cortex than primates, due to their very low neu-
ronal densities (Tower, 1954; Herculano-Houzel, 2009; and our
unpublished observations).

This is not to say, however, that cortical folding is not driven
by a shared, conserved mechanism across mammalian species. In
fact, our recent work on the scaling of the subcortical WM in pri-
mates as a function of their numbers of cerebral cortical neurons
unexpectedly led us to realize that cortical folding can be uni-
versally predicted as a function of not simply the total number
of cortical neurons, but of the number of cortical neurons that
are connected through the WM compounded with the average
caliber of their axons in the WM and the tension in these axons
(Herculano-Houzel et al., 2010). Cortical folding, according to
this view, would not be driven by the GM, but rather primarily by
tension in the WM.

A qualitative, tension-based theory of cortical morphogenesis
was first proposed by Van Essen (1997), taking into consider-
ation the patterns of connectivity between cortical areas. His
connectivity-driven hypothesis for the placement of cortical folds
accounts for the consistent formation of convolutions in a species-
specific pattern. It does not, however, explain the increased cortical
folding that accompanies increasing cortical size across species;
Van Essen himself still resorted to a GM driven mechanism to
account for that. There are, however, a number of other evi-
dences against a GM driven mechanism of cortical folding. Partial
removal of the skull during development does not have a dramatic
effect on the fissure pattern, and lesion experiments suggest that
cortical folding is not primarily dependent on a disproportionate
growth between cortical and subcortical structures (reviewed in

Kaas, 2009). Thus, the primary source of fissure formation must
be sought in factors within the cortex itself – or underneath it.

Based on our findings on the scaling of cortical connectivity
and WM volume in primates (Herculano-Houzel et al., 2010), we
proposed in that paper an extension of Van Essen’s qualitative
tension-based theory of cortical folding to explain quantitatively
how increased folding accompanies increasing cortical size across
primate species. According to our model, rather than driving the
folding of the WM surface, the folding of the external surface of
the GM results from folding of the WM surface, which, in turn,
results from increased tension within the WM due to increased
numbers of axons composing the WM depending on their phys-
ical properties of caliber and tension. Our model is quantitative;
acknowledges that the cortex scales differently in size across mam-
malian orders as different power functions of its number of
neurons; is therefore applicable, in principle, to all mammalian
species; and makes easily testable predictions for all of them. The
following is a description of the model, its assumptions, and a dis-
cussion of its implications and predictions, and how they can be
tested.

ASSUMPTIONS AND RATIONALE
So far, we have found the size of the different brain structures,
the numbers of cells that compose them, and their average den-
sities, and therefore average cell size, to be parameters related to
one another by power functions (Herculano-Houzel et al., 2006,
2007, 2011; Sarko et al., 2009; Gabi et al., 2010). Generically, one
should expect brain and cortical allometric scaling rules that are
valid over several orders of magnitude across species within a par-
ticular mammalian order to take the form of power laws (i.e.,
relating measurable quantities “x” and “y” by y = kxa). This is
because relations which are expected to remain valid over many
orders of magnitude should not be given in terms of parame-
ters that specify a particular size scale, that is, they should be
scale-independent. As can be easily demonstrated, a one-variable
function is scale-independent if and only if it is a power law.
We therefore expect to find the scaling rules that determine
cortical folding to also be scale-invariant, and therefore power
laws.

Even more importantly, we assume that the number of neuronal
cells is the main free parameter that coordinates the scaling of every
other quantity of interest, measurable, or estimated. There are sev-
eral reasons for this assumption. First, neurons, rather than glia,
are the first cells to populate the developing brain in large num-
bers, and their connectivity begins to be established at the same
time as convolutions begin to form, even before the final neuronal
complement is in place (Goldman-Rakic, 1980; Goldman-Rakic
and Rakic, 1984). Therefore, and in contrast to most earlier stud-
ies on brain allometry that implicitly or explicitly regarded the
number of neurons as a consequence of brain size, we believe
instead that any biologically plausible model of brain allometry
must consider brain size, in all its aspects, to be a consequence of
its number of neurons, according to scaling laws that may vary
across different phyla. Second, we have found that, in contrast to
the order- and structure-specific neuronal scaling rules, the scaling
of different brain structures seems to occur as a universally shared
function of their numbers of glial cells, both across orders and
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structures (Herculano-Houzel, 2011). This result, combined with
the late onset of gliogenesis in post-natal development (Sauvageot
and Stiles, 2002), suggests that we can assume that cortical com-
position is determined essentially by the number of neurons and
their average mass (which is itself closely related to the number of
neurons by an order-specific power law); after neurogenesis, nearly
invariant glia will then infiltrate the intraneuronal space in pro-
portion to the total neuronal mass (Herculano-Houzel, 2011). The
development of an adult mammalian cortex can then be viewed
as a process whereby total numbers of neurons, numbers of neu-
rons connected through the WM, their size (which includes the
soma, all dendrites, and an axon of a particular caliber), and
cortical folding vary in lockstep, over an invariant background
of glia.

Our model thus assumes that all parameters related to corti-
cal scaling and folding can be described as power functions of
the total number of cortical neurons. Note that the fact that gen-
eral allometric rules exist for cortical morphology in each order,
expressible as power laws of their number of neurons, does not
mean that the latter is the only significant degree of freedom in
brain or cortical evolution. Rather, the power laws tell us that any
other significant degrees of freedom must be present either at a
substructure level, thus being erased by measurements that aver-
age over the entire structure, or at the microscopic level of detailed
connectivity, which is not accessible to our methods, but also not
relevant to the model at hand.

Our model, as presented for cross-species comparisons, con-
siders total cortical volumes and areas, and average values of
neuronal density and cortical thickness for the whole cortex,
in line with the empirical studies that generated the numeri-
cal data used here (Herculano-Houzel et al., 2006, 2007, 2010,
2011; Sarko et al., 2009). Neuronal density is now known to
vary across the cortical surface within primate species (Collins
et al., 2010), and it is known that cortical thickness and gyrifi-
cation also vary across the cortex (Zilles et al., 1988; Toro et al.,
2008). However, comparative studies on the scaling of cortical
gyrification traditionally analyze whole-brain patterns (Hofman,
1985; Pillay and Manger, 2007), and attempts to understand
the scaling of cortical gyrification have similarly been directed
toward whole-brain comparisons. We therefore developed our
model based on average values for whole cortex that can be
compared across orders, but predict that the scaling rules pro-
posed here to govern gyrification at the level of the whole cor-
tex might also be applicable at the local level across cortical
areas.

