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Cortical GABAergic synapses exhibit a high degree of molecular, anatomical and functional
heterogeneity of their neurons of origins, presynaptic mechanisms, receptors, and
scaffolding proteins. GABA transporters (GATs) have an important role in regulating GABA
levels; among them, GAT-1 and GAT-3 play a prominent role in modulating tonic and phasic
GABAAR-mediated inhibition. We asked whether GAT-1 and GAT-3 contribute to generating
heterogeneity by studying their ultrastructural localization at cortical symmetric synapses
using pre- and post-embedding electron microcopy. GAT-1 and GAT-3 staining at symmetric
synapses showed that in some cases the transporters were localized exclusively over
axon terminals; in others they were in both axon terminals and perisynaptic astrocytic
processes; and in some others GAT-1 and GAT-3 were in perisynaptic astrocytic processes
only. Moreover, we showed that the organizational pattern of GAT-1, but not of GAT-3,
exhibits a certain degree of specificity related to the post-synaptic target of GABAergic
synapses. These findings show that symmetric synapses expressing GAT-1 or GAT-3
are heterogeneous, and indicate that plasma membrane transporters can contribute to
synaptic heterogeneity.
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INTRODUCTION
Heterogeneity is a hallmark of chemical synapses; this property
is crucial for development of connectivity, function of neural cir-
cuits and systems, and plasticity, and has profound implications
for neuropsychiatric diseases (e.g., Conti and Weinberg, 1999;
Cherubini and Conti, 2001, for glutamatergic and GABAergic
synapses). This view has been nicely described by O’Rourke
and colleagues in the concluding paragraph of a scholarly and
inspiring review: “We must recognize that uncharted synapse
diversity is a scientific liability capable of severely restricting
our ability to understand neural circuit function and even basic
mechanisms of synapse function. Conversely, a more complete
understanding of synapse diversity is certain to be a strong
asset to both synapse and circuit science” (O’Rourke et al.,
2012).

As far as GABAergic synapses are concerned, heterogeneity has
been demonstrated at all levels so far studied: from morphology
and chemical phenotype of their neurons of origin to presynaptic
mechanisms, from ionotropic and metabotropic pre- or post-
synaptic receptors to anchoring proteins, and from post-synaptic
responses to plasticity phenomena (e.g., Aradi et al., 2002; Soltesz,
2005; Maffei, 2011; Méndez and Bacci, 2011; Sassoè-Pognetto
et al., 2011; Fritschy et al., 2012; O’Rourke et al., 2012; Benarroch,
2013; Bragina et al., 2013; DeFelipe et al., 2013).

Since Iversen and colleagues demonstrated the existence of
a high-affinity uptake of exogenous GABA by a subpopulation
of cortical axon terminals (Iversen and Neal, 1968; Bloom and

Iversen, 1971), much has been learnt on the nature, distribution,
mechanisms, and functional role of the proteins mediating GABA
uptake in neocortex (GABA transporters, GATs) (Borden, 1996;
Conti et al., 2004; Richerson and Wu, 2004; Héja et al., 2006;
Kanner, 2006; Kristensen et al., 2011; Pramod et al., 2013). Yet,
the possible contribution of GATs to GABAergic synapses hetero-
geneity has never been subjected to experimental scrutiny. Here,
we address this issue and suggest that GATs add to the long list of
proteins generating heterogeneity at GABAergic synapses.

GABA TRANSPORTERS IN CEREBRAL CORTEX
Four GATs have been identified to date: GAT-1 (slc6a1), GAT-2
(slc6a13), GAT-3 (slc6a11), and BGT-1 (slc6a12) (Borden, 1996;
Conti et al., 2004). GATs share a high degree of nucleotide and
amino acid sequence homology; they transport GABA in a high
affinity, Na+ and Cl− dependent manner, but they differ in their
tissue distribution and pharmacological properties (Madsen et al.,
2007).

