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We used hierarchical tree clustering to derive a functional organizational chart of 52
human cortical areas (26 per hemisphere) from zero-lag correlations calculated between
single-voxel, prewhitened, resting-state BOLD fMRI time series in 18 subjects. No special
“resting-state networks” were identified. There were four major features in the resulting
tree (dendrogram). First, there was a strong clustering of homotopic, left-right hemispheric
areas. Second, cortical areas were concatenated in multiple, partially overlapping clusters.
Third, the arrangement of the areas revealed a layout that closely resembled the actual
layout of the cerebral cortex, namely an orderly progression from anterior to posterior.
And fourth, the layout of the cortical areas in the tree conformed to principles of efficient,
compact layout of components proposed by Cherniak. Since the tree was derived on the
basis of the strength of neural correlations, these results document an orderly relation
between functional interactions and layout, i.e., between structure and function.
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INTRODUCTION
Resting (i.e., task-free) fMRI is becoming an increasingly
employed method by which to infer functional connectivity
between brain areas. This body of research since the first paper
by Biswal et al., published in 1995, has led to a multitude of
presumed associations among various cortical areas and possible
brain networks (Sporns, 2010). These results come from cor-
relating time series of resting BOLD fMRI data after they are
filtered down to very low frequencies (typically <0.1 Hz). These
time series are typically nonstationary, i.e., they contain trends
but also show autocorrelations for other reasons, commonly
due to autoregressive (AR) and moving average (MA) processes.
Commonly, all three components (trends, AR, and MA) are
present in fMRI time series. Although these processes in resting
fMRI time series may be of intrinsic value with regard to their
biological origin, they will have to be removed prior to correlating
the time series because, if left intact, the fundamental assumption
of independence of errors (residuals) in the least square regres-
sion is violated and spurious correlations will be obtained. The
removal of trends, AR, and MA dependencies can be done in var-
ious ways, including the Box-Jenkins AutoRegressive Integrated
Moving Average (ARIMA) procedure (Box and Jenkins, 1970;
Box et al., 2008), the linear transfer modeling approach (Liu,
1991; Pankratz, 1991), or a combination of linear or nonlinear

detrending and fitting an ARMA model. The time series obtained
as a result of eliminating these intrinsic processes are call “inno-
vations,” to denote that they carry new information, unrelated to
their history. Innovations are practically white noise (if the elim-
ination process above is successful) and the overall procedure is
called “prewhitening,” a term coined by Press and Tukey (1956,
p. 220; see also Blackman and Tukey, 1959) to denote the fact
that the spectrum of the innovations is white, i.e., prewhitened.
(See the Appendix below for a brief discussion of the basic
issues in time series analysis and their proper statistical treat-
ment.) Locascio et al. (1997) drew attention to the pitfalls of
correlating raw fMRI time series and outlined the correct pro-
cedures for computing valid correlations. Since 1995, we have
applied prewhitening to fMRI data to detect task effects (Tagaris
et al., 1995, 1997) and to perform brain network analyzes dur-
ing cognitive processing (Georgopoulos et al., 2005, 2006; Lewis
et al., 2006). In addition, we have used this method of correlat-
ing prewhitened neural time series of magnetoencephalographic
(MEG) data to investigate task differences (Leuthold et al., 2005)
and to assess the potential for such correlations to discriminate
among, and classify, brain diseases in the resting state (Langheim
et al., 2006; Georgopoulos et al., 2007, 2010; Engdahl et al., 2010).

In a recent paper, (Christova et al., 2011) we reported on
the general results from a voxel-by-voxel correlation analysis of
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prewhitened resting fMRI BOLD time series. The main find-
ing was that correlations are strongest within an area, followed
by correlations between the same areas in the opposite hemi-
spheres (homotopic areas), next between an area and other areas
in the same hemisphere, and lastly between an area and areas in
the opposite hemisphere (excluding the homotopic ones). These
findings support the hypothesis that the strength of correlation
between cortical areas reflects the density of overall anatomi-
cal connectivity, given the well-known strong local connectivity
within an area, the strong interhemispheric connectivity between
homotopic areas, the substantial, overall ipsilateral connectivity
and the relatively sparse contralateral connectivity. Thus, we con-
cluded that those results essentially follow the known pattern of
the strength of anatomical connectivity, and that they could be
inferred from this pattern under the reasonable assumption that
there is an ongoing neural activity and communication among
the various areas. In the present paper, we present the results of
a more detailed analysis of our findings (Christova et al., 2011)
obtained using a hierarchical tree modeling approach to reveal
relations among specific areas. The layout of the cortical areas
in the resulting tree (dendrogram) resembled closely the actual
cortical layout of various areas and conformed to principles of
efficient, compact layout of components proposed by Cherniak
(Cherniak, 1994, 1995, 2012; Cherniak et al., 2004).

MATERIALS AND METHODS
We analyzed a correlation matrix obtained from prewhitened
resting fMRI BOLD series in 18 human subjects, as described in
a previous paper (Christova et al., 2011). Details concerning sub-
jects and methods are given in that paper and are summarized
below.