White matter is largely composed of axons connecting neu-
rons in the GM, mostly with each other but also with subcortical
structures, along with the glial cells that support their function.
The volume of each axon is simply its cross-sectional area mul-
tiplied by its length. If there is no significant correlation between
these two latter quantities (which can be proven mathematically
that will be the case when axon bundle volume is constrained
and average signal propagation time is minimized), then the total
axonal volume is the product of average axon cross-section area
a, the average axonal length l, and the total number of axons
present in the WM. We can assume further that the volume of the
intra-axonal space, including in particular the myelin sheath and

the myelinating oligodendrocytes, is proportional to axonal vol-
ume, given the experimental support for a linear relation between
axon diameter and myelin sheath diameter (Sadahiro et al., 2000).
Using the common assumption of a linear relation between total
number of oligodendrocytes and the total axon length (Barres and
Raff, 1994, 1999), then the total volume of the WM can be writ-
ten to scale with the product of the total axon length (or total
number of oligodendrocytes) and average axonal cross-sectional
area.

We also assume that WM axons intersect the surface of the
WM–GM interface in a perpendicular direction. This is a simpli-
fying assumption, since it can observed from direct imagery that
multiple fiber orientations can be present very close to each other
even at the WM–GM interface. However, we believe on theoret-
ical grounds that this is a reasonable if imperfect approximation
of a somewhat more complex anatomical reality. Indeed, axons
typically cross this interface in parallel bundles (Mori et al., 2002),
which are the most volume-economical way of building such sur-
face; in a growing cortex the combination of axonal longitudinal
tension, WM hydrostatic pressure, and WM–GM interface surface
tension should align most bundles very close to perpendicularly to
the interface. We must make this assumption because we are unfor-
tunately aware of no systematic studies of the distribution axonal
incidence angles in the literature, although published diffusion
tensor imaging tracing studies show a clear (but unquantified)
preference for perpendicular angles of incidence (for instance,
Mori et al., 2002). A systematic variation in the average incidence
angle across species would alter our results somewhat, but not
appreciably except for a very large range of values1.

Finally, our model assumes that connections through the WM
are formed early in development, at the same time as the GM
becomes folded, an assumption that is supported by experimental
evidence (reviewed in Welker, 1990); that most axons in mam-
malian cortical WM are myelinated (Olivares et al., 2001); and
that most of the WM volume amounts to myelinated axons (Wang
et al., 2008), thus neglecting the contribution to the volume of
(small) non-myelinated fibers in the WM.

THE MODEL
We consider that the surface of the WM–GM interface, with total
area AW, is crossed nearly perpendicularly by most axons leaving or
entering the WM, of an average cross-sectional area a, and which,
together with the ensheathing glial cells, comprise the entirety of
the WM surface. AW can thus be quantified as the product of the
number of cortical neurons, N ; the fraction n of these neurons that
are connected through the WM; and their cross-sectional area, a
(Figure 1). Thus,

AW ∼ γ−1n N a,

where γ is the average cosine of the incidence angle of axons at the
WM–GM interface. The value of γ is of course 1 in the simplified

1 A deviation from perpendicular incidence would be reflected on a proportional
discrepancy in the estimation of axonal lengths; but only a systematic variation (with
N ) of incidence angle would alter the calculated power law coefficients. Unfortu-
nately we cannot at this point rule out or numerically constraint such variation, and
must therefore recognize this fact as a limitation of our model as it stands.
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FIGURE 1 | Schematic of the cortical layout used in the model. The two
volumes on the right illustrate the cortical gray matter (top) and white matter
(bottom). The gray matter is composed of an N number of neurons, a fraction
n of which are connected through the white matter (darker gray), either
sending or receiving axons (of an average cross-sectional area a) through it.

Glial cells, which have been found to be distributed at a fairly constant density
across species (Herculano-Houzel, 2011), are not shown. The surface area of
the interface between the gray and white matter, AW, is given as the product
nNa, and the volume of the white matter, V W, is proportional to the product of
AW and the average axonal length in the white matter, l.

case of perfectly orthogonal incidence, and presumably close to 1
in reality. The WM volume V W is the sum total of the volumes of
all fibers and is thus equal to one half of the product of AW and
the average axonal length in the WM, l, such that

VW ∼ n N a l .

Note that the average value of axonal length is given by
l = 2V w/γAw. A direct measurement of γ would provide us with
a direct measurement of l for each species. Assuming γ = 1, then
l can be obtained from the existing measurements of V w and
Aw. Strictly speaking, these quantities are only lower bounds
on the average axonal lengths; if however γ ≈ 1 as we postu-
late, they can be taken as good approximations of their actual
values.

If the WM scales under tension, the cubic root of its volume
should increase more slowly than the square root of its surface area,
leading to deformation of the latter, that is, to folding of the GM–
WM surface. To quantify the extent of WM folding, we define
a folding index FW, which is the ratio between the actual WM
surface, AW, and the exposed surface expected from its volume
(9π/2)1/3 V W

2/3.

FW = (2/9π)1/3 (n Na)
/

(nNa l)2/3

Thus, a FW value of exactly one implies a spherical WM, and
larger values imply more convoluted forms. Importantly, notice
that it is not necessary to model the cerebrum as a sphere for
the 2/3 scaling relationship between its surface area and volume
to hold; a volume of any shape that scaled isometrically would
have the same scaling relationship of 2/3. In this case of isometric
growth, which would ensue if the WM did not scale under tension,
then we would expect FW to be invariant as function of N.

Now, considering that a, n, and l are themselves related to N
as power functions such that a ∼ N α, n ∼ Nc, and l ∼ N λ, the

relationships above can be entirely rewritten as power functions
of N :

AW ∼ N C N N α ∼ N c+1+α

VW ∼ N C N N αN λ ∼ N c+1+α+λ

FW ∼ N (1+c+α−2λ)/3

Note that if we took into account a systematic variation of the
incidence angle of fibers at the GM–WM interface as a power law
of N, we would have to introduce a (non-zero) new coefficient at
the expression for Aw. There is unfortunately currently no exper-
imental way of estimating the value of such coefficient. We have
assumed throughout that it is small enough to be disregarded, but
should it prove to be otherwise we will have to recalculate the other
coefficients accordingly, and revisit the conclusion obtained.

Simultaneously, for cortices with average GM thickness T much
smaller than the cortical characteristic length so that the internal
and external areas of GM scale linearly (that is, AG ∝ AW), T can
be defined as simply the ratio between the volume of the GM, V G,
and area of the GM–WM interface, AW. Given that V G scales as a
power function of N, with Nv, then

T ∼ N v/N c+1+α

and therefore cortical thickness T scales with Nt, such that

t = ν − c − 1 − α.

