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After brain lesions caused by tumors or stroke, or after lasting loss of input
(deafferentation), inter- and intra-regional brain networks respond with complex changes
in topology. Not only areas directly affected by the lesion but also regions remote from
the lesion may alter their connectivity—a phenomenon known as diaschisis. Changes
in network topology after brain lesions can lead to cognitive decline and increasing
functional disability. However, the principles governing changes in network topology
are poorly understood. Here, we investigated whether homeostatic structural plasticity
can account for changes in network topology after deafferentation and brain lesions.
Homeostatic structural plasticity postulates that neurons aim to maintain a desired level
of electrical activity by deleting synapses when neuronal activity is too high and by
providing new synaptic contacts when activity is too low. Using our Model of Structural
Plasticity, we explored how local changes in connectivity induced by a focal loss of input
affected global network topology. In accordance with experimental and clinical data, we
found that after partial deafferentation, the network as a whole became more random,
although it maintained its small-world topology, while deafferentated neurons increased
their betweenness centrality as they rewired and returned to the homeostatic range of
activity. Furthermore, deafferentated neurons increased their global but decreased their
local efficiency and got longer tailed degree distributions, indicating the emergence of hub
neurons. Together, our results suggest that homeostatic structural plasticity may be an
important driving force for lesion-induced network reorganization and that the increase in
betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.

Keywords: topology, deafferentation, focal retinal lesion, neuronal network model, structural plasticity,
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1. INTRODUCTION
Repair of brain networks following lesions, stroke or neurode-
generation goes along with massive rewiring of connections.
Rewiring is brought about by synapse formation and dele-
tion, dendritic remodeling, and axonal sprouting, pruning and
re-routing (structural plasticity) (Butz et al., 2009b). Network
rewiring induced by lesions or neuronal loss contributes to
changes in network topology associated with tumors (Bartolomei
et al., 2006; Honey and Sporns, 2008), stroke (van Meer et al.,
2012; Yin et al., 2013), and neurodegenerative diseases, includ-
ing Alzheimer’s disease (Stam et al., 2009; Sanz-Arigita et al.,
2010) and multiple sclerosis (He et al., 2009; Tewarie et al., 2014).
Interestingly, in all these pathologies, brains become more ran-
domly connected or lose complexity of hierarchical structure
(Tewarie et al., 2014). Increasing randomness and decreasing
betweenness centrality (a topological measure for the importance
of neurons in a network) correlate with network degeneration and
decline in cognitive function (Bosma et al., 2009; Schoonheim
et al., 2013). An important aspect of network rewiring is diaschisis
(von Monakov, 1914; Andrews, 1991), the phenomenon that

brain regions not directly affected by the primary lesion but deaf-
ferentated by the lesion change their connectivity. Extending this
early concept of diaschisis, recent studies analysing neuroimaging
data (e.g., from stroke patients) using graph theoretical meth-
ods have revealed complex changes in global network topology
after brain lesions (Honey and Sporns, 2008; Alstott et al., 2009;
Carter et al., 2012; van Meer et al., 2012; Rehme and Grefkes,
2013). These studies showed that while brain networks as a whole
generally become more random following network rewiring, the
deafferentated areas themselves increase their betweenness cen-
trality (Wang et al., 2010)—an unexpected result because random
networks tend to have nodes with low betweenness central-
ity. Changes in topology after brain damage have mostly been
reported for inter-area connectivity (Wang et al., 2010), but both
global inter-area connectivity and local intra-area connectivity
rewire after lesions (Murphy and Corbett, 2009; Winship and
Murphy, 2009).