GAT-1 is localized to axon terminals (AT) forming symmet-
ric synapses and to astrocytic processes (AP) (Radian et al.,
1990; Minelli et al., 1995; Conti et al., 1998); a recent analysis
showed that in parietal cortex ∼55% of GAT-1 is in neuronal
elements, and ∼40% is in AP; and that ∼60% of all GAT-
1 is in profiles contributing to synapses (Melone et al., 2013).
Accordingly, GAT-1 has a prominent role in both tonic and pha-
sic GABAAR-mediated inhibition, particularly during sustained
neuronal activity (Bragina et al., 2008); GAT-1 also contributes
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to presynaptic homeostasis at GABAergic terminals (Conti et al.,
2011). GAT-1 is strongly inhibited by cis-3-aminocyclohexane
carboxylic acid (ACHC) and, to a lesser extent, by 2, 4 diaminobu-
tyric acid, but not by β-alanine (Madsen et al., 2007). GAT-
1 developmental expression is coordinated with that of other
GABAergic presynaptic proteins, i.e., the synthesizing enzyme

GAD and the vesicular transporter VGAT, and parallels that of
the GABAA receptor α1 subunit, which participates in mature
GABAergic transmission (Minelli et al., 2003a; Conti et al., 2004
for data and references). GAT-2 is mainly expressed in lep-
tomeninges and in ependymal and choroid plexus cells (Conti
et al., 1999); its function is still elusive. GAT-3 is localized to

FIGURE 1 | Heterogeneous distribution of GATs at cortical symmetric

synapses (layer II/III of the first somatic sensory cortex). (A–F) GAT-1 and
GAT-3 immunoreactivities at symmetric synapses in pre-embedded material.
Electron microscopic inspection revealed that GAT-1 (A–C) and GAT-3 (D–F)

immunoreactivities are localized either to axon terminals (AT) only [(A) for
GAT-1; (D) for GAT-3], or to both AT and perisynaptic astrocytic processes
(PAP) [(B) for GAT-1; (E) for GAT-3], or exclusively to PAP surrounding
synapses [(C) for GAT-1; (F) for GAT-3]. Arrowheads point to symmetric
synaptic contacts. Pre-embedding was performed as described (Melone
et al., 2013) in sections from 3 animals/antigen. (G–N) GAT-1 (G–I) and GAT-3

(K–M) staining in AT making symmetric synaptic contacts and in PAP. Framed
regions in (I,L) are reproduced, enlarged, in the upper right corner. Arrows
indicate both cytoplasmic and membrane-associated GAT-1 or GAT-3 staining
and arrowheads point to symmetric synaptic contacts. Post-embedding was
performed by osmium-free embedding method (Phend et al., 1995) as
described (Melone et al., 2013) on sections from four rat brains. Profiles were
considered immunopositive for GAT-1 or GAT-3 when gold particle density
was significantly higher than background, estimated by calculating gold
particle density over pyramidal cell nuclei (Supplementary Table 1). Scale
bars: 100 nm.
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distal AP (∼70%) and to some AT (∼25%); about half of all
GAT-3 is localized in profiles contributing to synapses (Minelli
et al., 1996; Melone et al., 2013). The functional role of GAT-3
has not been definitely clarified, although it is believed to modu-
late the amount of GABA diffusing into extracellular space (Conti
et al., 2004; Kersanté et al., 2013; Melone et al., 2013). GABA
uptake by GAT-2 and GAT-3 is inhibited by β-alanine, but not
by ACHC (Madsen et al., 2007). In neonatal cortex, only GAT-3 is
abundantly expressed and GABA uptake is potently inhibited by
β-alanine, suggesting that extracellular GABA levels at birth are
modulated mainly by GAT-3 (Minelli et al., 2003b). Interestingly,
phylogenetic studies show that GAT-1 precedes GAT-3 during
evolution (Kinjo et al., 2013). As far as BGT-1 is concerned, it
is unclear whether this transporter functions as a GAT in CNS
(Lehre et al., 2011).