Instead of v, we can use a more biologically meaningful para-
meter d, which is the exponent relating neuronal density D in
the GM to N, given that V G = N ·D−1 and that D ∼ Nd. Because
V G ∼ N 1−d , then v = 1 − d, and the equation above becomes

t = −d − c − α.
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Average cortical thickness, therefore, scales a function of a GM-
related variable (the scaling of neuronal density with N ), and
two WM-related variables that, together with N, determine WM
folding (the scaling of connectivity and of axonal cross-sectional
area with N ). Remarkably, cortical thickness is therefore not itself
a function of N, but rather of how exponents d, c, and α are
interrelated.

Finally, the extent of GM folding, F G, can be expressed as the
ratio between its actual surface, AG (which can be written as pro-
portional to V G/T, or N 1−d−t), and the exposed surface expected
from the total volume (V G +V W)2/3:

FG = N 1−d−t /(N −d + N c+1+α+λ)
2/3

Note that although this equation is not an exact power law, it
can in practice be well approximated by one since V W and V G scale
in fairly similar ways with N. Another way to express F G, now as
an exact power law, is by writing the total volume V T =V G +V W

itself as a measurable power function of N, varying with Nz. In
this case, F G becomes

FG = N 1−d−t /(N Z )
2/3

Returning to the first equation of F G, and recalling that
t = −d−c−α, GM folding is thus a combined function of the

number of cortical neurons; the fraction of these neurons that are
connected through the WM; and the average cross-section area of
the axons in the WM. Further, the thickness of the GM is thus a
consequence of some of the same parameters that determine how
the cortex folds, and not a determinant of it. A schematic of the
model is depicted in Figure 2.

PREDICTIONS FROM THE MODEL
Useful mathematical models are those that lead to a number of
testable predictions. This is one major advantage of our model:
it allows us to derive not only testable qualitative insights on the
scaling of cortical folding, but also quantitative predictions that
can be tested experimentally.

QUALITATIVE PREDICTIONS ABOUT CORTICAL FOLDING
Our model predicts that the folding of the GM is related to the
folding of the WM, and the scaling of the former across species
depends on the scaling of the latter. We predict that WM fold-
ing scales across mammalian species with the number of cortical
neurons; the fraction of these neurons that are interconnected
through the WM; the average length of the myelinated fibers in
the WM; and their average cross-sectional area. GM folding then
scales depending, additionally, on the scaling of the GM thickness,
which in turn is determined by the scaling of neuronal density

FIGURE 2 | Schematic of our connectivity-driven model of the

scaling of cortical folding with increasing numbers of cortical

neurons (N). To the left are shown what we propose to be the
fundamental parameters determining cortical folding, probably
determined genetically, and which we postulate to vary alometrically
with N : the fraction of cortical neurons connected through the gray
matter (n), the average cross-sectional area of the axons in the white
matter (a), the average neuronal density in the gray matter (D, which is
approximately proportional to the inverse of average neuronal cell

volume in the gray matter), and the average axonal length in the white
matter (l ). Next, white matter surface (AW) and volume (V W) are organized
as shown, depending on N and the scaling exponents, and thus
determine the folding of the white matter surface (FW). On top of AW, the
gray matter becomes organized depending on the average size of its
neurons, which, combined to a and n, determine cortical thickness, T. The
degree of folding of the gray matter, F G, is thus a consequence of the
folding of the white matter, which is in turn dependent on how the
parameters determining cortical connectivity (c, a, and l ) scale with N.
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FIGURE 3 | Schematics of various manners of cortical scaling (and

folding, not shown) depending on the interplay between the scaling

parameters and how they vary with the number of cortical neurons as it

increases (left to right). In all three scenarios, axons in the white matter
grow under enough tension to lead to cortical folding, fulfilling the condition
that λ < (c + 1 + α)/2. In the top scenario, in which the connectivity fraction is
unchanged (indicated by the dark gray “neurons” in the gray matter),
c = α = 0; therefore λ < 0.5, and the cortex folds more and more with an

unchanging thickness given that, in this scenario, d is also 0. In the middle
scenario, in which the connectivity fraction decreases but α = d = 0, cortical
folding will increase, with an accompanying increase in thickness that scales
with N –c (from t = −c−d−α). In the bottom scenario, in which the
connectivity fraction decreases (c < 0) and both average neuronal size in the
gray matter and axonal cross-sectional area in the white matter increase with
N (that is, d < 0 and α > 0), cortical folding increases with a rapid increase in
thickness that scales with N−c−d−α.

in the GM (besides the scaling of connectivity and average axonal
cross-sectional area in the WM). Figure 3 illustrates how the inter-
play across the scaling of these parameters determines cortical
morphology and folding.

One remarkable characteristic of our model is that, in princi-
ple, it applies universally across mammalian orders (and therefore
describes the scaling of cortical folding universally), even though
relationships such as those among folding index, cortical thickness,
and cortical size are different across orders (Pillay and Manger,

2007). In fact, we can predict that these relationships will be
different across orders depending on the particular defining expo-
nents that apply to each order; order-specific characteristics of the
scaling of cortical folding will result from combinations of these
exponents. Thus, it is conceivable that cortical folding increases in
larger brains with no change in connectivity and no change in the
average cross-sectional area of the axons in the WM; with decreas-
ing connectivity and increasing average cross-sectional area of the
WM; and so forth.
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Indeed, one of the strengths of the model is that one can
predict how the different scaling exponents will be related.
Because folding of the WM scales with N (1+c+α−2λ)/3, then
larger cortices in a mammalian order will only be increasingly
folded when (1 + c + α − 2λ)/3 > 0. This condition imposes con-
straints on the combinations of values of c, α, and λ that
will lead to increased folding in larger cortices (that is, as N
increases).

For instance, supposing that cortical scaling occurs in an order
with a fixed λ of 0.5, then c + α > 0, which implies that if folding
increases in larger cortices, then any decrease in connectivity (that
is, a negative value of c), or even a constant connectivity (that
is, c = 0) is necessarily surpassed by a positive scaling of average
axonal cross-section in the WM. In these circumstances, the thick-
ness of the GM, which scales with t = –d−c−α, will depend on the
scaling of neuronal density minus the positive sum of c + α; as a
consequence, the number of neurons underneath a given cortical
surface will not be constant (a condition that is only met when
t = −d).

By the same token, if cortical scaling occurs in an order with
increasing folding in the presence of fixed connectivity (that is,
with c = 0), then necessarily α > 2λ − 1. In these circumstances,
the average axonal cross-sectional area in the WM will increase
in larger-brained cortices for any value of λ ≥ 0.5. Consequently,
the thickness of the GM will scale depending on the value of
–d−α.