Topology changes in inter-area and intra-area connectivity are
poorly understood, partly because of a lack of understanding
of the principles governing structural plasticity. An elegant way
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to study structural plasticity after deafferentation is the experi-
mental paradigm of focal retinal lesions (Eysel et al., 1980; Keck
et al., 2008; Yamahachi et al., 2009). In this paradigm, the primary
lesion is made in the eye so that no damage of brain tissue over-
lays the massive cortical reorganization following deafferentation
(Darian-Smith and Gilbert, 1994; Keck et al., 2008; Yamahachi
et al., 2009; Keck et al., 2011; Marik et al., 2014). Compared
with the brain, the eye is also better accessible for lesioning, and
because of retinotopy, the retinal lesion leads to a well-defined
deafferentated lesion projection zone (LPZ) in the primary visual
cortex. Recently, we postulated that the need of neurons to main-
tain homeostasis of their average electrical activity may act as
a driving force for structural plasticity (Butz and van Ooyen,
2013) (see also van Ooyen and van Pelt, 1994; van Ooyen et al.,
1995; Butz et al., 2008, 2009a; Tetzlaff et al., 2010; van Ooyen,
2011). We developed a novel computational model, called Model
of Structural Plasticity (MSP) (Butz and van Ooyen, 2013; Butz
et al., 2014), in which neurons create new dendritic spines and
axonal boutons when neuronal activity is below a homeostatic
set-point, and delete spines and boutons when activity is above
the set-point. Synapses are formed by merging spines and bou-
tons. Using MSP, we showed (Butz and van Ooyen, 2013) that
homeostatic structural plasticity, without any additional forms
of Hebbian plasticity, can account for the changes observed in
the visual cortex after focal retinal lesions: an increased dendritic
spine turnover in the center of the LPZ (Keck et al., 2008), an
overshoot in axonal sprouting from the peri-LPZ into the LPZ
(Yamahachi et al., 2009), and a functional retinotopic remap-
ping (Giannikopoulos and Eysel, 2006; Keck et al., 2008). In
MSP, changes in topology arising from structural plasticity do not
require any goal-directed network process but emerge solely from
a local neuronal mechanism aimed at restoring neuronal firing
rates.

Here, we investigated how local changes in connectivity
brought about by homeostatic structural plasticity altered intra-
area connectivity. Currently, there are no experimental studies
available on intra-area topology changes after brain damage or
deafferentation, but we found remarkable similarities between
our model results and observed changes in inter-area connectiv-
ity especially after subcortical stroke. As a direct result of network
rewiring after focal deafferentation, the model network as a whole
first increased its small-worldness and then became more ran-
dom and consequently less small-world. At the same time that
the whole network became more random, the deafferentated neu-
rons themselves increased their betweenness centrality if network
repair was succesful. The increase in betweenness centrality may
therefore hold as a biomarker for brain repair after deafferenta-
tion. The decrease in small-worldness of the whole network was
associated with a decrease in local but an increase in global effi-
ciency of the deafferented neurons, with efficiency defined as the
average inverse of shortest paths between neurons. Our modeling
results strongly resemble experimental and clinical data show-
ing that during the course of post-stroke reorganization, inter-
regional networks become more random, while areas that lost
input as a consequence of the infarct increase their betweenness
centrality (Wang et al., 2010). Thus, our model of homeostatic
structural plasticity, even though at first interpretation a model

for intra-area reorganization, may provide valuable insights into
the mechanisms underlying inter-area topology changes during
brain repair.

2. MATERIALS AND METHODS
2.1. THE MODEL AT A GLANCE
Our Model of Structural Plasticity (MSP) (Butz and van Ooyen,
2013; Butz et al., 2014) represents synapses not merely as synaptic
weight factors but as composed of two complementary synap-
tic elements: an axonal element representing axonal boutons or
terminals, and a dendritic element representing any postsynaptic
specialization on the dendrite (e.g., a dendritic spine). Synaptic
elements develop independently of their matching element in an
activity-dependent manner. A neuron creates new synaptic ele-
ments when its level of electrical activity is below a homeostatic
set-point and decreases the number of elements when its activity
exceeds this set-point. In addition, neurons need a minimum level
of activity to form synaptic elements. Newly formed elements are
vacant and available for synapse formation. Vacant axonal and
dendritic elements can connect to form a new synapse. Synaptic
elements of adjacent neurons are more likely to connect than
those of more distant neurons. Vacant synaptic elements that are
not used for synapse formation decay spontaneously with a cer-
tain rate. Existing synapses can break up if an element bound in
a synapse is removed by the hosting neuron. The complemen-
tary synaptic element of the broken-up synapse becomes vacant
and available for synapse formation again, which enables struc-
tural rewiring of neuronal networks. The algorithm proceeds in
three steps. First, electrical activity is computed for every neuron.
Second, numbers of synaptic elements are updated depending
on the current average level of electrical activity of each neuron,
which may cause the breaking of synapses. Third, vacant synap-
tic elements are recombined to form new synapses. Changes in
electrical activity and number of synaptic elements proceed on
a continuous timescale, whereas the breaking and formation of
synapses take place at discrete time steps.

