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The complex structure and function of the cerebral cortex critically depend on the balance
of excitation and inhibition provided by the pyramidal projection neurons and GABAergic
interneurons, respectively.The calretinin-expressing (CalR+) cell is a subtype of GABAergic
cortical interneurons that is more prevalent in humans than in rodents. In rodents, CalR+
interneurons originate in the caudal ganglionic eminence (CGE) from Gsx2+ progenitors,
but in humans it has been suggested that a subpopulation of CalR+ cells can also be
generated in the cortical ventricular/subventricular zone (VZ/SVZ). The progenitors for
cortically generated CalR+ subpopulation in primates are not yet characterized. Hence, the
aim of this study was to identify patterns of expression of the transcription factors (TFs)
that commit cortical stem cells to the CalR fate, with a focus on Gsx2. First, we studied
the expression of Gsx2 and its downstream effectors, Ascl1 and Sp8 in the cortical regions
of the fetal human forebrain at midgestation. Next, we established that a subpopulation of
cells expressing these TFs are proliferating in the cortical SVZ, and can be co-labeled with
CalR. The presence and proliferation of Gsx2+ cells, not only in the ventral telencephalon
(GE) as previously reported, but also in the cerebral cortex suggests cortical origin of a
subpopulation of CalR+ neurons in humans. In vitro treatment of human cortical progenitors
with Sonic hedgehog (Shh), an important morphogen in the specification of interneurons,
decreased levels of Ascl1 and Sp8 proteins, but did not affect Gsx2 levels. Taken together,
our ex-vivo and in vitro results on human fetal brain suggest complex endogenous and
exogenous regulation of TFs implied in the specification of different subtypes of CalR+
cortical interneurons.
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INTRODUCTION
The increased complexity of cortical progenitors is considered
to be an evolutionary adaptation necessary for the develop-
ment of higher brain functions in primates, and particularly in
humans. Complex structure and function of the cerebral cortex
critically depend on the balance of excitation and inhibition pro-
vided by pyramidal neurons and γ-aminobutyric acid-containing
(GABAergic) interneurons, respectively. Interneurons comprise
20% of all cortical neurons in rodents and up to 35% in humans
(Gabbott et al., 1997; DeFelipe et al., 2002; Jones, 2009). Impor-
tantly, their impairment has been described in various psychiatric
and neurological disorders, including epilepsy, schizophrenia and
autism (Yan et al., 1995; DeFelipe, 1999; Ulfig, 2001; Brandt et al.,
2003; Baraban and Tallent, 2004; Lewis et al., 2005; Marin, 2012).
In contrast to rodents, where the majority, if not all, cortical
interneurons are generated in the ventral telencephalon (gan-
glionic eminence, GE; Anderson et al., 1997; Tamamaki et al., 1997;
Parnavelas, 2000; Marin and Rubenstein, 2001), several groups
have reported that cortical interneurons in primates originate both
ventrally (in the GE) and dorsally, in the cortical subventricular
zone (SVZ; Letinic et al., 2002; Rakic and Zecevic, 2003; Petanjek

et al., 2009b; Jakovcevski et al., 2011; Al-Jaberi et al., 2013). This
topic is still open for discussion since other groups reported that
similar to rodents, the majority of cortical interneurons in pri-
mates originate in the GE and no proliferation of interneuron
progenitors was demonstrated in the cortex (Hansen et al., 2013;
Ma et al., 2013).

Cortical interneurons represent a heterogeneous group of cells
that can be classified according to physiological, morphological
or molecular criteria (Petilla Interneuron Nomenclature Group1
et al., 2008). In this study, we have focused on calretinin-expressing
(CalR+) interneurons which have variable morphology and are
comprised of bipolar and double bouquet cells (DeFelipe, 1997).
In humans, up to 50% of all CalR+ cells are bipolar, localized pre-
dominantly in the upper cortical layers vs. approximately 15% in
rodents (Condé et al., 1994; Yan et al., 1996; Gabbott et al., 1997;
DeFelipe et al., 2006; Bayatti et al., 2008). By their electrophysio-
logical output, they belong to accommodating or irregular-spiking
interneurons (Porter et al., 1998) that target not only the distal
dendrites of pyramidal cells, but importantly also other GABAer-
gic interneurons. Their function in the primate cortex is complex,
since they can disinhibit pyramidal cells by making synapses on
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each other (DeFelipe et al., 1999; Schlösser et al., 1999; Lewis et al.,
2005; Zaitsev et al., 2005). The specific distribution of CalR+ cells
in human upper cortical layers (II/III) suggests a role in cortical
circuit formation necessary for higher brain functions specific to
humans, such as abstract thinking and language (Hill and Walsh,
2005; Jones, 2009; Rakic, 2009).

Timing and specification of cortical interneuron development
are guided by a variety of transcription factors (TFs). In mice,
CalR+ interneurons originate mainly from the caudal ganglionic
eminence (CGE; Xu et al., 2004; Butt et al., 2005) from progeni-
tor cells expressing the TF genomic screened homeobox 2 (Gsx2;
Hsieh-Li et al., 1995). The TFs Achaete-scute homolog 1 (Ascl1,
originally named Mash1) and specificity protein 8 (Sp8) are down-
stream effectors of Gsx2 (Waclaw et al., 2009; Wang et al., 2009).
Gsx2 has a role in the specification of cortical interneurons (Xu
et al., 2010), olfactory bulb interneurons and striatal projection
neurons (Stenman et al., 2003). In the human fetal telencephalon
Gsx2 has been reported exclusively in the GE (Ma et al., 2013).
However, its role in the generation of CalR+ interneurons in the
developing human cerebral cortex still remains elusive.

It has been reported that CalR+ cells during early human devel-
opmental stages (from 6 gestational weeks, gw) are generated in the
GE and tangentially migrate into the cortex (Zecevic et al., 1999;
Meyer et al., 2000; Rakic and Zecevic, 2003), whereas by midges-
tation (20 gw) an additional subgroup of proliferating cells in the
outer subventricular zone (oSVZ) express CalR, suggesting their
local origin at that stage of development (Jakovcevski et al., 2011;
Zecevic et al., 2011). Our in vitro studies confirmed that CalR+
cells originate from genetically labeled cortical human progeni-
tors (Mo et al., 2007). Moreover, we reported that cortical radial
glia cells (RGCs) in vitro generate CalR+ cells in human but not
in mice (Yu and Zecevic, 2011).

Here, we describe a specific pattern of expression in the
human fetal cortex of the three TFs proposed to be involved
in the CalR lineage: Gsx2, and its downstream targets Ascl1
and Sp8. In addition, cortical RGCs cultures treated with Sonic
hedgehog (Shh), a morphogen known to play a role in interneu-
ron specification, show a selective effect on these TFs that may
influence specification of CalR+ cells in human. These results
indicate a complex endogenous and exogenous regulation of
TFs implicated in the specification of the human CalR+ cortical
interneurons.