LOCALIZATION OF GAT-1 AND GAT-3 AT CORTICAL
SYNAPSES IS HETEROGENEOUS
With this background, we verified the possibility that symmetric
synapses have different expression patterns of GATs. We focused

on GAT-1 and GAT-3, which are expressed at synapses and affect
synaptic transmission (Section GABA Transporters in Cerebral
Cortex). All observations were from layers II/III of the first
somatic sensory cortex of the parietal lobe.

We first analyzed qualitatively the organization of synapses
expressing GAT-1 and GAT-3 using a pre-embedding method.
This analysis showed that, at symmetric synapses, GAT-1
(Figures 1A–C) and GAT-3 (Figures 1D–F) were localized either
in AT or in both perisynaptic astrocytic processes (PAP) and
AT, or in PAP. Next, we used an immunogold post-embedding
method to visualize GATs molecules inserted in membranes (and
therefore conceivably functional). Densities of GAT-1- and GAT-
3 in background, AT, and PAP are given in the Supplementary
Table 1. Analysis of the distribution of GAT-1 staining at sym-
metric synapses (n = 462) showed that 62.7 ± 2.2% of GAT-1+
profiles were AT; 15.1 ± 1.6% both AT and PAP; and 22 ± 1.9%
PAP (Figures 1G–J). Analysis of GAT-3 staining at symmetric
synapses (n = 249) revealed that 73.4 ± 2.8% of positive pro-
files were PAP; 14.8 ± 2.2% AT; and 11.6 ± 2% both PAP and
AT (Figures 1K–N). Thus, symmetric synapses expressing GAT-1

FIGURE 2 | Distribution of GAT-1 at axo-somatic (AS), proximal

axo-dendritic (pAD), distal axo-dendritic (dAD) and axo-axonic (AA)

synapses. (A–F) Examples of GAT-1 immunoreactivity at AS (A–C) and
dAD (D–F) symmetric synapses in which GAT-1 was localized at AT
only (A,D), at both AT and PAP (B,E), or at PAP only (C,F).
Arrowheads point to symmetric contacts. AT, axon terminal, PAP,

perisynaptic astrocytic processes; S, soma; d, distal dendrite. (G–I)

Quantification of GAT-1+ profiles at AS, pAD, dAD, and AA synapses.
Black columns refer to synapses in which GAT-1 was only in AT,
white columns to synapses in which it was in both AT and PAP, and
gray columns to synapses where GAT-1 was only in PAP. ∗P < 0.05;
∗∗∗P < 0.001. Scale bar: 100 nm.
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or GAT-3 are indeed heterogeneous, as some of them express a
GAT only in AT, others only in PAP, and some others in the two
synaptic elements.

GABAergic synapses can be differentiated on the basis of post-
synaptic targets (e.g., Somogyi et al., 1998; DeFelipe et al., 2002;
Ascoli et al., 2008). We therefore investigated whether the three
organizational models (GAT in AT only, in PAP only, and in both)
showed differences between axo-somatic, axo-dendritic, and axo-
axonic GABAergic synapses onto pyramidal neurons using pre-
embedding electron microscopy. We studied 189 axo-somatic
(AS), 146 proximal axo-dendritic (pAD), 229 distal axo-dendritic
(dAD) (dendrites were considered distal if their diameter was <