2.2. NEURON MODEL
The same network and neuron model was used as in Butz and van
Ooyen (2013), with nex = 320 excitatory and nin = 80 inhibitory
Izhikevich neurons (Izhikevich, 2003). Inhibitory neurons only
differ from excitatory ones in the sign of synaptic transmission.
Excitatory neurons were placed with some jitter on a 20 x 16
grid with a spatial distance between two grid points of 150 µm.
Inhibitory neurons were placed evenly between the excitatory
neurons. Electrical activity is modeled by two differential equa-
tions, one for the membrane potential v and one for a recovery
variable u enabling re-polarization after an action potential:

dv

dt
= k1v2 + k2v + k3 − u+ Isyn + Iext

du

dt
= a(bv − u) (1)

where v and u are in mV, t is in ms, k1 = 0.04 mV−1ms−1, k2 =
5 ms−1, and k3 = 140 mVms−1. Every time a neuron fires (v ≥
30 mV), v and u are reset:
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if v ≥ 30 mV, then

{
v← c
u← u+ d

(2)

where a = 0.1 ms−1, b = 0.2 ms−1, c = −65 mV, and d =
2 mVms−1. Synaptic input Isyn has a fixed strength of 1 mVms−1

for every synapse. Synaptic input arriving at the postsynaptic neu-
ron is low-pass filtered by an exponential filter function h(t) =
exp(− t

μ
) with decay constant μ = 5 ms. External input Iext is

permanently delivered as white noise with mean 5 mVms−1 and
standard deviation 1 mVms−1 according to Izhikevich (2003);
Butz and van Ooyen (2013).

Intracellular calcium concentration is used as a low-passed fil-
tered average of the firing frequency of each neuron (Butz and van
Ooyen, 2013). Every time a neuron fires, calcium concentration is
increased by β = 0.001 ms−1 and then decreases exponentially to
zero with decay time τCa = 10000 ms.

2.3. MODEL OF STRUCTURAL PLASTICITY
We used our model of structural plasticity (MSP), which is
described in detail in Butz and van Ooyen (2013); Butz et al.
(2014). The model proceeds in three steps: (1) updating elec-
trical activity, as described above; (2) updating the number of
synaptic elements and eventually the breaking of synapses if
synaptic elements were deleted; and (3) the formation of new
synapses.

2.3.1. Update of synaptic elements and breaking of synapses
We applied Gaussian growth curves (Figure 1) for the num-
ber Ai of axonal elements, the number Dex

i of excitatory den-

dritic elements and the number Din
i of inhibitory dendritic

elements:

dzi

dt
= ν

⎛
⎜⎜⎜⎝2 e

−
⎛
⎝

[
Ca2+]

i − ξz

ζz

⎞
⎠

2

−1

⎞
⎟⎟⎟⎠

ξz = ηz + ε

2

ζz = ηz − ε

2
√−ln(1/2)

(3)

where ν is the growth rate and ε is the homeostatic set-point,
at which dz/dt = 0. The variable z needs to be replaced by the
respective type of synaptic element A, Dex, or Din. If the calcium
concentration

[
Ca2+]

i (a measure for the average electrical activ-
ity of the neuron) is higher than ε, synaptic elements are removed;
if it is lower than that, synaptic elements are formed. However,
there is also a minimum calcium concentration required for the
formation of elements: ηA for axonal elements and ηD for den-
dritic elements. If the concentration is lower than ηA, axonal ele-
ments are removed; if it is lower than ηD, dendritic elements are
removed. The center and width of the Gaussian-shaped growth
curve are given by ξ and ζ , respectively.

