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The organization of connectivity in neuronal networks is fundamental to understanding
the activity and function of neural networks and information processing in the brain.
Recent studies show that the neocortex is not only organized in columns and layers
but also, within these, into synaptically connected clusters of neurons (Ko et al., 2011;
Perin et al., 2011). The recently discovered common neighbor rule, according to which
the probability of any two neurons being synaptically connected grows with the number
of their common neighbors, is an organizing principle for this local clustering. Here we
investigated the theoretical constraints for how the spatial extent of neuronal axonal and
dendritic arborization, heretofore described by morphological reach, the density of neurons
and the size of the network determine cluster size and numbers within neural networks
constructed according to the common neighbor rule. In the formulation we developed,
morphological reach, cell density, and network size are sufficient to estimate how many
neurons, on average, occur in a cluster and how many clusters exist in a given network.
We find that cluster sizes do not grow indefinitely as network parameters increase, but
tend to characteristic limiting values.
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INTRODUCTION
Network theory is increasingly applied to better understand
the principles of how neurons are interconnected and hence to
unravel the networking and topologic mysteries of the brain
(Honey et al., 2007, 2010; Sporns et al., 2007; Sporns, 2010). Much
of this work has been focused on macroscopic network princi-
ples such as those connecting brain regions. Increased interest in
mesoscopic neuroanatomical connectivity also grew considerably
over the years (Bohland et al., 2009). Recently, the discovery of
clusters of synaptically connected neurons has opened up investi-
gations of the microscopic network principles. The expression of
a number of cellular level motifs of synaptic connectivity was first
reported by Song et al. (2005). Subsequent publications on the rat
(Perin et al., 2011) and mouse (Ko et al., 2011), hint at a theme
shared by different species.

A number of cortical networks that have been described are
based on cells with large somata, which are easy to distin-
guish in electrophysiological experiments. The cell of choice in
the neocortex has been the large thick tufted layer 5 pyrami-
dal cell (TTL5-PCs) which, thanks to its size and shape, can be
isolated and recorded reliably (Markram et al., 1997). In a multi-
electrode patch-clamp setup it is possible to record from many
such cells simultaneously, determine their synaptic connectivity
and, after staining, also obtain their morphological properties.
In order to simulate different expanses of axonal and dendritic
arborization (Figures 1A,B) we developed the concept of “mor-
phological reach,” denoted r, a proportionality factor applied
to the decay in connection probability as a function of dis-
tance. Our reference, the TTL5-PC (Oberlaender et al., 2011),
is assigned a morphological reach of 1. Other cell types, in our

simulations, are assigned proportional morphological reaches
indicative of the extent of their basal dendritic arborizations
as measured using the sum of all branch intersections in Sholl
Analyses (Figures 1C,D). TTL5 pyramidal cells have broad den-
dritic arborization (Markram et al., 1997) and form clusters that
may constitute elementary units of information processing within
a brain region (medium/regional projections) and between brain
regions (long/interregional projections). In previous work we
identified a rule, the common neighbor rule, governing the con-
nectivity of these groups of neurons (Perin et al., 2011). The
common neighbor rule describes a directly proportional relation-
ship between the connection probability between any two neu-
rons and the number of other neurons in the network connected
to both neurons in this pair. In this case the term connected
indicates neurons that project to as well as neurons receiving
synaptic appositions from the neurons in the pair. When applied,
the common neighbor rule produces complex clustered networks
that lie between completely random networks (Erdös–Reni-type)
(Erdõs and Rényi, 1960) and highly clustered networks with hubs
(Barabási-type) (Barabási and Albert, 1999) resembling more
closely a Watts-Strogatz-type network (Watts and Strogatz, 1998).
A key distinguishing feature between macro-clustering in the
brain (between brain regions) and micro-clustering (between
neurons of a local microcircuit) is that there are no hubs at the
micro (local) network level within a given cell-type. In other
words, each neuron of a given type makes contact with and
receives contacts from about the same number of neurons of the
same type—in fact a pre-requisite for the occurrence of hubs is
that the number of boutons and spines per neuron within the
population span some orders of magnitude so that the degree
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FIGURE 1 | Correlates of different cell types. (A,B) Example of
Layer V Pyramidal Cell and Layer II/III Pyramidal Cell morphologies,
respectively, superposed on intensity maps representing the average
density of morphological processes around the soma. (C) Sholl