SUBJECTS
Eighteen healthy human subjects participated in these experi-
ments as paid volunteers. They ranged in age from 21 to 44 years;
9 were men (32.9 ± 2.2 years, mean ± SEM; range: 25–44 years)
and 9 were women (25.2 ± 1.1 years; range 21–32 years). All sub-
jects participated in the study after providing informed consent,
in adherence to the Declaration of Helsinki. The study protocol
was approved by the respective Institutional Review Boards.

TASK
The experimental task was simple, short, did not require a prac-
tice session and engaged the brain in a stable condition. Subjects
lay supine within the scanner and fixated their eyes on a spot
in front of them in the center of the screen. The absence of eye
movement during this fixation period was verified by using an eye
tracking system (ASL eye tracker, Applied Science Laboratories,
Bedford, MA). Subjects were asked to remain still. Participants
wore earplugs to reduce the scanner noise.

IMAGE ACQUISITION
Blood oxygenation level dependent (BOLD) contrast functional
images were acquired with a whole-body 3T MRI scanner
(Magnetom Trio, Siemens, Erlangen, Germany) at the Center
for Magnetic Resonance Research of the University of Minnesota
using a gradient echo echo-planar imaging (EPI) (T2∗) sequence

with the following parameters: echo time (TE) = 23 ms;
repetition time (TR) = 2 s; flip angle = 90◦; in-plane resolution,
3 × 3 mm; slice thickness, 3 mm without inter slice gap. Whole-
brain functional volumes (N = 203) of 38 axial slices covering
the whole brain, cerebellum, and brain stem were obtained for
each subject. A high-resolution anatomical T1-weighted 3D flash
scan was obtained with the following parameters: TE = 4.7 ms;
TR = 20 ms; flip angle = 22◦; in-plane resolution = 1 × 1 mm;
slice thickness = 1 mm; 176 slices in total.

DATA EXTRACTION
All analyzes were performed on the BOLD time series signal
acquired per individual voxel in the whole brain of each subject.
Coordinates in Talairach space for each voxel, as well as the BOLD
intensity for each voxel, were extracted using Brain Voyager QX
(v.1.10, Brain Innovation B.V., Maastricht, The Netherlands).
Slice scan time correction was performed using sinc interpolation
based on the information about TR and interleaved order of slice
scanning. Three dimensional motion correction was performed
to correct for small head movements, if present, by spatially
aligning all volumes of a subject to the first volume using rigid
body transformations. The estimated parameters of translation
and rotation were inspected and did not exceed 3 mm or 2◦.
The 3-D volumes were then aligned with the corresponding 3-D
anatomical volumes and normalized to standard Talairach space
(Talairach and Tournoux, 1988). Matlab (R2008b, Mathworks,
Natick, MA, USA) programs were implemented to enable BOLD
time series extraction from the volume time course and anatomi-
cal mask available from Brain Voyager. For each subject, 203 func-
tional images were acquired continuously, yielding a sequence
of 203 BOLD signal values per voxel; of these, the first 3 vol-
umes were discarded, leaving a time series of 200 BOLD values
for analysis. Because the coefficient of variation is higher in the
vicinity of large vessels and outside of the brain (Kim et al., 1994),
we analyzed only voxels with coefficient of variation of no more
than 5%.

A high-speed database server called Talairach Daemon
(Lancaster et al., 1997, 2000) was used for automatic brain seg-
mentation of individual brains in Talairach space. Talairach coor-
dinates of each voxel were used to search the Talairach Daemon
database (www.talairach.org,v.2.4.2) for the Talairach label using
the “single point” search option. All voxels of the gray mat-
ter of the following 26 areas of the cerebral cortex in the
left and right hemispheres were analyzed (for a total of 52
areas): correlations were obtained between the following areas
of the left and right hemispheres: Precentral Gyrus, Superior
Frontal Gyrus, Middle Frontal Gyrus, Inferior Frontal Gyrus,
Paracentral Lobule, Medial Frontal Gyrus, Postcentral Gyrus,
Superior Parietal Lobule, Inferior Parietal Lobule, Angular
Gyrus, Supramarginal Gyrus, Precuneus, Superior Occipital
Gyrus, Middle Occipital Gyrus, Inferior Occipital Gyrus, Cuneus,
Lingual Gyrus, Superior Temporal Gyrus, Middle Temporal
Gyrus, Inferior Temporal Gyrus, Transverse Temporal Gyrus,
Fusiform Gyrus, Cingulate Gyrus, Anterior Cingulate, Posterior
Cingulate, Parahippocampal Gyrus. The mean x,y,z coordinates
of each area and its average volume (across the 18 subjects) are
given in Table 1.
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Table 1 | Mean x-, y- and z-Talairach coordinates and mean volumes

(mm3) of 52 areas of the cerebral cortex of 18 subjects.