Likewise, it is possible for cortical scaling to occur with
increased cortical folding within an order with fixed connectivity
and unchanging average axonal cross-sectional area in the WM,
as long as λ < 0.5. In these conditions, it can be predicted that
the thickness of the GM will scale depending on the scaling of
neuronal density alone, and thus occur indeed with a constant
number of neurons beneath the cortical surface, as intended in
some models (Rockel et al., 1980).

CORTICAL THICKNESS
Thinner mammalian cortices are usually found to be more folded
than thicker cortices of a similar size (Hofman, 1985; Pillay and
Manger, 2007). This finding has been attributed to thinner cor-
tices being supposedly more pliable than thicker cortices, which
would render the former less resistant to being folded (Pillay
and Manger, 2007). In contrast, our model predicts that corti-
cal thickness is actually determined by two WM-related factors
that also determine the degree of cortical folding (connectiv-
ity and average axonal cross-sectional area in the WM), and a
third, GM-related variable (neuronal density). Remarkably, the
scaling of cortical thickness is therefore not simply a function
of N, but rather of how d, c, and α are interrelated; if neu-
ronal density, connectivity, and average axonal cross-sectional
area are unchanging in a mammalian order, then larger cor-
tices, with larger N, would be expected to have an unchanging
thickness as well. In another scenario, even if neuronal densities
in the GM were still constant across species in an order, corti-
cal thickness would still increase with N as long as c + α < 0,
which would be the case, for instance, if connectivity decreased
(c < 0) and average axonal cross-sectional area did not change
(α = 0).

CORTICAL UNIFORMITY
Remarkably, the relationship between cortical thickness, connec-
tivity, neuronal density, and axonal cross-sectional area predicts
that a uniform number of neurons underneath a cortical surface
area will only be found across species (Rockel et al., 1980) when
a very specific condition is met. Given that V G = AW T = N /D,
then the ratio N /AW will only be constant when the product D·T
is constant. Written as a function of N, and remembering that D
varies with Nd, and T with N −d−c−α, then this condition is met
only when d + (−d−c−α) = 0, that is, when the sum of the expo-
nents c and α is zero, or, alternatively, when cortical connectivity
through the WM remains constant and simultaneously the average
axonal cross-section in the WM does not scale (that is, both c and
α are zero). In all other cases, the number of neurons underneath
a cortical surface will scale with a non-zero combination of d and
t. Notice that this prediction is valid both for the scaling of the
entire cerebral cortex and for different cortical areas.

SCALING OF WM WITH GM
Because V G can be defined as the product of AW and T, and there-
fore varies with N c+1+α Nt, or N c+1+α+t , then the ratio V W/V G

varies with N c+1+α+λ/N c+1+α+t = N λ − t , that is, depending on
which is steeper: the scaling of axonal length reduction (faster with
smaller values of l) or of cortical thickening (faster with larger
value of t ) as a function of N. Ratios larger than 0 mean that axons
shorten relative to isometry more slowly than the cortex thickens as
it gains neurons. The implication here is that the ratio V W/V G will
be constant across mammalian species when λ = t and that it will
increase when λ > t ; and may even scale similarly across orders
when they share a similar relationship between λ and t. Note that
a similar scaling of the V W/V G relationship across orders does
not imply similar values of λ or of t, but only a similar difference
between them across orders. The increase in the ratio V W/V G in
larger cortices (Zhang and Sejnowski, 2000) can thus be predicted
to be a consequence of a slower minimization of average axonal
length relative to isometry than the thickening of the GM as a
function of N.

PROPAGATION TIME
Another way of thinking about FW is to express it in terms of
the average axon length l and the WM characteristic length RW

(defined as the radius of a sphere with volume V W). This rela-
tionship can be written as FW = 2RW/3l, where the WM folding
index is simply proportional to the ratio between the characteris-
tic size of the WM and the average axonal length. Thus, the more
axonal tension curtails the growth of l, the greater the FW and the
more convoluted the WM becomes. Compared to a smooth WM
surface, folding the WM results in axons having to travel shorter
distances to connect GM neurons. A more folded WM will have
shorter axons, as a fraction of its characteristic size.

Since the whole purpose of the axons in WM is to transmit
signals, it makes sense to quantify how well and quickly they do it,
in terms of the scaling rules obtained above. It is well known that
an action potential impulse propagates along a myelinated axon
in a time proportional to the axon length and inversely propor-
tional to the square root of axon cross-sectional area. The average
impulse propagation time should then be given by t̄ α l/a1/2.
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Since l = 2VW/AW ∝ Nλ, AW ∼ N c+1+α+λ, and V W ∼ N c+1+α+λ,
we can combine the three equations to describe how the average
propagation time scales with N :

t ∝ l

a1/2
∝ 2VW

AWN α/2
∝ N τ

τ = λ − α
2

From the equation above, it is clear that, with all else being
equal, increasing axonal thickness would result in smaller propa-
gation times. However, if all axons in the WM were to grow thicker
by the same factor, then a tightly packed WM would also have to
expand to accommodate the extra volume. But a larger WM would
mean that GM neurons would be further apart, and axons would
have to be longer to connect them.

For the sake of argument, let us considering an isometric dou-
bling of all the lengths and diameters (i.e., a fourfold increase in
average cross-sectional areas) of all axons in the WM, such that
the overall shape of the WM does not change. According to the
formula given above, the average axon impulse propagation time
in this isometrically scaled up WM would also be unchanged. Sig-
nals have to propagate further due to the doubling of l, but the
propagation speed is proportionally faster due to the quadrupling
of a. Thus, as far as average propagation times in the WM are con-
cerned, there is no difference between scaled up or scaled down
isometric versions of the WM. In contrast, the hypometric scal-
ing of axonal length in the WM has the obvious consequence of
decreasing propagation time: the smaller the value of l, the smaller
the increase in axonal cross-sectional area required to maintain
a constant average propagation time as the cortex gains neurons
interconnected through the WM.

With the realization that average propagation time scales with
N raised to an exponent of λ − α/2, then the folding of the WM
can be written to scale as

FW ∼ N (1+c+α−2λ)/3 ∼ N (1+c−2τ)/3

Thus, the WM folding index can be expressed in such a way as to
depend on only two quantities: The total number of axons in WM
(which scales with N c+1), and the inverse of the square of the aver-
age axonal signal propagation time (which scales as N λ−α/2). This
means that cortices in which connectivity through the WM and
average propagation time scale similarly will have folding indices
that also scale similarly. This also means that, for a given value
of c, a faster upscaling of WM folding will be accompanied by a
slower increase in propagation times. Increasing cortical folding in
larger brains is thus associated with the advantage of a diminished
increase in the average propagation time that would otherwise be
expected if the WM grew isometrically.