analysis of the basal dendrites of Layer V and Layer II/III.
(D) Illustration of how morphological reach is used to modify
connection probabilities as a function of inter-somatic distance in
simulations.

of connectivity might vary accordingly. This form of clustering is
quite exceptional amongst biological and social networks in that
it contains no hubs and has a degree of separation less than 2.

Since the common neighbor based clustering applies simi-
larly across individuals of the same species, the neuronal groups
formed would be quite similar. Bootstrap analysis, in which dif-
ferent subsets of the connectivity data originating from different
individuals are used, consistently captures the common neigh-
bor rule (Figures A1, A2). This has led to the suggestion that
these clusters are in fact innate (genetically preprogrammed to
develop) holding innate knowledge of elementary forms of infor-
mation processing. These posited innate groups likely require

some general activity, rather than experience-dependent activity,
during development to form.

It may therefore be of special interest to understand the sizes
and numbers of such clusters in a brain region. We therefore con-
structed networks by applying the common neighbor rule and
derived the relationships between cluster sizes and numbers as a
function of morphological reach, neuronal density, and network
size.

METHODS
Point neurons were placed in a cubic tridimensional lattice
arrangement with regular spacing that assumed the values of 18,
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19, 21, 23, 25, 28, and 36 µm in different simulations, yield-
ing the corresponding cell densities of 171470, 145790, 107980,
82190, 64000, 45554, and 21433 neurons/mm3 (Figure 2A) cov-
ering the range of experimentally observed densities in a neo-
cortical column (Meyer et al., 2010). Uniformly random jitter

was then added to each position in three dimensions with
amplitude equal to the grid spacing between neurons (Figure 2B).
Since point neurons are used no compensation for extreme
proximity between neurons is applied. The simulations used
network sizes of 512, 1000, 1728, 3375, 4096, and 5832 cells

FIGURE 2 | The network assembly and reorganization of connections.

(A) Initial lattice arrangement of somas. (B) Jitter added in three dimensions
to the lattice arrangement. (C) Connections assigned according to
intersomatic distance probability profiles in circular dimensions in order to

eliminate boundary effects. (D) Iterative reorganization of connections based
on numbers of common neighbors. (E) Cluster identification based on affinity
propagation. (F) Possible organization of clusters in a column with examples
of clusters sharing the same space.
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in cubic arrangements. Each of the three dimensions in this
model was made circular so that neurons close to one edge
were considered to be close to neurons on the opposite edge
of the network (Figure 2C). Edge effects were countered in
this way and every neuron was exposed to a similar number
of neighbors and could potentially form the same number of
connections.