2.3.1.1. Parameters of activity-dependent changes in synaptic
elements. For all types of elements, we chose ν = 10−4 ms−1.
As in Butz and van Ooyen (2013), we studied three cases with
different sets of growth curves (Figure 1): (1) ηA = 0.4, ηD = 0.1,
ε = 0.7; (2) ηA = ηD = 0.1, ε = 0.7; and (3) ηA = 0.1, ηD = 0.4,
ε = 0.7. The first case is referred to as the physiological case
because it best reproduces experimental findings on dendritic
spine and axonal bouton dynamics in the primary visual cor-
tex after focal retinal lesion (Butz and van Ooyen, 2013). The

FIGURE 1 | Depending on the neuronal growth curves for the change

dD/dt in number of dendritic elements and the change dA/dt in

number of axonal elements, network reorganization after lesions

leads to different network topologies. Changes in the number of
elements are dependent on the time-averaged neuronal electrical activity
as measured by the cell’s intracellular calcium concentration

[
Ca2+]

. (A)

If the minimal activity for dendritic element formation is lower than that
for axonal element formation (ηD = 0.1, ηA = 0.4, respectively), networks
reorganize in a physiological manner, with axonal and dendritic element

dynamics (Butz and van Ooyen, 2013) resembling experimental
observations (Keck et al., 2008). (B) If dendritic and axonal elements can
already grow at low activity levels (ηD = ηA = 0.1), we obtain strongly
recurrently connected networks after a lesion. (C) If dendritic elements
need high levels of activity (ηD = 0.4, ηA = 0.1), no network repair takes
place, i.e., no restoration of activity levels. We replaced the homeostatic
set-point ε = 0.7 by a homeostatic range of 0.65 ≤ ε̄ ≤ 0.75, in which no
change in number of axonal or dendritic elements takes place. We chose
ν = 10−4 ms−1.
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other two cases are aberrant cases. The second case is called the
recurrent case because network repair is brought about by mas-
sive recurrent connections in the LPZ. The third case is called
the no-repair case because with this choice of growth parameters,
neurons are not able to restore their electrical activity back to the
homeostatic set-point.

Since with discrete synaptic elements there is no solution
where all neurons are exactly at the homeostatic set-point, neu-
rons will continue to rewire their connectivity at a low rate. To
stop network rewiring when neurons are close to the homeostatic
set-point ε, we replaced the set-point by a homeostatic range
ε̄ = [0.65..0.75]. In this range, neurons do not initiate activity-
dependent changes in number of synaptic elements; i.e., dz/dt =
0 if 0.65 ≤ [

Ca2+] ≤ 0.75.
In addition to activity-dependent changes in synaptic ele-

ments, vacant synaptic elements decay spontaneously with a very
slow time constant of τvac = 10 updates in connectivity.

2.3.1.2. Breaking of synapses. Since network connectivity is
updated at discrete time steps but synaptic elements change con-
tinuously over time due to the activity-dependent growth rules,
it can happen that a neuron has more outgoing synapses than
axonal elements or more incoming synapses than dendritic ele-
ments at the time of the next update in network connectivity. In
that case, the neuron has to delete the surplus of synapses and to
update connectivity.

To update connectivity, the algorithm needs to select which
synapses are to be removed. All synapses have an equal chance of
being deleted. Note, however, that multiple synapses can co-exist
from neuron j to i and that the more synapses there are, the higher
the chance that a synapse between neuron j and i will be deleted.
The probability Pdel

i,j for synapse deletion between neuron j and i
is computed by the following master equation that captures four
different cases:

Pdel
i,j =

Wi,j∑
Wk,l

(4)

For deletion of incoming synapses, we need to distinguish
between excitatory and inhibitory synapses in Equation 4. For
deletion of incoming excitatory synapses of neuron i ∈ {In ∪ Ex},
we sum up Wk,l over all l ∈ {Ex}. For deletion of incoming
inhibitory synapses of neuron i ∈ {In ∪ Ex}, we sum up Wk,l

over all l ∈ {In}. For deletion of outgoing excitatory synapses of
excitatory presynaptic neuron j ∈ {Ex}, all synapses are consid-
ered to any postsynaptic neuron k ∈ {In ∪ Ex}. Thus, we sum up
Wk,l over all k ∈ {In ∪ Ex}. The same holds true for outgoing
inhibitory synapses with j ∈ {In}.