COMPUTATIONAL CAPACITY
Signal propagation times tell us how fast a cortex computes infor-
mation, but not how effectively. To quantify computational capac-
ity in a simple way, consider a simple neuronal circuit composed
of a few neurons connected by axons passing through the WM. A
discrete“operation”in such a circuit consists of a set number of sig-
nals being passed back and forth among the neurons (for instance

in response to a specific external input). A typical such operation
is memory retrieval: The circuit receives as input an incomplete
pattern that is a partial match to a stored pattern. After a few cycles
over its feedback loops, the circuit’s output eventually converges to
the stored pattern. Clearly, each such computational cycle (which
can be as simple as two neurons with reciprocal connections) is
completed in the time it takes for a signal to propagate along the
axons of its interconnected, constituting neurons. Thus, in general
terms, and assuming that all propagation times in the circuit scale
up similarly, then the time needed to perform one operation in
this circuit is proportional to the average propagation time along
its axons; conversely, the number of operations it can perform per
unit time is inversely proportional to the average impulse propa-
gation time of the circuit’s axons. In this case, C, the number of
operations involving WM fibers (i.e., non-local operations) that
a cortex would be able to perform per unit time, a very simple
proxy for its overall computational capacity, is then proportional
to the number of “circuits,” or the number of axons, and inversely
proportional to the average propagation time.

C ∝ nN

τ
= O

1
2 A2

W

V
3
2

W

∝ N θ

θ = 1 + c − τ = 1 + c − λ + α
2

Note that, like the WM folding index, the scaling of C depends
only on the number of axons crossing the WM, and on the
coefficient τ for the scaling of average propagation time.

We can also define a volumetric computational efficiency,
that is, computational capacity per unit of WM cortical volume,
Cef = C/V W,

Cef ∝ nN

VWτ
= N

1
2

O A2
W

V
5
2

W

∝ N ε

ε = −2λ − α
2 .

The computational efficiency of the WM is thus predicted to
scale with N −2λ − (α/2). Note that Cef is highly dependent on the
scaling of axonal length, but only weakly so on the scaling of axonal
cross-sectional area.

WHEN SHOULD THE CORTEX FOLD?
If the WM scales isometrically, that is, without folding, then the
average axonal length l will scale with V W

1/3, or with AW
1/2. If on

the contrary the WM scales under tension, with a smaller increase
in V W than expected, that implies that l is scaling more slowly than
expected. Assuming that AW ∼ nNa and that a, n, and l are them-
selves related to N as power functions such that a ∼ N α, n ∼ Nc,
and l ∼ N λ, then, in the case of isometric scaling of V W,

l ∼ N λ ∼ (n N a)1/2 ∼ N (c+1+α)/2

so λ = (c + 1 + α)/2 if the WM scales isometrically.
In all scenarios where λ < (c + 1 + α)/2, the WM will become

convoluted as it increases in size, and one can therefore expect
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the cortical GM to also become more and more folded at the same
time. Qualitatively, this means that, due to increasing WM folding,
axons do not grow in direct proportion to the characteristic length
of the brain (RW), but rather much more slowly; with cortical
growth, connections become relatively shorter, as if axons resisted
being “stretched” to accommodate more and more connections
through the WM. As we have seen, this results in average propaga-
tion times increasing more slowly with the addition of more axons
in WM.

Finally, in these scenarios where λ < (c + 1 + α)/2 and the
WM becomes increasingly folded in larger cortices, it can also
be predicted that τ < (c + 1)/2 (by substituting τ = λ − α/2 in the
equation), which implies that there is an upper limit to the scal-
ing exponent of propagation time in the WM determined by the
connectivity fraction. This leads to the interesting realization that
decreasing the fraction of cortical neurons connected through the
WM (that is, more negative values of c) minimizes the upscaling
of propagation times in larger cortices.

TESTING THE MODEL
There are two main ways in which our model can be tested: by
designing experiments to address the prediction that cortical con-
nectivity through the WM affects the establishment of cortical
folds; and by testing the quantitative relationships predicted by the
model. While we have not yet had the opportunity to design exper-
iments specifically to test this model, earlier experiments showing
that cortical folding is altered after disrupting cortical connectiv-
ity but not after partial removal of the skull during development
(reviewed in Kaas, 2009) do support our proposal that cortical
folding is driven by pulling on the inside of the cortex, rather than
from the cortex pushing inward.

Testing the numerical relationships predicted by the current
model requires quantifying, across different mammalian species,
their numbers of neurons in the GM, numbers of other cells in
the WM; obtaining surface and volume measurements for the GM
and WM; and determining, from the scaling across these parame-
ters, whether the exponents thus calculated match the predictions
from the model. Here we discuss how the scaling exponents can be
obtained; in the next section, we will address how well the model’s
predictions are matched by experimental data available so far from
rodents and primates.

MEASURING l AND λ

We showed above how, given that l = 2V W/AW ∝ N λ, the allo-
metric exponent λ for scaling of l with N can be determined
experimentally from the relationship between the ratio between
the measureable values V W/AW and N. Additionally, the same
relationship also allows the average value of l to be estimated for
each species, as the quotient 2V W/AW. The factor of 2 is due to
the fact that we expect the vast majority of fibers in the WM to be
cortico-cortical (Braitenberg and Schüz, 1998) and thus cross the
WM–GM interface twice, coming in and out of the WM as they
connect different areas of the cortical GM. Notice that because
any deviation of the true factor will be in the direction of being
smaller than 2, the value of l thus determined can be considered
an upper limit of the average axon length in the WM for that

species; moreover, deviations from this value of 2 do not affect the
exponent, λ.

DETERMINING c AND α

Experimentally, one can obtain the sum c + α from plotting AW as
a function of N, but not the individual values of these exponents. A
simple, well-fundamented assumption, however, allows the expo-
nents c and α to be determined empirically using the isotropic
fractionator (Herculano-Houzel and Lent, 2005) to count the
number of non-neuronal (other) cells in WM, O, most of which
are oligodendrocytes myelinating neighboring axons. According
to Barres and Raff (1994, 1999), it is reasonable to assume that the
total length L of all axons in WM, given by L = n·N ·l, is propor-
tional to the total number of oligodendrocytes found in the WM.
Thus, O ∼ L.

Now, because V W amounts to total axon length L multiplied
by a, then V W ∼ O·a. Because the power law relating O to N,
O ∼ N ω, can be determined empirically (Herculano-Houzel et al.,
2010), V W may be rewritten as

VW ∼ N ωN α.

This is a power function that allows the exponent α to be
determined, given that ω is known. The exponent c can next be
calculated simply from the scaling relationship above between AW

and N, now that has been determined.