In order to investigate the influence of morphology on clus-
tering, the morphological reach of TTL5 pyramidal cells was
multiplied by factors of 0.5, 0.667, 0.8, 1, 1.333, and 2 in net-
works containing 4096 neurons. We defined a neuron’s neigh-
bors as those cells that form synaptic connections onto or that
receive synaptic connections from the neuron in question. In our
model, the small world clustering of layer 5 pyramidal cells is
made directly proportional to the number of common neighbors
(Figure 2D) (Perin et al., 2011). To achieve this goal the con-
nections in the initial network were assigned pseudo-randomly
according to inter-somatic distance profiles observed experimen-
tally (Perin et al., 2011) (see also Figure A3). While morpholog-
ical reconstructions indicate a degree of anisotropy in process
arborization such observations indicate that a purely distance-
based connection probability function still can capture the trend
in connectivity patterns. In the simulations where we were inter-
ested in simulating different arborizations we linearly extended
or shortened such profiles by dividing the actual distance sup-
plied to these profiles by the “morphological reach” factor. The
initial connectivity was then modified according to the number
of common neighbors. The pair of neurons sharing the maximal
number of common neighbors was assigned a probability of con-
nection of 1. Pairs of neurons sharing no common neighbors we
assigned a connection probability of 0. Pairs of neurons sharing
intermediate numbers of common neighbors were assigned lin-
early interpolated connection probability values. This process was
iterated until the clustering coefficient of the whole network no
longer increased (see Figure A4). The observed clusters consist
of a few dozen neurons typically distributed 100–150 µm apart.
Based on this study (Perin et al., 2011) we decided to investi-
gate the effects of different network sizes and cell densities as well
as the impact of different extents of morphological arborization
on the clustering properties of networks. Clusters were identified
using the affinity propagation algorithm (Frey and Dueck, 2007)
at the end of the simulation and providing the number of com-
mon neighbors as the similarity measure (Figure 2E). Similarity
was defined exclusively for connected neuron pairs, being set to
zero in pairs that were not connected in any way.

Sets of 10 simulations were performed for each parameter
combination. The average numbers of clusters and average cluster
sizes were plotted and the data points were fitted with surface fits
using the MatLab curve fitting tool.

RESULTS
The goal of our modeling was to better understand the relation-
ship between the different network parameters and the network
clustering properties. Six basic relationships were investigated by
varying three parameters—network size, cell density, and mor-
phological reach—and analyzing the effects on the two clustering
properties—the average number of clusters and the average

number of cells contained in clusters (cluster size). From these
results we also calculated the number of clusters per unit volume.

NETWORK SIZE AND DENSITY
To investigate the impact of network size on the number and size
of clusters we constructed networks ranging from 512 to 5832
neurons. These networks were based on TTL5 Pyramidal Cells
and ranged in density from 45554 to 455170 cells/mm3. Networks
containing different numbers of neurons display different clus-
tering properties. A relatively simple linear relationship exists
between the network size and the number of clusters. Simply put,
larger networks fit more clusters of similar size (Figure 3A) as
can observed in the curve that fits the surface that describes the
number of cluster as a function of networks size and density:

NC = 21.54 − 3.90

10000
d + 6.42

100
s

where NC stands for the number of clusters, s for network size in
number of cells and d for network density in cells/mm3.

A mild decay in the number of clusters occurs as the net-
work density increases. This is because higher densities lead to
larger average cluster sizes (Figure 3B). Cluster size as a func-
tion of network size follows a lognormal profile, first increasing
then decreasing. This is a particular feature of networks without
boundaries. The fitted surface for cluster sizes as a function of
network size and density can be expressed as

CS = 13.23 + d

10000
e
−

(
log

(
s

1300 + 3d
1000

) )2

where CS stands for cluster size, s for network size in number of
cells and d for network density in cells/mm3. Goodness of fit for
the resulting surfaces according to Adjusted R-square values were
0.97 for average number of clusters as a function of network den-
sity and size, 0.95 for average cluster sizes as a function of network
density and size. The number of clusters per unit volume grows
with cell density and displays an inverted relationship to cluster
size as a function of network size (Figure 3C).

NETWORK DENSITY AND MORPHOLOGICAL REACH
Morphological reach is a parameter that reflects the extent of
neuronal arborization (Figures 1A,B). The more extensive the
arborization the more connections a neuron is likely to form
(Figure 1C). We attribute the value of 1 to the morphological
reach characteristic of TTL5 Pyramidal Cells. Cells with more
restricted arborization display, therefore, morphological reaches
corresponding to some fractional value (Figure 1D).