MATERIALS AND METHODS
HUMAN TISSUE PROCESSING AND IMMUNOSTAINING
Fetal brain tissues at midgestation (14–24 gw, n = 22; Table 1)
were obtained from the Tissue Repository at The Albert Einstein
College of Medicine, Bronx, NY, USA and StemExpress, Diamond
Springs, CA, USA. Handling of the human material was done with
special care following all necessary requirements and regulations
set by the Institutional Ethics Committee. Ultrasonography and
gross neuropathological examination confirmed that the brain tis-
sue was normal. Embryonic brains were fixed overnight in 4%
PFA/0.1 M PBS (pH 7.4), then cryoprotected in 30% sucrose/PBS,
frozen in TissueTek OCT and sectioned on a cryostat (15 μm).
Slices were incubated for 1 h at room temperature (RT) in block-
ing solution (10% NGS and 0.5% Tween-20 in PBS). Primary

Table 1 | Fetal human brain tissues analyzed in the study.

Cases Gestational

week (gw)

Gender Direct tissue

application

Cell culture

application

1 14 NP – WB

2 15 IHC –

3 16 RT-PCR –

4 16 IHC –

5 17 – RT-PCR, WB

6 17 NP IHC –

7 17 IHC –

8 17 – WB

9 18 NP RT-PCR RT-PCR, WB

10 18 IHC/ISH –

11 18 NP IHC –

12 19 NP – WB

13 19 IHC –

14 20 IHC/ISH –

15 20 NP IHC/ISH –

16 21 NP IHC/ISH –

17 21 NP IHC/ISH –

18 22 NP IHC/ISH –

19 22 IHC/ISH –

20 23 IHC/ISH –

21 24 IHC/ISH –

22 24 IHC/ISH –

, female; , male; ICC, Immunocytochemistry; IHC, Immunohistochemistry;
ISH, In situ hybridization; NP, Not provided; RT-PCR, real-time PCR; WB, Western
blot

antibodies (Table 2) were applied overnight at 4◦C in blocking
solution followed by corresponding secondary antibodies (Jack-
son Immuno-Research Lab, West Grove, PA, USA) for 1 h at RT,
and a short incubation in a nuclear stain bis-benzimide (Sigma).

IN SITU HYBRIDIZATION
The human Gsx2 full coding sequence plasmid was obtained from
OpenBiosystems (IMAGE:30915601). Riboprobe was generated
from the linearized vector construct by in vitro transcription using
digoxigenin (DIG)-UTP (Roche) as the label. In situ hybridiza-
tion (ISH) was performed on cryosections (15 μm) described
above. Sections were dried at RT for 2 h and subsequently fixed
for 10 min with 4% PFA, before overnight incubation at 68◦C
in hybridization buffer 1× DEPC-treated “salts” (200 mM NaCl,
5 mM EDTA, 10 mM Tris, pH 7.5, 5 mM NaH2PO4·2H2O,
5 mM Na2HPO4; Sigma–Aldrich), 50% deionized formamide
(Roche), 0.1 mg/ml RNase-free yeast tRNA (Invitrogen), 1×
Denhardts (RNase/DNase free; Invitrogen), 10% dextran sul-
fate (Sigma-Aldrich) containing 100–500 ng/ml DIG-labeled RNA
probe. After hybridization, sections were washed three times in
a solution containing 50% formamide 1× SSC (Invitrogen) and
0.1% Tween 20 (Sigma–Aldrich) at 65◦C, and two times at RT
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Table 2 | Primary antibodies used in this study (in alphabetical order).

Antigen Host Clone Dilution Manufacturer Catalog no.

Ascl1 Mouse IgG1 24B72D11.1 1:500 BD Pharmingen 556604

β-Actin Mouse IgG 1:2000 Thermo Scientific MA5-15739

CalR Mouse IgG

Rabbit IgG

6B8.2 1:500

1:500

Millipore Chemicon

Sigma

MAB1568

PA007306

GABA Rabbit IgG 1:2000 Sigma A2052

Gsx2 Rabbit IgG

Mouse IgG

1:250

1:500

Abcam

Millipore Chemicon

AB26255

ABN162

Ki67 Mouse MIB1 1:50 DAKO M7240

Nkx2.1 Rabbit IgG EP1584Y 1:500 Abcam AB76013

Sp8 (C-18) Goat IgG 1:500 Santa Cruz Sc-104661

Sox2 Goat IgG 1:500 Santa Cruz Sc-17320

Tbr1 Rabbit IgG 1:500 Proteintech 20932-1-AP

Tbr2 Rabbit IgG 1:500 Gift from R. Hevner

in 1× MABT (20 mM maleic acid, 30 mM NaCl, 0.1% Tween
20; Sigma-Aldrich) before incubating in a solution containing 2%
blocking reagent (Roche) and 10% heat inactivated sheep serum
(HISS) in MABT, followed by overnight incubation in alkaline
phosphatase (AP)-conjugated anti-DIG antibody (1:1500; Roche
Applied Science). Fast Red (Roche) was used for fluorescent color
detection of probe (FISH) by incubation in 100 mM Tris, pH 8.2,
400 mM NaCl containing Fast Red for 1–2 h at 37◦C. Sections
were counterstained with bis-benzimide and coverslipped using
Fluoromount G mounting medium. Specificity of the procedure
was assessed with a probe corresponding to the sense strand of
Gsx2.

IMMUNOHISTOCHEMISTRY AFTER IN SITU
Following overnight incubation with mouse anti-Ascl1, rabbit
anti-calretinin and goat anti-Sp8 antibodies, sections were thor-
oughly washed in PBST (0.2% Triton) and incubated with Alexa
488 secondary antibody to detect immunoreactivity. Nuclei were
counterstained with bis-benzimide.

DISSOCIATED MIXED CELL CULTURE AND ENRICHMENT OF RGCs
Human fetal brain tissue (n = 5) ranging in age from 14 to
19 gw was obtained from Advanced Bioscience Resources (ABR,
Alameda, CA, USA) and StemEx (Diamond Springs, CA, USA)
with proper parental consent and the approval of the Ethics Com-
mittees. Brain tissue was collected in oxygenized Hank’s balanced
salt solution (HBSS; LifeTechnologies, Grand Island, NY, USA)
and transported on ice. Dissociated cell cultures were prepared
from dorsal and ventral regions of the telencephalon as described
previously (Zecevic et al., 2005). Isolated tissue of interest was
mechanically dissociated and enzymatically degraded at 37◦C for
30 min with 0.025% trypsin (Gibco). Afterward, DNase (Sigma
Aldrich, St. Louis, MO, USA; 2 mg/ml) was added to the cell
suspension and cells were washed in HBSS (LifeTechnologies,
Grand Island, NY, USA). Cells were resuspended in the prolifer-
ation medium consisting of DMEM/F12 (LifeTechnologies) with

10 ng/ml basic fibroblast growth factor (bFGF; Peprotech, Rocky
Hill, NJ, USA), 10 ng/ml epidermal growth factor (EGF Millipore,
Billerica, MA, USA) and supplemented with B27 (LifeTechnolo-
gies). Cells were kept in the proliferating medium 7–10 days until
80% confluence was achieved. A surface marker CD15 (Lex) was
used for immunomagnetic cell sorting of RGCs using MACS
columns (Miltenyi Biotec, Auburn, CA, USA) which resulted in
96% purity of RGCs (Mo et al., 2007; Yu and Zecevic, 2011). For
immunocytochemistry approximately 250,000 cells were plated on
coverslips coated with poly-D-lysine (Sigma–Aldrich). For total
protein and RNA isolation approximately 2 million cells were
plated in poly-D-lysine coated wells. In order to confirm the
identity of isolated cells, 24 h after isolation, live immunocyto-
chemistry was performed using markers for radial glia, CD15 and
brain lipid binding protein (BLBP). After 3 days in vitro (DIV),
cells were transferred from proliferation to differentiation medium
(DM; DMEM/F12/B-27 without bFGF and EGF) and kept for an
additional 7 DIV.