Cerebral area Mean x Mean y Mean z Mean volume

L_Precentral −42.3 −7.2 39.4 10167.0

L_Superior_Frontal −17.2 36.9 36.7 13167.0

L_Middle_Frontal −36.0 25.9 30.8 14783.0

L_Inferior_Frontal −44.5 21.7 3.2 8191.5

L_Paracentral −6.2 −31.5 52.7 2550.0

L_Medial_Frontal −6.7 26.6 27.1 10794.0

L_Postcentral −40.3 −27.2 47.1 8248.5

L_Superior_Parietal −26.0 −58.3 52.2 3244.5

L_Inferior_Parietal −48.1 −41.0 40.3 7582.5

L_Angular −43.9 −66.9 33.9 505.5

L_Supramarginal −54.6 −46.6 30.2 1203.0

L_Precuneus −13.0 −61.5 41.1 11618.0

L_Superior_Occipital −35.6 −81.1 26.3 528.0

L_Middle_Occipital −35.1 −83.3 6.1 2749.5

L_Inferior_Occipital −33.6 −85.5 −8.2 1213.5

L_Cuneus −11.1 −82.9 18.7 8146.5

L_Lingual −12.4 −77.3 −3.2 4962.0

L_Superior_Temporal −51.7 −17.4 1.6 10010.0

L_Middle_Temporal −55.3 −36.3 −1.1 9009.0

L_Inferior_Temporal −53.9 −37.5 −14.3 2535.0

L_Transverse_Temporal −50.6 −20.9 11.5 1332.0

L_Fusiform −39.9 −49.1 −15.6 5530.5

L_Cingulate −6.9 −7.8 35.6 6937.5

L_Anterior_Cingulate −6.0 33.2 8.8 4252.5

L_Posterior_Cingulate −8.0 −54.5 15.3 2754.0

L_Parahippocampal −23.9 −25.0 −11.7 5001.0

R_Precentral 44.1 −7.0 39.3 10749.0

R_Superior_Frontal 19.2 38.0 35.2 14063.0

R_Middle_Frontal 37.3 26.1 31.6 15624.0

R_Inferior_Frontal 46.7 22.0 4.9 8244.0

R_Paracentral 6.8 −31.4 53.1 2776.5

R_Medial_Frontal 7.5 26.6 26.7 10829.0

R_Postcentral 41.9 −27.0 47.4 8149.5

R_Superior_Parietal 27.5 −58.3 52.6 3481.5

R_Inferior_Parietal 49.0 −40.8 40.5 6873.0

R_Angular 43.9 −65.3 34.2 582.0

R_Supramarginal 52.7 −45.0 31.1 1231.5

R_Precuneus 13.4 −61.6 40.6 12014.0

R_Superior_Occipital 36.3 −81.0 26.6 388.5

R_Middle_Occipital 35.3 −83.0 6.5 2755.5

R_Inferior_Occipital 33.4 −85.2 −8.3 1143.0

R_Cuneus 11.8 −82.6 19.5 7707.0

R_Lingual 13.1 −76.3 −3.1 4957.5

R_Superior_Temporal 52.0 −14.1 −0.3 9825.0

R_Middle_Temporal 55.6 −33.0 −2.8 8463.0

R_Inferior_Temporal 53.7 −35.0 −15.8 2460.0

R_Transverse_Temporal 52.7 −19.9 11.5 1287.0

R_Fusiform 40.8 −48.6 −15.6 5145.0

R_Cingulate 7.9 −8.5 36.0 7749.0

R_Anterior_Cingulate 6.9 34.0 8.5 4234.5

R_Posterior_Cingulate 9.0 −54.4 15.0 2706.0

R_Parahippocampal 24.3 −25.6 −11.2 4452.0

DATA PREPROCESSING: PREWHITENING THE RAW BOLD TIME SERIES
Initial inspection of the BOLD time series from many voxels
revealed that they were non-stationary with respect to the mean
and highly autocorrelated. (The variance did not vary much along
the series.) Since we were interested in calculating correlations
between these time series, it is required, from first principles
(Box and Jenkins, 1970; Box et al., 2008), that individual series
be rendered stationary and nonautocorrelated for their correla-
tion (i.e., not spurious). For that purpose we prewhitened each
series using an ARIMA (15, 1, 1) model which yielded practically
white noise innovations, i.e., stationary and nonautocorrelated
residuals (see Christova et al., 2011 for details).

HIERARCHICAL CLUSTERING ANALYSIS
Next, we analyzed a correlation matrix obtained from the
prewhitened resting fMRI BOLD series. We computed corre-
lation coefficients between 52 cortical areas (see above), as
follows. For a pair of areas, e.g., A and B, all voxel innova-
tions time series in A were correlated with all voxel innovations
time series in B. The correlation coefficients were z-transformed
(Fisher, 1958; Christova et al., 2011), averaged, and the means
converted back to correlations. Because correlations could take
negative values, a constant (=2) was added to these means
to transform them to a proximity measure. Finally, the data
were averaged across subjects to obtain a 52 × 52 area proxim-
ity matrix which was subjected to a hierarchical tree modeling
analysis. For that purpose we used the Hierarchical Cluster pro-
cedure of the IBM-SPSS statistical package (version 20) using the
squared Euclidean distance as measure and the average between-
groups linkage Unweighted Pair-Group Method using arithmetic
Averages (UPGMA) as the clustering method. The result was
visualized as a dendrogram in which the various cortical areas
were segregated in various groups. Finally, standard statisti-
cal methods were used where needed (Snedecor and Cochran,
1989).