TESTING THE PREDICTIONS
Once the values of exponents λ, c, and α are obtained from the
measurements of V W, AW, N, and O, it becomes possible to pre-
dict if the WM should become increasingly folded in larger brains
from the comparison between λ and (c + 1 + α)/2. If these quan-
tities are equal, then the WM should scale isometrically. If, on the
other hand, λ < (c + 1 + α)/2, the WM will become convoluted as
it increases in size, and one can therefore expect the cortical GM
to also become more and more folded at the same time.

The actual folding of the WM, FW, is easily determined exper-
imentally for each species as being proportional to AW/V W

2/3;
the exponent of the experimentally obtained scaling of FW with
N can thus be compared to the predicted exponent given by
FW ∼ N (1+c+α−2λ)/3.

Next, once the average thickness of the GM is determined for
each species as the ratio V G/AW, the exponent t of its scaling with
N can be determined experimentally, as can the exponent d of the
scaling relationship between neuronal density and number of cor-
tical neurons. Once these exponents are available, it can be tested
whether, as predicted, t = −d−c−α; and whether the extent of
GM folding, F G, expressed as the ratio AG/(V G +V W)2/3, scales
as predicted, with

FG = N 1−d−t /
(

N −d + N C+1+α+λ
)2/3

EXPERIMENTAL FINDINGS
This model has so far been applied to a primate dataset contain-
ing 11 species, including humans (Herculano-Houzel et al., 2010),
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and more recently to a dataset of 5 rodent species (Ventura, Mota,
and Herculano-Houzel, to be submitted). Experimentally, we find
that the average cross-section area remains nearly invariant in pri-
mates as a function of N, while it increases sharply with N across
rodents. This is qualitatively very similar to what happens with
average neuron size in both orders: It increases significantly with
N in rodents, but increases very slowly with N across primate
species (Herculano-Houzel,2011), suggesting there is a connection
between average neuron size and axon caliber.

As for the fraction of GM neurons projecting axons through the
WM, we find that it decreases with N in both orders, but at a rate
that is more pronounced in primates than in rodents. As a result,
the WM becomes increasingly folded in larger primate brains, but
less rapidly in larger rodent brains.

Using the experimental method described above to determine
the values of the scaling exponents that appear in the model, we
obtained, in rodents and in primates, the values listed in Table 1.

In both orders, l scales sublinearly with N, which is a signifi-
cant finding given that any increase in average axon length implies
an increase in volumetric and propagation time costs. However,
while the rodent λ closely matches the value of 0.689 expected
in case of isometric scaling of V W of λ = (c + 1 + α)/2, the pri-
mate λ = 0.207 is significantly smaller than the value of 0.436
expected in the case of isometric scaling of the WM. This is a strong
indication that in primates, the increase in distance between inter-
connected cortical regions is minimized by effective shortening
of the axons, as would be expected to happen if they grew under
longitudinal tension (Van Essen, 1997).

As a consequence of these exponents, the folding of the WM
is predicted to scale as the cortex gains neurons with N 0.153 in
primates, which matches precisely the observed scaling of the
WM calculated as AW/V W

2/3; and is predicted to scale with N 0,
that is, not to increase in larger rodents cortices. Notice that this

Table 1 | Experimentally determined exponents for, respectively, the

scaling of average axonal length in the WM (l ), average axonal

cross-sectional area in the WM (a), fraction of GM neurons connected

through the WM (n), average GM thickness (t ), and neuronal density

in the GM (d ) as power functions of the number of cortical

neurons (N ).

Order λ α c t d

Primates 0.207 0.085 −0.212 0.127 0*

Rodents 0.699 0.466 −0.088 0.427 −0.640

Note that the values in the table value slightly from the values reported in

Herculano-Houzel et al. (2010) because here they are estimated for values of

VW, which are not available for human brains in our dataset, while in that study,

they were estimated for values of MW, which are available for humans, although

AW is not. Because of the lack of all values for human brains, we chose to recalcu-

late the exponents here for only those species for which VW and AW are available.

*Neuronal density in the GM was not found to scale with N in the original study

where λ, α, c, and t were estimated (Herculano-Houzel et al., 2010), but in a later

review of a large dataset was found to scale with d = −0.168 (Herculano-Houzel,

2011). Again, we chose to report the value that applies to the current dataset, for

consistency.

prediction apparently contradicts the finding that large rodent
cortices, such as those of the agouti and capybara, are indeed
folded. We believe, however, that the apparent failure of the
model to predict the folding of large rodent cortices is due to
the fact that in our sample, three of the five species (mouse, rat,
and guinea pig) are small-brained and practically lissencephalic.
Thus, rodent cortices seem to scale without becoming folded only
up to a certain point, beyond which larger cortices do become
increasingly folded. This is actually circumstantial evidence in
favor of the push–pull model that we propose, in which the
WM only begins to fold once the traction that it exerts upon
the GM exceeds the resistance of the latter to becoming folded
inward.

NUMBER OF CORTICAL NEURONS CONNECTED THROUGH THE WM
Our model predicts that GM connectivity n (the fraction of GM
neurons that sends an axon through the WM) decreases as the
GM gains neurons, in a manner that we estimate in primates as
n ∝ N −0.212. Although we do not dispose of estimates of the actual
number of cortical neurons connected through the WM, it is illu-
minating to consider the following exercise scenario. Supposing,
for the sake of argument, that 50% of all cortical neurons were con-
nected through the WM in the marmoset, then a scaling of n with
N −0.212 would imply that in a monkey-sized cortex with 10 times
more neurons than the marmoset, WM connectivity would fall to
10−0.212 = 0.61 × 50% = 30% of all neurons; and a human-sized
cortex with about 100 times more neurons than a marmoset would
have only 19% of its neurons interconnected through the WM.

Note that decreased connectivity occurs in the face of an
increased total number of axons in the WM, which is propor-
tional to n·N, or N 1+c . In the exercise scenario above, the total
number of axons in the WM would increase from about 122 mil-
lion in the marmoset, to 510 million in the macaque, to 3.0 billion
in the human cortex. Larger primate cortices, therefore, increase in
size proportionally to N 1 neurons in the GM, of which a number
proportional to N 0.788 send axons into the WM.

A CONSTANT NUMBER OF NEURONS BENEATH THE CORTICAL
SURFACE?
As observed above, our model predicts that the ratio N /AG will
only be constant, as assumed in several models (e.g., Prothero,
1997; Zhang and Sejnowski, 2000), under particular circum-
stances, when d = −t, that is, when both c or α are zero, or so
is their sum. Indeed, we have recently found that the ratio N /AG

(which is similar to the ratio N /AW), far from being constant across
primate species, varies threefold across primate species, and actu-
ally scales with variations in neuronal density across the species
(Herculano-Houzel et al., 2008).