The density of neurons in a local network, in the follow-
ing simulations involving 4096 neurons, strongly influences the
number of clusters formed, particularly very low densities which
cause neurons to be more isolated thus yielding numerous clusters
involving few neurons (Figures 3D, A5). As neuronal densities
increase the number of clusters quickly becomes less depen-
dent on this parameter reaching a plateau before decreasing
again due to increasing cluster sizes (Figures 3D,E). The rela-
tionship between the number of clusters in a network and the
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FIGURE 3 | Properties of simulated cortical network clustering.

(A) Average number of clusters observed in the different simulations as a
function of network size and density. Each data point corresponds to the
average of 10 simulations. (B) Average cluster size for the same simulations
show in A. (C) Number of clusters per mm3 calculated from A and B. (D)

Average number of clusters observed in the different simulations as a
function of network density and morphological reach. Each green data point
corresponds to the average of 10 simulations. (E) Average cluster size for the
same simulations show in D. (F) Number of clusters per mm3 calculated
from D and E.

morphological reach of the cells that form this network follows
a similar trend, also forming a plateau before further decreasing.

NC = 100.70 + 210.60

1 + e−(1.57 − dr3/1e5)/0.97
+ 1.23e9

(dr3)
2

where NC stands for the number of clusters, r for morphologi-
cal reach and d for network density in cells/mm3. Morphological
reach, similarly to density, has little effect on the number of
clusters in a network except in the case of extremely low val-
ues, which lead to nearly isolated neurons (Figure 3D). Within
the physiological range of 0.5–1, growth in morphological reach
leads to approximately linear and relatively mild increases in clus-
ter sizes. Increases in morphological reach above 1 tend to have
larger effects, especially in the case of networks with large cell
density but eventually tend to saturation at extreme values of
both. Changes in reach and density led to different cluster sizes
(Figure 3E) according to a sigmoidal:

CS = −13.78 + 62.37

1 + e
8.36e4 − dr3

3.23e5

where CS stands for cluster size, d for network density in
cells/mm3 and r for morphological reach. It is important to cap-
ture variations in morphological reach and cell density since the
combination of both is necessary in order to estimate clustering
properties.

Goodness of fit for the resulting surfaces according to Adjusted
R-square values was 0.97 for average number of clusters as a
function of network density and morphological reach, 0.98 for

average cluster sizes as a function of network density and mor-
phological reach. The number of clusters per unit volume grows
approximately linearly with both cell density and morphological
reach (Figure 3F).

DISCUSSION
The most abundant neuronal type in the mammal neocortex,
the pyramidal cell can be found in five of the six neocortical
layers and with varying spatial reach of their arbors. This cell
retains a remarkable stereotypical shape from mice to man and
varies mainly in the length of its axonal and dendritic arbors
(Peters and Yilmaz, 1993). Thick tufted layer 5 pyramidal cells
are among the largest neurons in the brain and provide the out-
put from the neocortex to subcortical structures and distant brain
regions to drive behavior (Morishima and Kawaguchi, 2006). We
previously found that these pyramidal cells are networked accord-
ing to a simple synaptic organization rule; neurons that share
more common neighbors are also more likely to be connected
(Perin et al., 2011). This rule results in stereotypical clusters of
synaptically connected neurons and therefore do not seem to be
uniquely shaped by experience. In fact, the synaptic weights of the
connections between neurons in these clusters are also on aver-
age saturated, which is not ideal for acquired memory storage.
We therefore propose that forming synaptic connections accord-
ing to common neighbors is a pre-programmed rule that drives
stereotypical neuronal clustering during development. These
clusters may therefore express elementary units of innate knowl-
edge that are combined in an experience-dependent manner to
form acquired memories while preserving fundamental percep-
tual mechanisms. It is likely that at its origin, cluster formation
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may be linked to the fact that sister cells (i.e., cells that origi-
nated from the same progenitor radial glial cell) are more likely
to develop strong electrical coupling which in turn favors chemi-
cal synapse formation (Yu et al., 2009, 2012). These preferentially
connected sets of neurons may associate to form larger ensembles
as those involved in orientation selectivity in the visual cortex (Ko
et al., 2011).