PERMUTATION TESTING OF CHERNIAK’S COMPACTNESS
We further analyzed the placement of cortical areas in the tree in
the context of Cherniak’s compact component placement theory
(Cherniak, 1994, 1995, 2012; Cherniak et al., 2004). In general
terms, this theory states that in a component-interacting system,
an optimal strategy to optimize compactness is to place individ-
ual components as close to each other as possible, according to
the strength of their interaction. Cherniak has posited three basic
postulates of this theory, as follows. (1) The adjacency rule: “if
components are interconnected, then they are positioned con-
tiguously to each other, other things being equal” (Cherniak,
1995, p. 523); (2) the size law: “the larger the proportion of a
total optimal system that the evaluated subsystem is, the better
its optimization” (Cherniak, 2012, p. 365); and (3) the meta-
module grouping: “if a set of connected components is optimally
placed, then a set of metamodules, each consisting of a subset of
those components in the same positions, is also optimally placed”
(Cherniak et al., 2004, p. 1084). In our application, the compo-
nent placement corresponds to the location of a brain area in
the derived tree. We tested all three of the postulates above by a
procedure comprising the following steps.
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(1) We computed M = 51 successive pairwise distances D (given
a total of 52 areas) between brain areas in the derived tree:

Di
tree = (

(LRa − LRb)
2 + (PAa − PAb)

2 + (ISa − ISb)
2)1/2

(1)

where i is an index of successive distance (i = 1, M);
LR, PA, IS are Talairach coordinates: Left-Right(negative →
positive), Posterior-Anterior (negative →positive), and
Inferior-Superior (negative→positive); and a, b are
successive brain areas in the tree.

(2) We calculated the average distance

Dtree = 1

M

M∑

i = 1

Di
tree (2)

(3) We randomly permuted N times the placement of these areas
in the tree and recomputed the distances Dk

perm as above
(where k denotes a specific permutation, k = 1 to N) and

their average D
k
perm.

(4) We compared each D
k
perm to Dtree and counted how many

times D
k
perm< Dtree.

(5) We computed the grand average

Dperm = 1

N

N∑

k = 1

D
k
perm (3)

(6) Finally, we computed the “compactness index” for the com-
plete set as the ratio

cset = Dperm

Dtree
(4)

as a measure of gain in compactness of area placement in the
tree solution, as compared to the long-term average yielded
by the permutations; the higher the c, the higher the gain in
compactness. This procedure was applied to the tree derived
as above from all 52 cortical areas of both hemispheres (after
rectifying the LR coordinates) (M = 51), and, in addition, to
trees derived separately for the left and right hemispheres. In
the latter cases, M = 25, given 26 areas in a hemisphere.

The analysis above tested the presence of the adjacency princi-
ple on the whole set. The postulates of the size law, and meta-
module grouping were tested by applying the same procedure
to random subsets of areas in the tree, as follows. Let L be the
size of a subset of the tree, i.e., the number of areas in a sub-

set, L ≤ M. The measures D
subset
tree , D

subset
perm , D

subset

perm , csubset were
computed for each subset whose size L was varied systematically;
the origin of a subset was randomly selected in each permuta-
tion from the full range of allowable tree locations of serial order
1 to M-L. Since L ≤ M, the comparison of csubset to cset would
inform us whether the size law holds, which would predict that
csubset < cset. On the other hand, the frequency of occurrence

of D
subset
perm < D

subset
tree would inform us whether the metamodule

grouping holds, which would predict that subsets of the tree
would still be compact, as compared to those with random per-
mutations, i.e., that the frequency of occurrence of the inequality
above would be close or equal to zero. In this analysis, we used the
following parameters: N = 1000 and 10 < L ≤ M.

RESULTS
The dendrogram obtained is shown in Figure 1. The following
can be seen. First, the tree consists of several partially overlap-
ping clusters. Second, a section of the tree at the lowest level (red
line) indicates the close clustering of interhemispheric (homo-
topic) areas. And third, there is a systematic progression of areas
clustered, from anterior to posterior. We quantified this relation
as follows. For each area, we calculated the average Talairach
coordinates (Talairach and Tournoux, 1988) of all voxels and
all subjects. Then we performed a multiple linear regression
analysis between the serial order of the location of an area in
the tree and its Left-Right (LR; negative→positive), Posterior-
Anterior (PA; negative→positive), and Inferior-Superior (IS;
negative→positive) coordinates, as follows:

Tree order = a + bLR + cPA + dIS (5)

Where a-d are regression coefficients. The equation obtained was:

Tree order = 11.13 + 0.013(LR) − 0.345(PA) + 0.213(IS) (6)

Overall, this was highly statistically significant (F(3,48) = 53.8,
P < 0.001) and with excellent fit (R2 = 0.771). As expected (since
the homotopic areas clustered closely together), the LR coefficient
was not statistically significant (t51 = 0.432, P = 0.668). The
most significant was the PA coefficient (t51 = −12.4, P < 0.001),
followed by the IS coefficient (t51 = 4.3, P < 0.001). Figure 2
illustrates these results by plotting the predicted tree order against
the observed one. These results indicate an orderly progression
in the tree from anterior and inferior to posterior and supe-
rior. A fronto-parietal cluster is contained within the blue box in
Figure 1 and its component areas are shown in Figure 3.