TREATMENT OF CELL CULTURES AND IMMUNOCYTOCHEMISTRY
Cells were treated for 7 DIV (every third day) in DM with a
combination of recombinant human Shh (C24II), N-terminus
(200 ng/ml; R&D systems, Minneapolis, MN, USA) and pur-
morphamine (PMM; 1 μM; Calbiochem Millipore), an agonist
of Smoothened receptor and cyclopamine, an antagonist of Smo
receptor (2.5 μM; EnzoLife Sciences, NY, USA). Control cells were
kept in DM. Cells were fixed in 4% paraformaldehyde 24 h after
isolation of RGCs and 7 DIV after pharmacological treatment. Pri-
mary antibodies diluted in blocking solution (1% bovine serum
albumin, 5% normal goat serum, and 0.5% Tween-20 in PBS) were
applied overnight at +4◦C, followed by corresponding secondary
Alexa 488- or Alexa 555- conjugated antibodies (Life Technolo-
gies) for 2 h at RT. Nuclei were counterstained with the nuclear
stain bis-benzimide. Cells were visualized with a Zeiss fluores-
cence microscope using Axiovision software and photographed
with a digital camera. Ten pre-designated adjacent optical fields
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of view were examined at magnification 10× (0.5 mm2 sur-
face area); counts of immunolabeled cells were pooled together,
expressed as means ± SEMs (Standard Error of the Means) and
analyzed using Student’s t-test. The criterion for significance was
set at 5%.

WESTERN BLOT
Cells were homogenized in lysis buffer (50 mM Tris-HCl pH
7.4, 150 mM NaCl, 1% NP-40, 1 mM phenylmethylsulphonyl
fluoride, and protease inhibitor cocktail) on ice for 30 min, cen-
trifuged at 14,000g for 15 min at 4◦C, and the supernatants
were collected as the cell lysates. Equal amounts of protein from
each sample were separated by SDS-PAGE on 12% gels and
transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA,
USA). Used primary antibodies are listed in Table 2. Membranes
were incubated with the primary antibodies overnight at 4◦C,
and then with their corresponding secondary HRP-conjugated
antibodies (1:15000, Thermo Fisher Scientific, Temecula, CA,
USA). Protein signal was detected using SuperSignal West Pico
Chemiluminescent system (Thermo Fisher Scientific, Temecula,
CA, USA). Western blots were scanned and densitometric anal-
ysis was performed with ImageJ software (National Institutes
of Health, Bethesda, MD, USA). Statistical analyses were per-
formed using paired t-test. The criterion for significance was set
at 5%.

REAL-TIME PCR
Real-time PCR (RT-PCR) was used to determine mRNA expres-
sion of GAPDH, Gsx2, Ascl1 and Sp8. Total RNA was extracted
from cells using TRIZOL® reagent (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions. Approxi-
mately 1 μg of RNA was used in the reverse transcription reaction
using M-MuLV reverse transcriptase with random hexamers (Fer-
mentas, Vilnius, Lithuania) according to the manufacturer’s
instructions. RT-PCR was performed in a Realplex2 Mastercy-
cler (Eppendorf, Hamburg, Germany) using 96-well reaction
plates (Eppendorf, Hamburg, Germany). The reactions were pre-
pared according to the standard protocol for one-step QuantiTect
SYBR Green RT-PCR (Applied Biosystems, Cheshire, UK). The
sequences of the forward and reverse primers are presented at
Table 3. The thermal cycle conditions were 95◦C for 2 min fol-
lowed by 40 cycles of 15 s at 95◦C, 15 s at 55◦C, and 20 s at
68◦C. All assays were performed in triplicates. Averaged cycle of
threshold (Ct) values of GAPDH triplicates were subtracted from
Ct values of target genes to obtain �Ct, and then relative gene
expression was determined as 2−�Ct . The results were presented
relative to the control value, which was arbitrarily set to 1.

RESULTS
Gsx2 IS EXPRESSED IN THE HUMAN DEVELOPING CEREBRAL CORTEX
In order to establish if Gsx2 is present in the cortex of human
developing telencephalon at midgestation, we dissected fresh
dorsal (cortical; 16–19 gw) and ventral (GE) telencephalon (16–
18 gw) and determined Gsx2 mRNA expression levels (Figure 1A).
RT-PCR demonstrated that Gsx2 mRNA levels in the GE at 16 and
18 gw were 345 folds and 104 folds higher respectively compared
to the cortex. Notably mRNA Gsx2 was present in the cortical tis-
sue in all investigated samples (Figure 1A). An increase of the
cortical Gsx2 mRNA levels was observed during development,
changing three to nine folds from 16 to 18 and 19 gw, respec-
tively (Figure 1A). Protein levels for Gsx2 in fetal cerebral cortex
at 17–19 gw followed the trend seen with mRNA (Figure 1B).
Thus, in addition to regional differences, Gsx2 expression in the
human fetal brain seems to vary with gestational age, although this
point needs to be confirmed on more cases.

Next, we sought to determine the expression pattern of Gsx2 in
human fetal brain and compare it with the mouse using ISH. At
E12.5 mouse brain characteristic Gsx2 expression was detected
in the medial (MGE), lateral (LGE), and CGE but not in the
pallium, in agreement to previous reports (Hsieh-Li et al., 1995;
Figures 1C,D). However, in the human fetal cerebral cortex Gsx2
transcript was observed in the cortical ventricular/subventricular
zone (VZ/SVZ), intermediate zone (IZ), subplate (SP), and cor-
tical plate (CP) regions in all studied ages, from 18 to 24 gw
(n = 10, Figures 1E,F). At this developmental stage, the high-
est expression was observed in the SP (Figure 1F). Occasionally
Gsx2+ cells were also observed on the ventricular surface which
suggested their proliferation (Figure 1E). To explore this pos-
sibility, we performed fluorescent in situ hybridization (FISH)
for Gsx2 combined with immunoreaction to anti-Ki67 antibody,
which labels cycling cells. We estimated that 20% of all Gsx2+ cells
in the VZ/SVZ were proliferating as they were co-labeled with
Ki67. Hence, not only that Gsx2+ cells were present in the human
developing cortex at midgestation, but a fraction of these cells were
proliferating locally. Our findings differ from previously published
reports where Gsx2+ cells have been exclusively described in the
subpallium in both rodents (Corbin et al., 2003; Xu et al., 2010)
and humans (Ma et al., 2013). The observed difference in these
studies could be due to the different methodological approaches
followed. Here, in addition to immunolabeling with commercially
available antibodies, we performed ISH, a high stringency condi-
tioned method, to detect a specific signal for Gsx2 mRNA in the
cortex.