In primates, the predicted value of t = 0.127 agrees nicely
with a measured value of 0.109 ± 0.025 SE. In rodents, the pre-
dicted value of t = 0.262 is well below the measured value of
0.427 ± 0.048, possibly because our current estimate of d for the
GM is not as accurate as in primates for methodological rea-
sons (Ventura, Mota, and Herculano-Houzel, to be submitted).
In both cases, however, cortical thickness clearly does not scale as
the inverse of neuronal density (because either c or α or both
are significantly different from zero, and non-canceling), thus

Frontiers in Neuroanatomy www.frontiersin.org February 2012 | Volume 6 | Article 3 | 10

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Mota and Herculano-Houzel An inside-out model of cortical folding

explaining why the number of neurons underneath a given cortical
surface does not remain constant as cortical size varies (Herculano-
Houzel et al., 2008; Ventura, Mota, and Herculano-Houzel, to be
submitted).

SCALING OF V W/V G

It has been proposed that larger cortices scale with a ratio between
the volumes of the WM and GM that increases homogeneously
across all mammalian species, with V W scaling with V G

1.22 to
V G

1.33 depending on the study (reviewed in Zhang and Sejnowski,
2000). We find that V W scales with V G

1.184±0.054 in primates, and
with V G

1.250±0.057 in rodents. Thus, V W appears to scale as not
significantly different functions of V G across the two orders.

These volume relationships, however, mask the finding that
the ratio V W/V G increases much more rapidly in rodents
than in primates as their cortices gain neurons, varying
experimentally with N 0.421±0.087 in the former and with
N 0.162±0.057 in the latter. Remembering that V W/V G varies with
N c+1+α+λ/N c+1+α+t = N λ − t , the scaling exponents above 0
indicate that in both rodents and primates, λ > τ. The increase
in the ratio V W/V G in larger cortices can thus be explained by the
slower minimization of average axonal length relative to isometry
than the rate of thickening of the GM as a function of N – but with
axonal length minimization lagging behind cortical thickening
more pronouncedly in rodents than in primates.

PROPAGATION TIMES
As detailed above, the average propagation time in WM axons
can be described to scale proportionally to average axon length
and inversely proportionally to the square root of the average
axonal cross-sectional area, varying as a function of N τ where
τ = λ − α/2. Given the values of λ and α found for rodents and
primates (above), we have that

τrodent = 0.466

τprimate = 0.165

This suggests that average signal propagation time through the
WM increases far more steeply with N in rodent brains than in
primate brains. Indeed, a recent study of the corpus callosum in
primates suggested that the expected conduction delays between
the hemispheres for different cortical areas doubles from macaque
to man (Caminiti et al., 2009). Interestingly, although propagation
time could in theory scale similarly across orders (which would
offer evidence of a common trend toward minimization of prop-
agation time in brain evolution), our initial results suggest that it
not only increases in larger primate cortices, but it also increases
faster in rodents than in primates. The faster scaling of WM fold-
ing in primate than in rodent brains, which we propose to result
from the stronger minimization of axonal lengths under tension
in the former, thus bestows upon primate cortices the advantage
over rodents of gaining neurons without having signal propagation
through the WM slowed down as much.

COMPUTATIONAL CAPACITY
As described above, the computational capacity of the WM (the
number of operations involving WM axons that a cortex would be

able to perform per unit time) is proportional to the number of
axons in the WM, and inversely proportional to the average prop-
agation time. In this manner, computational capacity through the
WM scales with N raised to the power of θ = 1 + c − τ. Given the
values of c and α calculated above, then we can estimate

θrodent = 0.446

θprimate = 0.623

Like for propagation times, we find that the total computa-
tional capacity of the cortex through the WM also scales faster in
primates than in rodents, although increasing more slowly than
the rate at which the cortex gains neurons.

Finally, the computational efficiency of the WM, predicted to
scale with N −2λ − (α/2), is thus estimated to scale with N −1.631 in
rodents, and with N −0.584 in primates. In both orders, thus, the
increase in number of cerebral cortical neurons is accompanied by
a decrease in the computational efficiency of the WM – a decrease
that is faster in rodents than in primates.

COMPARISON WITH OTHER MODELS
OUTSIDE-IN OR INSIDE-OUT?
One influential hypothesis for the formation of cortical folds is
the differential growth hypothesis, which considers that the faster
growth of the outer cortical layers compared to the inner layers
cause the cortical GM to fold (Richman et al., 1975). That hypoth-
esis, however, assumes that cortical GM is much stiffer (by an
unrealistic factor of 10) than the underlying WM. Our model, in
contrast, is aligned with the opposite view that cortical folding
is driven by tension generated by axonal connectivity in the WM
(Van Essen, 1997), which posits that differences in cortical growth
might be a result, and not the cause of cortical folding (Hilgetag
and Barbas, 2005).

Another previous model of cortical folding acknowledged a
radial pull on the cortical GM by elastic axonal fibers in the WM
(Toro and Burnod, 2005). That model, however, attributed the
source of cortical folding to a growing cortical surface, depend-
ing simply on cortical thickness and mechanical properties of the
cortical GM. Although the model showed cortical convolutions
to form as a natural consequence of cortical growth, it was largely
descriptive, not predictive, since cortical thickness does not appear
as an independent parameter; did not take numbers of neurons,
of fibers in the WM, nor neuronal size into consideration; nor
did it acknowledge that the cerebral cortex may scale as differ-
ent functions of its number of neurons and connectivity across
mammalian groups.

Recently, a study of the distribution of stress in the subcortical
WM of the developing ferret brain found that axons are indeed
under tension, although the majority of them are located circum-
ferentially in the WM, radially in the subplate, and in the cores of
outward folds (Xu et al., 2010). While the authors took this dis-
tribution as evidence against Van Essen’s tension-driven model of
cortical folding (because of the failure to find tension across the
walls of gyri), we believe that it actually provides direct evidence
that confirms that the WM grows under considerable axonal ten-
sion, which should make its growth deviate from allometry and
thus, according to our model, suffice to cause its surface to fold.
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Evidence that induced, abnormal cortical growth induces con-
volutions in the normally lissencephalic mouse brain (Haydar
et al., 1999; Chenn and Walsh, 2002; Kingsbury et al., 2003) seems
to favor models of cortical folding driven by cortical growth like
that of Toro and Burnod (2005). However, our model, which
attributes no major determinant role to the thickness of the WM,
also predicts increased folding as a consequence of a larger num-
ber of cortical neurons, depending simply on there being enough
internal tension in the WM, even if cortical connectivity remains
unchanged. One of the key features of our connectivity-based
model, then, is that it shows that changes in the properties of
the GM are not necessarily a factor driving cortical folding; rather,
they may occur as a consequence of WM folding, depending on
other, possibly unrelated factors such as the average neuronal size,
number of neurons in the GM and the fraction connected through
the WM, determining for instance the resulting average cortical
thickness. Note that, according to our model, local variations in
cortical thickness do not affect the WM volume and folding index.
Such variations in thickness across the cortical surface, which are
known to be exist, may however in some cases create discrepancies
between our expected and observed values of the GM folding.