PERMUTATION TESTING
Adjacency rule
The adjacency rule states that “If areas a and b are connected, then
a and b are contiguous” (Cherniak, 1994, p. 2421); in the present
case, we take “connected” to mean “interacting synchronously,” as
quantified by the zero-lag correlation of the prewhitened resting
fMRI time series. The adjacency rule can be tested by counting
how many times the average consecutive distances between areas
in the permuted tree would be smaller than the average distance

obtained from the derived tree, i.e., D
k
perm < Dtree. We found the

following with respect to the 52 areas and N = 1000 permuta-

tions, there was not a single case where D
k
perm < Dtree; this was

true also for N = 1,000,000. The same results were obtained for
the separate analyzes performed for each hemisphere. These find-
ings demonstrate that the tree layout of cortical areas is much
more compact than any random permutation would yield, up to
N = 1,000,000.
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FIGURE 1 | Dendrogram derived by hierarchical tree clustering of 52 cortical areas (see text for details).

Size law
The size law states that subsets of a compact layout would
be less compact than the whole, i.e., that csubset < cset . We
evaluated this by computing those variables for subsets of
L = 10, 11, 12, . . . , 51, 52 for the 52-area bilateral tree, and
L = 10, 15, 20, 25 for the 26-area left and right hemisphere
tree. For this analysis, 1000 subsets of each size above were eval-
uated using random starts along the tree (up to M − L, see
“Materials and Methods”); the area placement in a subset was
permuted 1000 times. This yielded 1000 values of csubset per sub-
set size L. Figure 4 plots the geometric mean of csubset (average
compactness index) against subset size. (Since csubset is a ratio,
it was log-transformed before averaging). It can be seen that,

as predicted by the size law, csubset is smaller for smaller subset
sizes, and increases in a practically linear fashion as the sub-
set size increases. A similar increase was observed for individual
hemispheres.

Metamodule grouping
The metamodule grouping conjecture states that “If a set of
connected components is optimally placed, then a set of meta-
modules, each consisting of a subset of those components in
the same positions, is also optimally placed.” (Cherniak et al.,
2004, p. 1084). We tested this conjecture by counting how

many times the condition D
subset
perm < D

subset
tree occurred, i.e., how

many times the average distance between consecutive areas in a
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permuted subset of the tree would be smaller than the observed
distance in the original sequence. We did not find any such
instance in the testing of any subset of any size in the case
of the 52-areas bilateral tree and in the case of the 26-areas
left and right hemispheres. This finding shows that subsets of
the tree layout are always more compactly placed than when
randomly permuted, as predicted by the metamodule grouping
conjecture.

FIGURE 2 | Scatter plot of the sequence of cortical areas in the

dendrogram of Figure 1 (from top to bottom) against the predicted

sequence using the average Talairach coordinates (per area) as the

independent variables (see text for details). Red and black denote left
and right hemispheres, respectively. Homotopic areas cluster closely as
doublets of red and black circles.

DISCUSSION
METHODOLOGICAL CONSIDERATIONS
Our study differs fundamentally from all other studies of rest-
ing fMRI in four major respects. First, our analysis of func-
tional connectivity was based on correlations computed between
prewhitened resting fMRI time series, in contrast to other studies
which have correlated time series without paying due consider-
ation to their stationarity (i.e., constant mean over a long time;
Bartlett, 1978) or the presence of AR (dependence on previous
values) or MA (dependence on variation of previous values) pro-
cesses, all of which would render the correlations thus obtained
invalid, ranging from inaccurate at best and totally spurious at
worst, depending on the strength of these intrinsic factors (see
“Introduction”). Although ways and methods for eliminating
within-series dependencies may be available in statistical pack-
ages aimed to analyze fMRI data, it is not commonly stated what
use, if any, has been made of these methods, and with what
result or effectiveness in achieving that goal. Serious concerns
regarding this problem and the adequacy of various approaches
implemented by existing fMRI analysis packages have been raised
recently (Lenoski et al., 2008; Monti, 2011; Eklund et al., 2012).

In general, the treatment of this issue in published studies takes
one of three forms: (1) In some studies, it is explicitly stated that
filtered (to low frequencies) but non-prewhitened (i.e., detrended
plus ARMA) time series have been used for correlations; in this
case, the computed correlations are in doubt. (2) In other stud-
ies, the use of packages is mentioned (e.g., SPM, FSL, etc.) but
without details as to what modeling on the time series was done
and whether this was effective in eliminating dependencies; in this
case, the computed correlations are in doubt too due to the lack of
detailed information about this issue. (3) Finally, in other studies
nothing is mentioned about this problem, so there is no way to tell
what has been done, and, therefore these correlations are also in
doubt. To ameliorate this uncertain situation, we propose that the
Durbin-Watson statistic (Durbin and Watson, 1951) be reported
together with every correlation analysis. This statistic evaluates
the autocorrelation function of the residuals from the correlation