After demonstrating the expression of Gsx2 in the human
developing cortex, we stained cryosections with anti-Gsx2 and

Table 3 | List of primer sequences used in the study.

Gene Forward Reverse

Ascl1(Mash1) TCTCATCCTACTCGTCGGACGA CTGCTTCCAAAGTCCATTCGCAC

GAPDH ACCACCATGGAGAAGGC GGCATGGACTGTGGTCATGA

Gsx2 GGAGATTCCACTGCCTCACCAT CGGAGTCGAGACAGGTACATGT

Sp8 GAGGCTACAACTCGGATTACTCG GTAGCACTGGCTTGAAGCCGTC
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FIGURE 1 | Gsx2 in the human and mouse developing brain at

mid-gestation. Expression of Gsx2 mRNA (A) and protein (B) in the
human fetal cortex. In situ hybridization in E12.5 mouse with Gsx2
anti-sense (C) and sense (D) probe. (E) ISH in human fetal cerebral cortex
(18 gw); insets- high magnification of Gsx2+ cells; (F) Representative
Gsx2+ cells in subplate (FISH) for quantification (23 gw); percentage of
Gsx2+ cells from total cells is shown in the histogram in the different

stages of development (18–24 gw). (G) In situ signal for Gsx2+ cells (red)
co-labeled with anti-Ki67 antibody (green) in cortical VZ (optical sectioning);
(H) CalR+ cells (red) in subplate colabeled with Gsx2 (green; 18 gw). VZ,
ventricular zone; iSVZ, inner subventricular zone; oSVZ, outer subventricular
zone; IZ, intermediate zone; SP, subplate; CP, cortical plate; Cx, cortex; LV,
lateral ventricle; CGE, caudal ganglionic eminence; MGE, medial ganglionic
eminence. Scale bars 10 μm.

anti-CalR antibodies and quantified the number of co-labeled
cells. Immunolabeling of Gsx2+ cells confirmed ISH results, with
the highest number of cells observed in the SP and CP, accounting
for about 10% of all cells in those regions at 17–19 gw (n = 8).
Importantly, approximately one-third of all CalR+ cells during
midgestation were co-labeled with Gsx2 (30% at 15–16 gw, 29%
at 17–19 gw; Figure 1H), suggesting that Gsx2 expression is impor-
tant for the CalR lineage during this time of development and in
this cortical region.

DISTRIBUTION OF Ascl1 AND Sp8 IN THE HUMAN DEVELOPING
FOREBRAIN
We next studied the expression of TF Ascl1 in the human cortex, a
reported downstream target of Gsx2 in rodents. We detected Ascl1
mRNA in fetal cortical VZ/SVZ (Figure 2A), which confirmed pre-
vious results obtained by immunolabeling in fetal human (Letinic
et al., 2002; Jakovcevski et al., 2011) and non-human primate
brains (Petanjek et al., 2009a). Expression of Ascl1 was higher in

the GE compared to the cortex: 22 and 5-folds at 16 and 18 gw,
respectively. Similar to our findings on Gsx2, the expression levels
of Ascl1 mRNA increased in the course of development, from 16
to 18 gw (Figure 2A). Ascl1 expression was also demonstrated at
the protein level (Figure 2B). To compare our results to mouse,
we immunolabeled Ascl1 in mouse developing brain (E12.5) and
observed the presence of Ascl1+ cells mainly in the subpallium
(Figure 2C). We next performed a similar experiment in the
human forebrain at 24 gw, and showed that, besides the strong
immunolabeling of the GE previously shown (Jakovcevski et al.,
2011; Hansen et al., 2013), considerable immunoreactivity was
present in the cortical regions (Figure 2D). The density of Ascl1+
cells in the human cortex at midgestation was the highest in the
VZ/SVZ where it reached almost 20% of all nuclei, followed by
around 14% in the CP and 10% in the IZ and SP (Figure 2E).
Notably, in the CP Ascl1+ cells were preferentially distributed
in the upper cortical layers (II/III; Figure 2D). We previously
co-labeled cells with either CalR or GABA and Ascl1 antibodies
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FIGURE 2 | Ascl1 in the human and mouse developing brain at

mid-gestation. Expression of Ascl1 mRNA (A) and protein (B) in the
human fetal cortex. Immunohistochemistry in E12.5 mouse with
anti-Ascl1 antibody (C). (D) Representative immunolabeled Ascl1+ in
human fetal cerebral cortex (24 gw). (E) Percentage of Ascl1+ cells in all
nuclei (labeled with bis-benzimide) in the human fetal neocortex at

midgestation (21–24 gw). Data are presented as mean values + standard
error of the mean (minimum three sections from two brains were
studied). VZ/SVZ, ventricular/subventricular zone; IZ, intermediate zone; SP,
subplate; CP, cortical plate; Cx, cortex; LV, lateral ventricle; CGE, caudal
ganglionic eminence; MGE, medial ganglionic eminence. Scale bar
50 μm.

and found that in the CP up to 50% of Ascl1+ cells could be
co-labeled with GABA (Jakovcevski et al., 2011).

Next, we studied the expression of the zinc finger TF Sp8
required for the normal development of CalR interneurons in
the olfactory bulb (Waclaw et al., 2006). In the human fetal cor-
tex immunoreactivity for Sp8 has been observed in the dorsal
LGE (dLGE) and dCGE, and a weak expression in the cortical
VZ/SVZ (Ma et al., 2013). In addition, the same group reported
that some migrating neurons in the CP were co-labeled with Sp8,
GABA and chicken ovalbumin upstream promoter TF II (CoupT-
FII) antibodies, indicating their CGE origin (Ma et al., 2013).

In the current study we extended these results by demonstrat-
ing not only Sp8 protein, but also the Sp8 mRNA expression in
human fetal cortical tissue (Figures 3A,B). In the two cases stud-
ied (16 and 18 gw) Sp8 mRNA was higher in the GE than in
cortex six and twofolds, respectively, and as previously observed
with Gsx2 and Ascl1, cortical levels increased approximately two
times from 16 to 18 and 19 gw (Figure 3A). In comparison
to the E12.5 mouse brain where Sp8+ cells were revealed in
the MGE, LGE and cortex as reported previously (Sahara et al.,
2007; Borello et al., 2013; Figure 3C), in human, Sp8+ cells were
also packed in the cortical SVZ/VZ and scattered in SP and CP
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FIGURE 3 | Sp8 in the human and mouse developing brain at

mid-gestation. Expression of Sp8 mRNA (A) and protein (B) in the human
fetal cortex. Immunohistochemistry in E12.5 mouse with anti-Sp8 antibody
(C). (D) Representative immunolabeled Sp8+ cells in the human fetal
cerebral cortex (15–20 gw). Sp8+ cells (green) co-labeled with (E) CalR (red)

and (F) Gsx2 (red) in cortical plate and subplate. VZ, ventricular zone; iSVZ,
inner subventricular zone; oSVZ, outer subventricular zone; IZ, intermediate
zone; SP, subplate; CP, cortical plate; Cx, cortex; LV, lateral ventricle; CGE,
caudal ganglionic eminence; MGE, medial ganglionic eminence. Scale bar,
50 μm.