Notice that our model does not predict where cortical folds
should occur. Gyral placement might be directed by tension pat-
terns (Van Essen, 1997) and/or by differential GM growth patterns
(Richman et al., 1975; Xu et al., 2010). Our model does not deny
the influence of differential growth in cortical patterning; it sim-
ply predicts that the extent of these folds should scale as the cortex
gains neurons depending on the connectivity fraction, the average
cross-sectional area of the axons in the WM, and their tension.

In the end, we envision cortical patterning as the result of
a mechanical phenomenon, probably involving a tug-of-war or
push–pull effect of GM and WM on each other during develop-
ment – maybe as the GM is nudged into curving by its expanding
outer layers, at the same time as the WM pulls onto it. The orga-
nization (anisotropy) of the WM seems to come into being via
stretch growth, in which it is pulled outward as the diameter of
the growing cortex increases (Smith, 2009) – and, therefore, as
it necessarily resists this outward pull, due to intrinsic tension
(or axons would continue to grow in a disorganized fashion).
In culture, stretch growth transforms random axonal projections
formed via outgrowth from central nervous system explants into
uniform parallel fascicles (Smith et al., 2001; Pfister et al., 2004).
The same process is likely to occur in the brain, as the expand-
ing ensemble of the growing cortex physically pulls the WM into
long organized tracts during development. Our finding that the
volume of the WM grows hypometrically relative to its surface
(Herculano-Houzel et al., 2010) provides strong evidence that the
axons composing the WM not only resist towing, but also produce
a net opposite force on the GM, which we propose that contributes
to folding the GM into gyri – and determines the increasing folding
of the cortical surface in larger brains across species.

CORTICAL THICKNESS: CAUSE OR CONSEQUENCE?
Qualitatively, thinner cerebral cortices are usually found in more
convoluted brains, whether across species or in pathological condi-
tions. In schizophrenia, for example, the cortex may be found to be
thinner than usual, with a reduced volume of the superficial layers,

and also more folded (Sallet et al., 2003); lissencephalic cortices, on
the contrary, are often found to be thicker than normal (Olson and
Walsh, 2002). These findings are often interpreted as evidence of
a thicker cortex resisting buckling. Our model, however, offers an
alternative interpretation: that cortical thickness increases as a con-
sequence of a smaller fraction of neurons connected through the
WM, in combination or not to an increased average neuronal size
in the WM. This can be intuitively understood as the stacking of a
larger number of neurons on top of the GM/WM interface when
smaller proportions of cortical neurons send or receive axons from
the WM; combined to a thinner spreading of cortical neurons over
the GM/WM interface when the average axonal cross-sectional
area leaving or entering the WM is larger (Figure 3). According to
our model, then, more highly folded cortices are those that have
larger connectivity fractions and/or larger average axonal cross-
sectional areas, which for the said reasons lead to a thinner cortex.
Similarly, the thicker lissencephalic cortex is predicted to be a result
of abnormal (insufficient) cortical connectivity through the WM,
possibly due to abnormal neuronal migration (Olson and Walsh,
2002), and not simply a cortex that became too thick to be folded.

CORTICAL FOLDING AND NUMBER OF CORTICAL NEURONS
One last and very important aspect of cortical folding is that is has
often been considered a means of making more neurons fit into
a space-limited brain, as the larger-than-expected cortical surface
supposedly allows a larger-than-expected number of neurons for
a given cranial volume. However, this would only be the case if
cortical expansion occurred mostly laterally, and with a homoge-
neous number of neurons per surface area. In contrast, as we have
shown previously, cortical expansion can no longer be considered
to occur homogeneously across species, nor with a homogeneous
number of neurons beneath a unit surface area. This means that
it is no longer necessarily true that more convoluted cortices have
more neurons than less convoluted cortices. Indeed, the elephant
cortex, which has a larger surface area and is more convoluted than
the human brain, has been estimated to have fewer neurons than
the letter (Roth and Dicke, 2005; Herculano-Houzel, 2009).

CONCLUSION
Here we show that cortical folding in mammals can be predicted
to happen as a consequence of the folding of the underlying WM
under tension of its axons, and not as a simple, linear function
of its number of neurons. Moreover, we show that the scaling of
cortical folding with larger numbers of cortical neurons can be pre-
dicted, and possibly determined, in different groups of mammals
by the scaling of a small number of parameters: (1) the fraction of
cortical neurons connected through the WM; (2) the average cross-
sectional area of axons in the WM; and (3) the shrinkage, under
tension, of average axonal length relative to isometry. Just one
further parameter, the scaling of (4) neuronal density, is required
next to predict, or determine, both how the thickness of the GM
varies, and how the folding of the GM itself scales. This of course
assumes near perpendicular (or at least invariant across species)
incidence of axonal fibers at the WM–GM interface. This is a plau-
sible hypothesis for fibers under longitudinal tension; but the lack
of actual systematic measurement of incidence angles that could
confirm this hypothesis must be takes as a limitation of the present
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work. Such a measurement would be most welcome, allowing us
extend our model by introducing another measured coefficient
(relating the average incidence angle as a power law of N ), to
recalculate the values of the various coefficients with a source of
uncertainty removed, and to independently test our underlying
hypothesis (since we expect a cortex grown subject to axonal lon-
gitudinal tensions to show a marked tendency toward orthogonal
incidence).

Importantly, while the model is potentially universal, apply-
ing across the different orders of mammals, it does not at all
imply that there is a single way for the cortex to scale. Rather,
we show that, according to the same model, there are many pos-
sible combinations of exponents c, α, and λ that lead to cortices
that become increasingly folded as they gain neurons – as long as
λ < (c + 1 + α)/2. Again,our model predicts that cortical thickness
is not a determinant of cortical folding, but rather a consequence,

depending on the scaling of neuronal density as well as of the con-
nectivity fraction and average cross-sectional area of the axons in
the WM.

Even in the case that experimental testing eventually shows
that causality in cortical folding is not as proposed in our model
without the introduction of further variables, the latter has the
enormous advantage of allowing one to deduce the scaling of cor-
tical connectivity, axonal length, cross-sectional area, and thus to
infer propagation time and computational capability and efficacy,
from readily measurable values of AW, V W, N, OW, and DN.
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