FIGURE 3 | Areas of the fronto-parietal cluster, enclosed in the

blue box in Figure 1, are plotted on the T1-weighted structural

images of one subject (left hemisphere). Three axial slices are
shown. Cortical areas of the left hemisphere are presented with the

following colors: red, Cingulate Gyrus; violet, Precentral Gyrus; cyan,
Postcentral Gyrus; yellow, Paracentral Lobule; green, left Inferior
Parietal Lobule; blue, left Precuneus; and dark red, left Superior
Parietal Lobule.
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FIGURE 4 | Compactness index is plotted against subset size (see text

for details).

analysis, and small values indicate spuriousness of the correlation
(see also Draper and Smith, 1981, pp. 151–169). Alternatively,
the Box-Ljung test on these residuals could be reported (Ljung
and Box, 1978), which also evaluates the presence of significant
autocorrelations. Both of these tests are readily given in stan-
dard statistical packages (e.g., IBM-SPSS). The advantage of this
proposal is that no details of the kind of prewhitening proce-
dure need to be given (e.g., nonlinear detrending, etc.): we only
need to know whether the computed correlation is potentially
spurious or not, and these statistics (with their associated statisti-
cal significance) will provide that information. We discussed this
issue in detail, and illustrated results from our data, in a previous
publication (Christova et al., 2011).

Second, our dataset comes from extensive, voxel-by-voxel cor-
relations, specifically from more than a billion pairs of BOLD time
series, instead of correlating averaged times courses from regions
of interest (ROIs). No spatial smoothing was applied to the BOLD
data, hence the analysis is uncontaminated from potentially arti-
ficial correlations imputed by the commonly applied substantial
spatial smoothing. Although such smoothing is appropriate for
certain analyzes (e.g., the detection of task effects in ROI-based
analyzes) it is inappropriate for voxel-by-voxel correlations. To
our knowledge, our correlation analysis (Christova et al., 2011)
is the most extensive of its kind on record.

Third, our approach differs from others in that we analyzed
the whole correlation matrix of 52 available cortical areas (26 per
hemisphere), unlike other studies which have typically focused
on certain “seed” areas. Although this seeding is valid, the results
obtained are by necessity restricted to that particular seed, and
a general cortical functional connectivity cannot be obtained by
stitching together findings from separate seed studies to arrive at
a global picture. In contrast, we aimed from the beginning at the
whole picture.

Finally, we analyzed the data using a multivariate cluster-
ing approach (hierarchical tree clustering) which enabled us
to identify some general principles of cortical interactions and
layout as well as derive more specific clusters of cortical areas.

As is the case for every multivariate analysis (e.g., factor analy-
sis [FA], multidimensional scaling [MDS], etc.) hierarchical tree
clustering does not yield a unique solution. For example, FA
will yield different solutions based on the application of a factor
rotation, and the kind of rotation; and MDS will yield different
solutions depending on the choice of the level of measurement
(e.g., metric vs. nonmetric). The choice of parameters in such
multivariate analyzes typically comes from considerations of the
data themselves and the objectives of the analysis; for example,
Young et al. (1995) argued convincingly for the use of nonmetric
MDS for analyzing cortical connectivity. In our analysis, there
were two parameters involved. The first is the distance measure
for which we used the squared Euclidean distance as the appropri-
ate measure for continuous data. The second parameter concerns
the method for combining clusters for which we used the average
between-groups linkage (UPGMA, see “Materials and Methods”).
This method was found by Milligan (1980) to be the top per-
former in recovering clusters (at 99.8% correct rate), among seven
other methods he investigated in hierarchical cluster analysis. As
a result, this is the standard method of choice, and the default
method in the IBM-SPSS statistical package we used.

INTERHEMISPHERIC INTEGRATION
We observed a pervasive close clustering of homotopic (left-right)
areas (Figure 1, red line). This is in keeping with the well-
known strong anatomical connectivity between homotopic areas
and obviously underlies interhemispheric integration (Gazzaniga,
1970). Although this fact has usually being taken for granted,
interhemispheric integration has not been a prominent feature of
postulated resting state networks (van den Heuvel and Hulshoff
Pol, 2010).

CLUSTERING OF CORTICAL AREAS
It can be seen in Figure 1 that cortical areas cluster in a con-
catenated manner. Although there is a general progression from
anterior to posterior, there is also fine structure in the cluster-
ing pattern, reflecting, most probably, cooperative relations. As
an example, consider the cluster highlighted by the blue box
in Figure 1 and illustrated in Figure 3. It consists of several
areas (always integrated across hemispheres) which have been
involved in visuomotor coordination. The most closely inte-
grated sub-cluster includes the pre- and post-central areas of
both hemispheres. Also of interest is the cluster consisting of
paracentral, precuneus, and superior parietal lobules, all areas
involved in visuomotor coordination and anatomically intercon-
nected (Ferraina et al., 1997; Marconi et al., 2001; Margulies
et al., 2009). This cluster exemplifies the proximity arrangement
of cortical areas from different lobes (e.g., frontal and parietal).