Sequentially, outgoing and incoming excitatory and inhibitory
synapses were selected for deletion. For every type of synapse,
the accumulated sum of Pdel

i,j (see description of Equation 4
for the range of i and j) gave a probability distribution from
which we drew the required number of synapses to be deleted.
The selected synapse was deleted by reducing the respective
entry Wi,j in the connectivity matrix by one. It can happen
that more than one synapse is selected for deletion from the
same connection j to i. In that case, the implementation of

the algorithm made sure that the number of synapses to be
deleted did not exceed Wi,j. Whenever a neuron deletes a synaptic
element that is bound in a synapse, the complementary synap-
tic element on the other neuron remains and becomes vacant
again.

2.3.2. Synapse formation
For synapse formation, the algorithm checked whether a neuron
gained vacant synaptic elements, i.e., whether the total number of
synaptic elements exceeded the number of bound synaptic ele-
ments of this type. Matching vacant synaptic elements (vacant
excitatory axonal elements Avac

j , j ∈ {Ex}, with vacant excita-

tory dendritic elements Dex,vac
i , and vacant inhibitory axonal

elements Avac
j , j ∈ {In}, with vacant inhibitory dendritic elements

Din,vac
i ) were randomly connected among each other with prob-

ability density function Pform. The probability P
form
i,j for forming

new synapses between neuron j and i depended on the number
of vacant synaptic elements they offered and on the Euclidean
distance between neuron j and i:

P
form
i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j ∈ {Ex} : Avac
j Dex,vac

i∑
ι∈{Ex} Avac

ι

∑
κ∈{Ex∪In} Dex,vac

κ
Kij

j ∈ {In} : Avac
j Din,vac

i∑
ι∈{In} Avac

ι

∑
κ∈{Ex∪In} Din,vac

κ

Kij

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

with i ∈ {Ex ∪ In}. (5)

where Ki,j is the Euclidean distance-dependent likelihood (kernel
function) that neuron j connects to neuron i at all, irrespective
of the number of vacant elements i and j offer. As in our pre-
vious work on MSP (Butz and van Ooyen, 2013; Butz et al.,
2014), we applied either a flat kernel Ki,j = 1 (creating ran-
dom networks) or a two-dimensional Gaussian kernel (creating
small-world networks):

Ki,j, i �= j = e
− (posxj − posxi)2 + (posyj − posyi)2

σ 2 (6)

with posxi the x-coordinate and posyi the y-coordinate of
postsynaptic neuron i, and posxj and posyj the coordinates
of presynaptic neuron j. The probability for autapse connec-
tions (i.e., a neuron connecting to itself) was set to zero
(Ki,j = 0 for i = j). For these simulations, we chose σ =
1× 150 µm, where 150 µm is the distance between two grid
points. Because K only depends on the Euclidean distance
between neurons and since neurons do not migrate, K remains
fixed.

For every update in connectivity, the minor number of vacant
excitatory and inhibitory axonal or dendritic elements deter-
mined how many new excitatory and inhibitory synapses, respec-
tively, could at most be formed (so-called potential synapses).
Thus, the number of excitatory and inhibitory potential synapses
equaled
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MPotSyn,ex = min

⎛
⎝ ∑

ι∈ {Ex}
Avac

ι ,
∑

κ ∈ {Ex∪In}
Dex,vac

κ

⎞
⎠

MPotSyn,in = min

⎛
⎝ ∑

ι∈ {In}
Avac

ι ,
∑

κ ∈ {Ex∪In}
Din,vac

κ

⎞
⎠ (7)

for every update in connectivity.
From this distribution, the algorithm chose at maximum