(Figure 3D). Double-labeling experiments have shown that sub-
populations of cortical Sp8+ cells co-expresses CalR or Gsx2,
suggesting that a subpopulation of them are cortical interneurons
(Figures 3E,F). However, further studies are needed to establish
a direct lineage relationship of Gsx2 to CalR+ cells in the human
cortex.

CORTICAL AND GE HUMAN RGCs HAVE DIFFERENT POTENTIAL TO
GENERATE CalR+ CELLS
Previously, we have shown that cortical RGCs in vitro have the
potential to generate CalR+/GABA+ interneurons and Nkx2.1+
progenitors (Yu and Zecevic, 2011; Radonjic et al., in press). Here,
we explore if cortical and GE RGCs retain their expression of
regional characteristic markers in vitro and compare their capacity
to produce GABA and CalR+ cortical interneurons.

To this end, we dissected cortical VZ/SVZ and ventral telen-
cephalon (GE) and established dissociated cell cultures. To
isolate RGCs, we immuno-sorted CD15+ cells, a specific sur-
face marker of RGCs (Mo et al., 2007; Yu and Zecevic, 2011;
Ortega et al., 2013). Cortical and GE RGC cultures were differ-
entiated for 7 DIV and the expression of characteristic markers
for RGCs (Sox2), projection neurons (Tbr1 and Tbr2) and
interneuronal progenitors (Gsx2, Sp8, Ascl1, and Nkx2.1) were
analyzed. Expression of typical markers of glutamatergic neu-
rons Tbr1 and Tbr2 was higher in cortical RGC cultures than
in GE RGC cultures (Figure 4A). In contrast, the expression
of Sp8, Ascl1, and Nkx2.1 was higher in GE RGC cultures
(Figure 4A), but no difference in Gsx2 expression was observed

in these two regions. After 7 DIV both cortical and GE RGCs
generated CalR+ and GABA+ cells, but with a different capac-
ity. Namely, more CalR+ (22 vs.12%) and GABA+ (22 vs.16%)
cells were generated in the GE RGC cultures than in dorsal cul-
tures (Figures 4B,C). These results are in agreement with our
previous reports (Mo et al., 2007; Mo and Zecevic, 2008). Hence,
we concluded that cortical and GE RGC cultures retain in vitro
regional identities as well as the potential to generate GABAergic
interneurons.

EXOGENOUS Shh AFFECTS THE EXPRESSION OF TRANSCRIPTION
FACTORS UPSTREAM OF CalR
The morphogen Shh has numerous functions in the developing
central nervous system (Dahmane and Ruiz-i-Altaba, 1999). One
of function is the induction of the ventral TFs Nkx2.1 (thyroid
transcription factor-1, TTF1), Dlx1/2 and Ascl1 and specifi-
cation of cortical interneurons in the ventral telencephalon of
rodents (Anderson et al., 1997; Kohtz et al., 1998; Sussel et al.,
1999; Xu et al., 2004, 2005; Butt et al., 2005). In the human
fetal cerebral cortex, we previously observed Shh expression in
the Map2+ neurons in the fetal CP/SP and Sox2+ RGCs in the
VZ (Radonjic et al., in press). Treatment of cortical RGC cul-
tures with exogenous Shh suppressed the generation of CalR+
interneurons in favor of Nkx2.1+ progenitors, suggesting that in
humans Shh differentially affects subgroups of cortical progenitors
(Radonjic et al., in press).

Here, using in vitro enriched RGCs we examined the effect
of Shh on TFs upstream of CalR+ cells and demonstrated that
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FIGURE 4 | Differentiation of RGCs enriched from cortical or GE

regions. (A) Markers of RGCs, projection neurons and interneurons
expressed in cortical and GE enriched RGCs after 7 DIV.
(B) Representative staining of CalR+ (red) and GABA+ (green) cells

after 7 DIV in cortical and GE RGCs. (C) Histogram shows the
percentage of CalR+ and GABA+ cells from the total cells differentiated
after 7 DIV in cortical and GE RGC cultures. *p < 0.05, **p < 0.01;
t -test. Scale bar, 20 μm.

treatment of cortical RGCs with PMM/Shh reduced protein lev-
els of Ascl1 and Sp8, but not Gsx2 levels (Figure 5). However,
treatment with cyclopamine, an inhibitor of Shh signaling, did
not affect expression levels of these TFs (Figures 5A,B). The
lack of effect of cyclopamine suggests that additional Shh inde-
pendent pathways might control cortical interneurongenesis, as
it is a case with oligodendrocyte progenitors (Nery et al., 2001;
Ortega et al., 2013) and Nkx2.1+ progenitors (Radonjic et al.,
in press). The mRNAs levels of Gsx2, Ascl1 and Sp8 obtained
by PCR analysis showed similar trend, but the differences did
not reach significance (Figure 5C). Although additional exper-
iments are needed to formulate final conclusions, these results
suggest that in human cortical development Shh could differen-
tially modulate distinct TFs implicated in the generation of CalR+
interneurons.

DISCUSSION
The potential origin and progenitors of CalR+ interneurons in
the human cerebral cortex are still under debate. Here, we
demonstrated the expression pattern of three TFs, Gsx2 and its
downstream effectors Ascl1 and Sp8, both in the GE and in the

cortex of the fetal human forebrain at midgestation. A fraction
of cells expressing these TFs were co-labeled with CalR, suggest-
ing their lineage relationship. Notably, we identified a potentially
important species difference in the expression of Gsx2. While in
the mouse cortex, Gsx2 mRNA was not observed, human fetal
cortical cells express this transcript and importantly a subset of
these cells was proliferating in the cortical VZ/SVZ. Thus, our
results support the view that both cortical and GE regions of the
human fetal telencephalon have the capacity to give rise to cortical
CalR+ cells. Finally, we show that the mechanism underlying the
effects of Shh on the reduction of CalR interneurons involves the
down-regulation of Ascl1 and Sp8 expression.