Overall clustering of cortical areas based on correlations (i.e.,
without focus on a specific seed) has been reported previously
(Cordes et al., 2002; Salvador et al., 2005; van den Heuvel et al.,
2008, 2009). However, we cannot discuss them, since these corre-
lations were apparently computed from non-prewhitened fMRI
time series (as far as we can tell from the section “Materials
and Methods” of these papers), and since no information was
given regarding the nonspuriousness of the computed correla-
tions (e.g., by providing the Durbin-Watson statistic).
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RESTING STATE NETWORKS
Our results indicate an orderly functional organization of corti-
cal areas adhering to known anatomical facts and the results of
modeling and optimization studies (Young, 1992; Cherniak, 1994,
1995, 2012; Young et al., 1995; Cherniak et al., 2004). No special
roles or prominence or peculiarities were found regarding areas
putatively involved in such networks. We cannot comment on the
existing literature in that topic, given that published resting fMRI
correlational studies come from correlating nonstationary and/or
autocorrelated time series yielding inaccurate correlations. The
net effect of this inaccurate analysis is that claims based on such
studies, and postulated brain networks derived from them, can-
not be evaluated. The reason that resting state networks inferred
from such correlations may be found to be in accord with known
anatomical connectivity stems from the fact that an existing, true
relationship is part of the equation but its relative contribution is
undetermined due to the presence of nonstationarity and other
factors inducing autocorrelation in the individual series (e.g., AR
and MA processes).

To illustrate this point, consider the following example. The
wind is blowing from the north with various gusts, and the
branches and leaves of two adjacent small trees move accordingly
in a direction from north to south and with various inten-
sities, depending on the moment’s gust. A recording of their
motion provides two time series that consist of trends in the trees’
motions induced by the wind. Now, a high correlation between
these time series is found but this does not mean that the trees are
connected: the correlation is due to the common wind. An anal-
ysis of the trends in the individual series will reveal very similar
trends in their motion (they will differ because the trees are not
identical in their physical properties), and an inference could be
made about the characteristics of the wind that produced them
but not about the connectivity of the trees.

However, in another variant of this example, consider that the
trees are indeed tied loosely by a rope (in a functional sense).
The wind blows and the tree motions are recorded. In this case,
the correlation between the two time series will reflect both the
influence of the wind and the constraint of the connectivity of
the trees by the rope. A correlation between the two series could
not really provide accurate information either for the wind or for
the strength of connectivity between the trees, simply because the
motion recorded is the result of both factors. Also, a child could
come by and shake one of the trees: this will produce an additional
ripple in the time series of the motion of that tree, and so on for
other perturbations. To find the truth for the “true” connectiv-
ity between the two trees, the influence of the wind and other
factors should be removed first, and this is what a prewhitening
of the series would accomplish: “clean” the series by removing
the trend (and other dependencies), and only then correlating
them to find out the presence and strength of their functional
connectivity. (Conceptually, this is similar to multiple regres-
sion analysis where the influence of certain factors are “partialed
out” or “regressed out” to find the correct relation between the
dependent and specific independent variable.) Finally, all of these
considerations apply to frequency-domain approaches as well
(Blackman and Tukey, 1959; Jenkins and Watts, 1968; Granger,
1969; Priestley, 1981).