or = 1 μm, proximal if it was > 1 μm), and 173 axo-axonic (AA)
GAT-1+ synapses. ANOVA analysis showed that: (1) synapses
in which GAT-1 was only in AT differed between AA, pAD, AA
(74.6 ± 3.1, 70.7 ± 4.4, 66.4 ± 3.9%, in the order), and dAD
(44.5 ± 3.2%) synapses (Figures 2A,D,G); (2) synapses in which
GAT-1 was both in AT and in PAP did not differ between groups
(17.9 ± 2.8, 15 ± 3.4, 17 ± 2.4, 8.3 ± 2.3% for AS, pAD,
dAD, and AA synapses; Figures 2B,E,H); and (3) synapses in
which GAT-1 was only in PAP differed between AS, pAD, AA
(7.4 ± 1.9, 14.1 ± 3.4, 25.1 ± 3.6%, in the order) and dAD
(38.4 ± 3.2%) synapses (Figures 2C,F,I), as well as between AS
and AA synapses (Figure 2I). ANOVA analysis of AS (n = 163),
pAD (n = 134), dAD (n = 150), and AA (n = 147) GAT-3+
synapses did not reveal any difference between groups of synapses
(Supplemental Figure 1).

CONCLUSION(S)
In adult cortical GABAergic synapses GAT-1 and GAT-3 are in
both neuronal and astrocytic processes: GAT-1 is prevalently seg-
regated in neuronal elements and in profiles contributing to
synapses, whereas GAT-3 is mostly expressed in astrocytes and
does not exhibit a preferential distribution in elements con-
tributing to synapses (Minelli et al., 1995, 1996; Melone et al.,
2013). This study showed that: (1) regardless of the impor-
tant differences summarized above, GAT-1 and GAT-3 exhibit
the same organizational pattern at cortical GABAergic synapses.
Interestingly, the same pattern has been described for GLT-1, the
major glutamate transporter, in neocortex (Melone et al., 2009);
(2) from the transporter perspective, symmetric synapses can be
subdivided in those expressing GAT-1 or GAT-3 in AT only, in
PAP only, and in both synaptic elements; and (3) GAT-1 (but not
GAT-3) organization pattern exhibit a further level of heterogene-
ity, related to the post-synaptic target. This indicates that GAT-1
and GAT-3 can generate a considerable degree of heterogeneity at
cortical GABAergic synapses.

Although, the degree of post-synaptic specificity of GABAergic
interneurons on pyramidal neurons is not absolute, several gen-
eralization can be made: AS synapses are prevalently formed by
small basket cells, pAD synapses from large basket cells, dAD
synapses from double-bouquet cells, and AA synapses from chan-
delier cells (Somogyi et al., 1998; DeFelipe et al., 2002; Ascoli et al.,
2008). This would indicate that at synapses formed by double-
bouquet cells GAT-1 mediated GABA uptake is more dependent
on astrocytes than at synapses formed by basket and chandelier
cells. It is worth noting that double bouquet cell-evoked IPSPs,

recorded in pyramidal cell somata, have a smaller amplitude than
those evoked by both small and large basket cells (Tamás et al.,
1997). Whether this physiological features is related to the pecu-
liar organization of the GAT-1 mediated GABA uptake system is
a stimulating challenge for future studies. Furthermore, present
results indicate also that at AA synapses formed by chandelier cell
axons the role of astrocytic GAT-1 mediated GABA uptake may
be more important than at AS synapses formed by small basket
cell axons.

Overall, data reported highlight a novel aspect of GAT-1 and
GAT-3 localization at cortical GABAergic synapses, and suggest
that this may be a fertile field for increasing our understanding of
GABAergic synapses heterogeneity.
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00072/abstract

Supplemental Figure 1 | Distribution of GAT-3 at axo-somatic (AS),

proximal axo-dendritic (pAD), distal axo-dendritic (dAD), and axo-axonic

(AA) synapses. In (A) staining is in AT only, in (B) at both AT and PAP, and

in (C) in PAP only. AT, axon terminal; PAP, perisynaptic astrocytic

processes; S, soma of pyramidal neuron; d, distal dendrite. (D–E)

Quantification of GAT-3+ profiles at different synapses. Black columns

refer to synapses in which GAT-3 was only in AT, white columns to

synapses in which GAT-3 was in both AT and PAP, and gray columns to

synapses where GAT-3 was only in PAP. Scale bar: 100 nm.
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