TRANSCRIPTION MECHANISMS INVOLVED IN THE GENERATION OF
CalR CELLS
In mice, bipolar CalR+ interneurons originate mainly from Gsx2+
germinal zones of LGE and CGE (Fogarty et al., 2007; Sahara
et al., 2007; Miyoshi et al., 2010; Xu et al., 2010). It is estimated
that the CGE gives rise to approximately 30–40% of all cortical
interneurons (Grateron et al., 2003; Miyoshi et al., 2010). Use of
inducible genetic fate mapping techniques demonstrated that 75%
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FIGURE 5 | Effect of Shh signaling on Gsx2, Ascl1, and Sp8 in cortical RGC cultures after 7 DIV. (A) Representative immunoblots and (B) quantification on
the protein expression and (C) mRNA levels after treatment with PMM/Shh and cyclopamine. *p < 0.05, t -test.

of labeled precursors from the CGE contribute to the superficial
cortical layers regardless of their birth date (Miyoshi et al., 2010). A
required downstream effector of Gsx2 is Ascl1 (Wang et al., 2009).
Both Gsx2+ and Ascl1+ neural progenitor cells express CoupTFII
(Kanatani et al., 2008), a TF that labels cells in the CGE (Yozu et al.,
2005; Kanatani et al., 2008; Miyoshi et al., 2010). In human cortex
at mid-gestation 60–75% of CalR+ cells, depending on the cortical
layer, co-express CoupTFII (Reinchisi et al., 2012). Other studies
in human and monkey fetal brains found that nearly all cortical
CalR+ cells co-express either CoupTFII or/and Sp8 and thus orig-
inated in the CGE and dLGE (Hansen et al., 2013; Ma et al., 2013).
Another downstream effector of Gsx2 is Sp8, a TF that plays a role
in cortical patterning, proliferation and differentiation of cortical
progenitors (O’Leary and Sahara, 2008; Waclaw et al., 2009; Wang
et al., 2009; Cai et al., 2013). In rodents, Sp8 is present in 20%
of cortical interneurons that originate from dLGE and CGE and
express Reelin, VIP, NPY, and CalR (Ma et al., 2012). Similar to
rodents, in the human fetal telencephalon Sp8 immunoreactivity
was demonstrated in the dLGE and CGE, and in postmitotic neu-
rons in the cortex (Ma et al., 2013; Hansen et al., 2013). Our results
show that at midgestation cortical Sp8+ cells were mainly local-
ized to the SVZ/VZ, but also in upper cortical regions. Notably,
a subpopulations of cortical Sp8+ cells co-express CalR or Gsx2,
suggesting that they are cortical interneuron progenitors.

Although recent results point to the CGE as the major source
of CalR+ cells, a fraction of proliferating CalR+ cells was observed
in the human cortical VZ/SVZ at midgestation (Jakovcevski et al.,
2011; Zecevic et al., 2011). Further corroboration that a subtype
of CalR+ cells has cortical origin came from our result that 20%
of Gsx2+ cells, presumably progenitors of CalR+ cells, are divid-
ing in the cortical VZ/SVZ. Additionaly, both in vivo and in vitro
approaches showed the potential of human cortical Pax6+/BLBP+
RGCs to produce CalR+ cells. We previously reported that in
human fetal cortical VZ/SVZ, CalR is co-localized in a subpop-
ulation of Pax6+ cells, and CalR+ cells can be produced from
genetically labeled BLBP+ cortical RGCs in vitro (Mo and Zece-
vic, 2008; Yu and Zecevic, 2011). Moreover, knocking down Pax6

in cortical RGCs, greatly reduced the generation of CalR+ cells
(Mo and Zecevic, 2008). Taken together, these results suggest an
important role of Pax6 not only for genesis of glutamatergic neu-
rons, but also CalR+ cells. However, we did not observe GABA in
the Pax6+ progenitors, suggesting that GABA is expressed only in
postmitotic cells that already down-regulated Pax6.

Thus, our results reinforced the observation that in primates
a number of progenitors related to cortical interneurons have
a mitotic origin in the cortical VZ/SVZ at midgestation. These
include CalR+, Ascl1+, and Nkx2.1+ (Jakovcevski et al., 2011),
CoupTFII+ (Reinchisi et al., 2012) and Gsx2+ cortical progeni-
tors (this study). Other groups have also found that cortical cells
expressing Ascl1 and co-labeled with interneuron markers pro-
liferate in human and the non-human primate VZ/SVZ (Letinic
et al., 2002; Petanjek et al., 2009b).

These findings are consistent with the idea that the cortical
VZ/SVZ is an additional source of interneurons in the primate
developing cortex. However, this issue is still under debate since
other groups reported either no expression of those TFs (Gsx2)
in cortical areas or the expression only in postmitotic cells (Sp8,
CoupTFII, Nkx2.1; Hansen et al., 2013; Ma et al., 2013). These
discrepancies might be methodological, due to the different tissue
preparation, post mortem time or antibodies used. To minimize the
inherent variability in human tissue sampling, we tried to confirm
our results at both the mRNA and protein level using a combina-
tion of histological techniques (ISH and immunohistochemistry,
respectively) as well as Western blot and RT-PCR analysis of the
tissue homogenates. Due to scarce availability of human fetal brain
tissue, it is not unusual that such discrepancies arise and we hope
that further studies with larger samples and better standardized
methods would resolve the still open questions about the origin of
cortical interneurons in primates. We must emphasize, however,
that the finding of interneuron progenitors in cortical regions of
the primate brain does not preclude the possibility that some of
these cells have originated in the GE, migrated as intermediate
progenitors and continue to proliferate in the cortical VZ/SVZ,
as already suggested in mice (Wu et al., 2011). Both mechanisms
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could be present simultaneously with a goal to increase the number
of cortical interneurons in the enlarged primate cerebral cortex.

Notably, the cortical and GE VZ/SVZ are not the only sources
of cortical interneurons in later stages of human brain develop-
ment. Still another probable source is a primate-specific subpial
granular layer (SGL), transiently present under the pia in humans
(Brun, 1965; Gadisseux et al., 1992; Meyer and Wahle, 1999; Zece-
vic and Rakic, 2001) and monkey developing brains (Zecevic and
Rakic, 2001). Various sources for CalR+ cells are probably neces-
sary to supply increased upper cortical layers with higher numbers
of CalR+ interneurons in primates compared to other species.
Importantly, different origins of CalR+ cells are likely to contribute
to the diversity of this subpopulation of interneurons in primates.
The increased complexity of cortical progenitors is considered to
be an evolutionary adaptation necessary for the development of
higher brain functions in primates, and particularly in humans.

EXTERNAL FACTORS AFFECTING CalR EXPRESSION
Clonal lineage studies of non-pyramidal neurons suggested that
the expression of calcium binding proteins is not genetically
programmed and is likely to be induced by functional activity
(Alcántara et al., 1993; Grateron et al., 2003) and external factors
(Mione et al., 1994). For example, bFGF stimulates the gener-
ation and differentiation of CalR+ neurons, and its effects are
enhanced by retinoic acid (Pappas and Parnavelas, 1998). Another
external factor affecting CalR+ cells in mice is Shh (Butt et al.,
2005; Xu et al., 2005, 2010). Exogenous Shh treatment of MGE
progenitors in mice resulted in a down-regulation of both CalR
and Gsx2, whereas down-regulation of Shh in the MGE resulted
in conversion of interneuron fate from PV and Sst+ to bipo-
lar CalR+ (Xu et al., 2005, 2010; Carney et al., 2010). Human
stem cells are used by many groups as a model for studying the
development of human cortical interneurons (Mariani et al., 2012;
Maroof et al., 2013). In our study, we used instead RGCs isolated
from the human developing cortex to study the molecular mech-
anisms underlying interneuron generation and specification. We
observed that cortical and GE RGCs in vitro retain different poten-
tial to generate interneurons. This result is in line with previous
in vitro results demonstrating that enriched RGCs maintain their
regional identity (Radonjic et al., in press). Treatment of corti-
cal human RGCs resulted in down-regulation of Ascl1 and Sp8,
while there was no effect on Gsx2 expression. We hypothesize that
this decrease is either due to re-specification to Nkx2.1+ progeni-
tors or maintenance of Gsx2+ progenitor state. We demonstrated
recently that treatment with Shh reduced the number of CalR+
cells generated in RGC cultures (Radonjic et al., in press), thus it
is tempting to speculate that Shh arrests further differentiation of
Gsx2 progenitors into CalR+ cells.