CORTICAL LAYOUT
The global organization of brain areas obtained by the hierar-
chical tree clustering analysis (Figure 1) resembled very much
the actual layout of the cortex. The correspondence of the order
of areas in the tree to the orderly progressing Talairach coor-
dinates from anterior to posterior, primarily, and from inferior
to superior, secondarily, is remarkable (Figure 2). This result is
in accord with results and outcomes of modeling and optimiza-
tion studies (Young, 1992; Cherniak, 1994, 1995, 2012; Cherniak
et al., 2004). More specifically, our results can be interpreted in
the context of Cherniak’s component placement idea (Cherniak,
1994, 1995, 2012; Cherniak et al., 2004), as follows. Cherniak
has proposed that the cortical layout reflects an underlying cost
minimization principle, namely the cost of axon wiring between
cortical areas. Although plausible, this cannot be tested rigorously
in the whole cortex due to the lack of quantitative neuroanatom-
ical information about the density of connections between areas
(in monkeys or humans), a point that has been repeatedly made
clear (see, e.g., Young et al., 1995; Caspers et al., 2011, 2012).
Older (e.g., Caminiti et al., 1985; Barbas and Pandya, 1989)
and recent studies (e.g., Barbas et al., 2005; Dancause et al.,
2007; Petrides and Pandya, 2007) with an emphasis on quanti-
fying anatomical connectivity in the monkey are usually focused
on a specific set of areas (e.g., prefrontal, premotor, parietal,
etc.) and, in addition, they differ substantially in the underly-
ing tracing methodology to allow pooling of results. Be that
as it may, although Cherniak’s suggestion about axonal wiring
cost optimization cannot be tested thoroughly, his idea about a
compact cortical layout is very interesting and can be tested out-
side (i.e., irrespective of) anatomical considerations. The point is
that, although the concept of “layout” implies structural/spatial
considerations, a specific layout can be derived based on data
other than structural/anatomical ones. For example, sections in
a library are defined based on the content of groups of books;
floors or large spaces in thematic buildings (e.g., Ministry of
Education, headquarters of a company, hospitals, etc.) are allo-
cated to similar operations (e.g., inpatient/outpatient operations,
personnel department, fiscal department, etc.) within which ele-
ments (individuals, small groups of people, etc.) are doing similar
operations, etc. This typically holds for aggregates of units; e.g.,
various research laboratories are placed near each other in larger
“research areas,” as opposed to administrative offices, which are
placed in “administrative areas,” etc. The cerebral cortex reflects
the outcome of long-time evolutionary pressures, and its layout
seems to reflect overall spatial placements of areas conforming to
the strength of their zero-lag correlations. It is very possible that
this interaction is associated with anatomical connectivity, or with
other aspects of neural communication as well. What is remark-
able, however, is that this cortical layout was derived from purely
functional considerations, since the Talairach coordinates of cor-
tical areas did not enter in any of the calculations that led to the
derivation of the tree.
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APPENDIX
ON CORRELATING TIME SERIES
It is an undisputed fact that correlation (or regression) between
any two time series is valid if, and only if, the series are sta-
tionary, i.e., if the mean of the series is constant throughout
the time course and thus independent of the location of the
time instant where it is calculated along the series (Priestley,
1981; Box et al., 2008; Jenkins and Watts, 1968; Bartlett, 1978).
If this assumption does not hold, i.e., if the series are non-
stationary, then spurious correlations are obtained. This issue
had been recognized in the early twentieth century (Yule, 1926)
but was brought forcefully to the foreground in the 1970s in
the field of econometrics (Granger and Newbold, 1977). It ulti-
mately led to a Nobel Prize awarded in 2003 to Clive Granger
for (among other achievements) demonstrating that “the statis-
tical methods used for stationary time series could yield wholly
misleading results when applied to the analysis of nonstation-
ary data.” (From Nobel Prize citation: http://nobelprize.org/nobel
prizes/economics/laureates/2003/press.html). Granger also dis-
cussed this issue in his Nobel Prize Lecture (Granger, 2004). The
solution to the problem is to render the series stationary which
can be achieved by differencing (i.e., taking successive differ-
ences in the series) or by the application of various detrending
procedures. The hallmark of nonstationarity is the presence of
autocorrelations in the series which can be detected by calcu-
lating the autocorrelation and partial autocorrelation functions
(ACF and PACF, respectively). Suitable detrending will remove
autocorrelations due to trends. However, a suitably detrended
series may still show significant autocorrelations due to the pres-
ence of other processes, typically AR and MA processes (Box
and Jenkins, 1970). The presence of an AR process indicates a
dependence of a given value on previous values (irrespective of
trend), whereas the presence of a MA process indicates a depen-
dence of a given value on the variation (“random shock”) of
previous values. Such dependencies need to be removed before
correlation or regression analyzes are performed to ensure that
the correlation obtained is truly due to the relation between the
two time series and does not simply reflect, or is contaminated by,
the time history of the series themselves. In a similar approach,
as that applied for detrending, AR and MA dependencies are
detected and removed. When this preprocessing is complete, i.e.,
when trends are removed and AR and/or MA dependencies elim-
inated, the resulting series are stationary and nonautocorrelated,

which means that they are now ready to be correlated. Because
there are no dependencies on previous values, the new “clean”
series are called “innovations.” The standard way to accomplish
this task consists of a three stage process (Box et al., 2008): (1)
identify the sources of dependencies in the series (“model iden-
tification”), (2) calculate the coefficients for these dependencies
(“model estimation”), and (3) take the residuals (innovations). As
the final diagnostic check, the innovations time series should be
stationary and non-autocorrelated. As mentioned above, there are
three major sources of dependencies, namely trends (“Integrated”
series), AR, and MA processes. The three stage process above
used to identify, estimate and remove these dependencies is called
ARIMA, from the initials (AR Integrated MA) (Box and Jenkins,
1970). Since the innovations series are essentially white noise,
the data preprocessing above is called “prewhitening,” a term
coined by John Tukey in 1956 (Press and Tukey, 1956) in the
context of spectral analysis of time series. Detailed exposition,
discussion and remedies for these problems can be found in
any textbook on time series analysis (e.g., Priestley, 1981; Box
et al., 2008), as detailed in a previous paper (Christova et al.,
2011). It is unclear why this fundamental point has been so per-
vasively ignored in functional neuroimaging, while it has been
commonplace in other fields, notably econometrics, for at least
the past three decades. An obvious reason is that correlating auto-
correlated time series requires special care of which the general
neuroscientist is unaware. For example, a fundamental assump-
tion of least squares linear regression is that the error terms be
independent, and violation of this assumption invalidates sta-
tistical testing of the significance of regression slope, since its
standard error is wrongly estimated. Although this is standard
textbook knowledge (see, e.g., Snedecor and Cochran, 1989), it is
not generally appreciated that regressing (or correlating) autocor-
related time series violates exactly this fundamental assumption,
leading to inflated correlations (Pierce, 1979). In fact, in two
early influential papers on fMRI data analysis, it was explic-
itly assumed that the errors in regression analysis between time
series are independent, an erroneous assumption (Friston et al.,
1995; Worsley and Friston, 1995). The detrimental effect of non-
independent errors in regression analysis has been lucidly exposed
by Box et al. (1978). It is interesting that the uncertainty as to
how to correlate time series is clearly present in most recent
textbooks of fMRI data analysis (Ashby, 2011; Poldrack et al.,
2011).
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