The common neighbor rule also makes it possible to pre-
specify the underlying synaptic connectivity in a network of such
neurons even before learning rules come into play. The influence
from common input leading to greater connection probabili-
ties between neurons, which constituted the central mechanism
explored in the current work, seems to apply not only for local
but also long-range projections (Otsuka and Kawaguchi, 2008;
Brown and Hestrin, 2009). The question we focused on, however,
is how the structural features of neuronal arborization further
influence the local synaptic connectivity organization. The com-
mon neighbor rule, which ensures that important features of
synaptic organization are respected, was therefore imposed on the
connectivity between neurons with different morphological reach
and cell densities. From these networks we derived relationships
between morphological reach, cell density and number of cells in

a network, in order to determine how many neurons make up the
clusters and how many clusters can potentially be formed under
different conditions.

Experimental evidence from juvenile rat somatosensory cor-
tex (Perin et al., 2011) as well as adult visual, (Ohki et al.,
2005; Yoshimura et al., 2005) and auditory (Rothschild et al.,
2010) and mouse frontal cortices (Otsuka and Kawaguchi,
2011) supports the occurrence of clusters of excitatory cells
in Layers II/III through V, overlapped and interlaced in space,
rather than tiled next to each other (Figures 2E,F). This not
only allows the packing of many clusters of neurons in the
same space but also enables monosynaptic connections between
clusters to be adjusted and regulate the relationship between
clusters.

Future investigations into this topic should also take into con-
sideration the effects of network boundaries and interactions
between different cell types, both constituting factors that further
influence cluster formation.
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APPENDIX

FIGURE A1 | MatLab bootstrap analysis of connection probability as a function of the number of common neighbors (thin lines in various colors)

with original data mean and standard error of the mean superposed for reference (thick blue line).
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FIGURE A2 | Twelve plots of connection probability as a function of the number of common neighbors in subsets of 20 experiments, each

experiment from a different individual.
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FIGURE A3 | Process illustrating assembly of pseudo-random networks

that respect the overall connection probability as a function of distance

as well as the non-reciprocal and reciprocal connection probabilities as

a function of distance. (A–C) Experimentally observed connection
probability profiles and fitted functions (sigmoids). (D) Example of cell
positions generated by grid plus random jitter. (E) Calculated intersomatic
distances from D. (F) Apply morphological reach as a factor in the connection
probability profile. (G–I) Connection probabilities, given a morphological reach
of 1, used for the remainder of the example. (J) Generate random numbers

x(i, j) once for each pair of neurons i and j. (K) Determine presence and
direction of connections based on random numbers that were generated.
Reciprocal connections occur where x(i, j) < pr(i, j). Non-reciprocal
connections from neuron i to neuron j occur where x(i, j) ≥ pr(i, j) and
x(i, j) < pr(i, j) + pnr(i, j)/2. Non-reciprocal connections occur from neuron j
to neuron i where x(i, j) ≥ pr(i, j) + pnr(i, j)/2 and x(i, j) < pr(i, j) + pnr(i, j).
No connections are formed when x(i, j) ≥ pr(i, j) + pnr(i, j). The overall
probability of connection p always respects its distance profile and the
equation p(i, j) = pr(i, j) + pnr(i, j)/2.
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FIGURE A4 | Examples of the effect of reorganization on clustering

coefficient of a network (multiple thin lines) with a fitted exponential

curve (thick blue line). Since the computation of the clustering coefficient is
time-consuming we used the number of iterations that best approximated

95% percent convergence to the value projected after infinite iterations (from
fitted data). The clustering coefficient is the measure of the probability of
connection among each neuron’s neighbors calculated for each neuron in the
network.

FIGURE A5 | Number of clusters as a function of network density and morphological reach as in Figure 3D, viewed from a different angle.
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