TRANSIENT CalR EXPRESSION IN CORTICAL PROGENITORS DURING
DEVELOPMENT
In this study we describe the expression pattern of CalR+ cells
during human brain development in presumably interneuron
progenitors. However, the question remains if CalR expression
during development is transient or stable. In the primate cortex,
CalR+ cells can be detected already at 5 gw with a gradient
from subcortical GE to the neocortex (Rakic and Zecevic, 2003;

Zecevic et al., 2011). However, the earliest CalR+ cells in the
preplate zone cannot be considered interneurons (Meyer et al.,
2000; González-Gómez and Meyer, 2014). Later during develop-
ment, at midgestation, CalR+ cells almost entirely overlap with
immunoreactivity to GABA (Rakic and Zecevic, 2003; Zecevic
et al., 2005). During development however, the number of CalR+
cells decreases while at the same time levels of other calcium bind-
ing proteins expressed in GABAergic neurons, such as calbindin or
parvalbumin, increase (Yan et al., 1995, 1996; Schlösser et al., 1999;
Brandt et al., 2003). In addition, the percentage of CalR+/GABA+
cells is reduced from 96% at midgestation to 37% in adulthood in
primates (Del Río and DeFelipe, 1994; Yan et al., 1995), suggesting
that CalR could have an important role in other cortical cell types
during development.

CONCLUSION
Although many molecular and cellular mechanisms in brain devel-
opment are shared between humans and rodents, considerable
differences stress the need to expand studies of human cortical
development. Evolutionary adaptations resulted in the develop-
ment of the outer SVZ in primates (Smart et al., 2002; Zecevic
et al., 2005; Hansen et al., 2010; Lui et al., 2011), which without
doubt has a critical role in the expansion and unique organiza-
tion of the complex human cerebral cortex. The complexity of
the CalR+ progenitors pool shown here can be translated into a
higher diversity of cortical CalR+ cells, which might be essential
for balanced cortical function. Further studies on the origin and
specificity of different interneuron subtypes in the human cerebral
cortex are needed to better understand and eventually prevent
or treat numerous human-specific psychiatric and neurological
disorders.
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Radonjić et al. Calretinin in human cortical progenitors

their physiological subtype. Neuron 48, 591–604. doi: 10.1016/j.neuron.2005.
09.034

Cai,Y., Zhang,Y., Shen, Q., Rubenstein, J. L., and Yang, Z. (2013). A subpopulation of
individual neural progenitors in the mammalian dorsal pallium generates both
projection neurons and interneurons in vitro. Stem Cells 31, 1193–1201. doi:
10.1002/stem.1363

Carney, R. S., Mangin, J. M., Hayes, L., Mansfield, K., Sousa, V. H., Fishell, G.,
et al. (2010). Sonic hedgehog expressing and responding cells generate neuronal
diversity in the medial amygdala. Neural Dev. 5, 14. doi: 10.1186/1749-8104-
5-14

Condé, F., Lund, J., Jacobowitz, D., Baimbridge, K., and Lewis, D. (1994). Local
circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin
in monkey prefrontal cortex: distribution and morphology. J. Comp. Neurol. 341,
95–116. doi: 10.1002/cne.903410109

Corbin, J. G., Rutlin, M., Gaiano, N., and Fishell, G. (2003). Combinatorial func-
tion of the homeodomain proteins Nkx2.1 and Gsh2 in ventral telencephalic
patterning. Development 130, 4895–4906. doi: 10.1242/dev.00717

Dahmane, N., and Ruiz-i-Altaba, A. (1999). Sonic hedgehog regulates the growth
and patterning of the cerebellum. Development 126, 3089–3100.

DeFelipe, J. (1997). Types of neurons, synaptic connections and chemical character-
istics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin
in the neocortex. J. Chem. Neuroanat. 14, 1–19. doi: 10.1016/S0891-0618(97)
10013-8

DeFelipe, J. (1999). Chandelier cells and epilepsy. Brain 122, 1807–1822. doi:
10.1093/brain/122.10.1807

DeFelipe, J., Alonso-Nanclares, L., and Arellano, J. (2002). Microstructure
of the neocortex: comparative aspects. J. Neurocytol. 31, 299–316. doi:
10.1023/A:1024130211265

DeFelipe, J., Ballesteros-Yáñez, I., Inda, M. C., and Muñoz, A. (2006). “Double-
bouquet cells in the monkey and human cerebral cortex with special reference
to areas 17 and 18,” in Progress in Brain Research, eds S. Martinez-Conde, S. L.
Macknik, L. M. Martinez, J.-M. Alonso, and P. U. Tse (Amsterdam: Elsevier),
15–32.

DeFelipe, J., González-Albo, M. C., Del Río, M. R., and Elston, G. N. (1999).
Distribution and patterns of connectivity of interneurons containing calbindin,
calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of
the macaque monkey. J. Comp. Neurol. 412, 515–526. doi: 10.1002/(SICI)1096-
9861(19990927)412:3<515::AID-CNE10>3.0.CO;2-1

Del Río, M. R., and DeFelipe, J. (1994). A study of SMI 32-stained pyramidal cells,
parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical
axons in the human temproal neocortex. J. Comp. Neurol. 342, 389–408. doi:
10.1002/cne.903420307

Fogarty, M., Grist, M., Gelman, D., Marín, O., Pachnis, V., and Kessaris, N. (2007).
Spatial genetic patterning of the embryonic neuroepithelium generates GABAer-
gic interneuron diversity in the adult cortex. J. Neurosci. 27, 10935–10946. doi:
10.1523/JNEUROSCI.1629-07.2007

Gabbott, P. L. A., Jays, P. R. L., and Bacon, S. J. (1997). Calretinin neu-
rons in human medial prefrontal cortex (areas 24a,b,c, 32’, and 25). J. Comp.
Neurol. 381, 389–410. doi: 10.1002/(SICI)1096-9861(19970519)381:4<389::AID-
CNE1>3.0.CO;2-Z

Gadisseux, J., Goffinet, A., Lyon, G., and Evrard, P. (1992). The human transient
subpial granular layer: an optical, immunohistochemical, and ultrastructural
analysis. J. Comp. Neurol. 324, 94–114. doi: 10.1002/cne.903240108

González-Gómez, M., and Meyer, G. (2014). Dynamic expression of calretinin
in embryonic and early fetal human cortex. Front. Neuroanat. 8:41. doi:
10.3389/fnana.2014.00041

Grateron, L., Cebada-Sanchez, S., Marcos, P., Mohedano-Moriano, A., Insausti, A.,
Muñoz, M., et al. (2003). Postnatal development of calcium-binding proteins
immunoreactivity (parvalbumin, calbindin, calretinin) in the human entorhi-
nal cortex. J. Chem. Neuroanat. 26, 311–316. doi: 10.1016/j.jchemneu.2003.
09.005

Hansen, D., Lui, J., Flandin, P., Yoshikawa, K., Rubenstein, J., Alvarez-Buylla,
A., et al. (2013). Non-epithelial stem cells and cortical interneuron produc-
tion in the human ganglionic eminences. Nat. Neurosci. 16, 1576–1587. doi:
10.1038/nn.3541

Hansen, D., Lui, J., Parker, P., and Kriegstein, A. R. (2010). Neurogenic radial glia
in the outer subventricular zone of human neocortex. Nature 464, 554–561. doi:
10.1038/nature08845

Hill, R. S., and Walsh, C. A. (2005). Molecular insights into human brain evolution.
Nature 437, 64–67. doi: 10.1038/nature04103

Hsieh-Li, H. M., Witte, D. P., Szucsik, J. C., Weinstein, M., Li, H., and Potter, S.
S. (1995). Gsh-2, a murine homeobox gene expressed in the developing brain.
Mech. Dev. 50, 177–186. doi: 10.1016/0925-4773(94)00334-J

Jakovcevski, I., Mayer, N., and Zecevic, N. (2011). Multiple origins of human
neocortical interneurons are supported by distinct expression of transcription
factors. Cereb. Cortex 21, 1771–1782. doi: 10.1093/cercor/bhq245

Jones, E. G. (2009). The origins of cortical interneurons: mouse versus monkey and
human. Cereb. Cortex 19, 1953–1956. doi: 10.1093/cercor/bhp088

Kanatani, S., Yozu, M., Tabata, H., and Nakajima, K. (2008). COUP-TFII is prefer-
entially expressed in the caudal ganglionic eminence and is involved in the caudal
migratory stream. J. Neurosci. 28, 13582–13591. doi: 10.1523/JNEUROSCI.2132-
08.2008

Kohtz, J. D., Baker, D. P., Corte, G., and Fishell, G. (1998). Regionalization within
the mammalian telencephalon is mediated by changes in responsiveness to Sonic
hedgehog. Development 125, 5079–5089.

Letinic, K., Zoncu, R., and Rakic, P. (2002). Origin of GABAergic neurons in the
human neocortex. Nature 417, 645–649. doi: 10.1038/nature00779

Lewis, D. A., Hashimoto, T., and Volk, D. W. (2005). Cortical inhibitory neurons
and schizophrenia. Nat. Rev. Neurosci. 6, 312–324. doi: 10.1038/nrn1648

Lui, J. H., Hansen, D. V., and Kriegstein, A. R. (2011). Development and evolution
of the human neocortex. Cell 146, 18–36. doi: 10.1016/j.cell.2011.06.030

Ma, T., Wang, C., Wang, L., Zhou, X., Tian, M., Zhang, Q., et al. (2013). Subcortical
origins of human and monkey neocortical interneurons. Nat. Neurosci. 16, 1588–
1597. doi: 10.1038/nn.3536

Ma, T., Zhang, Q., Cai, Y., You, Y., Rubenstein, J. L. R., and Yang, Z. (2012). A
subpopulation of dorsal lateral/caudal ganglionic eminence-derived neocortical
interneurons expresses the transcription factor Sp8. Cereb. Cortex 22, 2120–2130.
doi: 10.1093/cercor/bhr296

Mariani, J., Simonini, M. V., Palejev, D., Tomasini, L., Coppola, G., Szekely, A.
M., et al. (2012). Modeling human cortical development in vitro using induced
pluripotent stem cells. Proc. Natl. Acad. Sci. U.S.A. 109, 12770–12775. doi:
10.1073/pnas.1202944109

Marin, O. (2012). Interneuron dysfunction in psychiatric disorders. Nat. Rev.
Neurosci. 13, 107–120. doi: 10.1038/nrn3155

Marin, O., and Rubenstein, J. L. (2001). A long, remarkable journey: tangen-
tial migration in the telencephalon. Nat. Rev. Neurosci. 11, 780–790. doi:
10.1038/35097509

Maroof, A., Keros, S., Tyson, J., Ying, S., Ganat, Y., Merkle, F., et al. (2013). Directed
differentiation and functional maturation of cortical interneurons from human
embryonic stem cells. Cell Stem Cell 12, 559–572. doi: 10.1016/j.stem.2013.04.008

Meyer, G., Schaaps, J. P., Moreau, L., and Goffinet, A. M. (2000). Embryonic
and early fetal development of the human neocortex. J. Neurosci. 20, 1858–
1868.

Meyer, G., and Wahle, P. (1999). The paleocortical ventricle is the origin of reelin-
expressing neurons in the marginal zone of the foetal human neocortex. Eur. J.
Neurosci. 11, 3937–3944. doi: 10.1046/j.1460-9568.1999.00818.x

Mione, M., Danevic, C., Boardman, P., Harris, B., and Parnavelas, J. (1994). Lineage
analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding
protein homogeneity in clonally related cortical neurons. J. Neurosci. 14, 107–123.

Miyoshi, G., Hjerling-Leffler, J., Karayannis, T., Sousa, V. H., Butt, S. J. B., Battiste,
J., et al. (2010). Genetic fate mapping reveals that the caudal ganglionic eminence
produces a large and diverse population of superficial cortical interneurons. J.
Neurosci. 30, 1582–1594. doi: 10.1523/JNEUROSCI.4515-09.2010

Mo, Z., Moore, A. R., Filipovic, R., Ogawa, Y., Kazuhiro, I., Antic, S. D., et al.
(2007). Human cortical neurons originate from radial glia and neuron-restricted
progenitors. J. Neurosci. 27, 4132–4145. doi: 10.1523/JNEUROSCI.0111-07.2007

Mo, Z., and Zecevic, N. (2008). Is Pax6 critical for neurogenesis in the human fetal
brain? Cereb. Cortex 18, 1455–1465. doi: 10.1093/cercor/bhm181

Nery, S., Wichterle, H., and Fishell, G. (2001). Sonic hedgehog contributes to
oligodendrocyte specification in the mammalian forebrain. Development 128,
527–540.

O’Leary, D. D., and Sahara, S. (2008). Genetic regulation of arealization of the
neocortex. Curr. Opin. Neurobiol. 18, 90–100. doi: 10.1016/j.conb.2008.05.011

Ortega, J., Radonjic, N., and Zecevic, N. (2013). Sonic hedgehog promotes genera-
tion and maintenance of human forebrain Olig2 progenitors. Front. Cell. Neurosci.
7:254. doi: 10.3389/fncel.2013.00254

Frontiers in Neuroanatomy www.frontiersin.org August 2014 | Volume 8 | Article 82 | 11

http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive
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