MPotSyn,ex excitatory and MPotSyn,in inhibitory connections at
which new synapses were created. The respective entries Wi,j in
the connectivity matrix were then increased by one. A connection
was chosen by drawing a random number from a uniform dis-

tribution and comparing it to the accumulated probabilities P
form
i,j

for all excitatory connections and all inhibitory connections of the
entire network. That connection was chosen that had the high-
est accumulated probability that the random number just did not
exceed. If, for this try, the random number exceeded all accumu-
lated probabilities, no synapse was formed. Hence, not necessarily
all of the potential synapses were formed.

Additionally, synapse formation needed to fulfill the condition
that the number W+i,j of newly formed synapses from neuron j
to i did not exceed the number of vacant synaptic elements that
neuron j and i offered:

W+i,j ≤
{

j ∈ {Ex} : min (Avac
j , Dex,vac

i )

j ∈ {In} : min (Avac
j , Din,vac

i )

}

with i ∈ {Ex ∪ In}. (8)

In every update, this condition was checked and synapse forma-
tion infringing this condition was rejected. Alternatively, update
of connectivity can also be implemented in a purely local fashion
(Butz and van Ooyen, 2013).

2.4. MODELING DEAFFERENTATION
We grew every model network from scratch, i.e., starting with zero
connectivity and zero synaptic elements. Networks were formed
by exactly the same growth rules that were effective after the
lesion. However, in order to grow networks from scratch, it was
necessary to use initially a higher level of external input. We
used Iext = 8 mVms−1 for the first 500 updates in connectivity
and then lowered it gradually down to 5 mVms−1 according to
Iext(T) = ((8− 5)/(1+ exp((T − 500)/200))+ 5) mVms−1. At
T = 8000, we removed the input of a circumscribed area, the
lesion projection zone (LPZ), by setting Iext,LPZ(T) = 0 (for
T ≥ 8000) permanently. The LPZ spans from x1 = 5× 150 µm
to x2 = 12× 150 µm and from y1 = 5× 150 µm to y2 = 12×
150 µm (cf. Figure 5) for all simulations and all cases (cf. Update
of synaptic elements and breaking of synapses). We refer to the
rest of the network with intact input as “intact zone.” Every
simulation is continued for another T = 12000 updates in con-
nectivity. As in our previous work (Butz and van Ooyen, 2013), we
matched 1000 updates in connectivity with 14 days post-lesion.
Thus, simulations predict the time course of network rewiring for
24 weeks after the lesion.

2.5. TOPOLOGY MEASUREMENTS
A neuronal network can be seen as a graph, with neurons as nodes
and synapses as edges or links between nodes. Since the presynap-
tic neuron always activates the postsynaptic neuron (and never
the other way round), we regard the graph as directed. In order to
describe changes in network topology after a focal loss of input,
we assessed the following graph theoretical measures at every
update in connectivity. To reduce the complexity of the assess-
ment, we considered only the topology of the excitatory synaptic
connections Wex,ex between the nex excitatory neurons. For the
graph theoretical assessments, the brain connectivity toolbox by
Rubinov and Sporns was used (Rubinov and Sporns, 2010).

2.5.1. Weighted characteristic path length
The characteristic path length L measures the average shortest
path from one (excitatory) neuron to any other (excitatory) neu-
ron in the network. Path length is defined as the number of
connections that needs to be traveled to go from one neuron
(possibly via intermediate neurons) to any other neuron:

L = 1

nex

nex∑
i

Li = 1

nex

nex∑
i

∑nex

j, j �= i dij

nex − 1
(9)

On top of this definition, a direct connection between two neu-
rons in a weighted network is considered “shorter” the stronger
the weight of the connection is. For our network model, we take
the number of synapses Wex,ex

i,j between two directly linked neu-
rons j and i, with i, j ∈ Ex, as the weight of the connection and the
inverse 1/Wex,ex

i,j as the length li,j of the connection. The shortest
path di,j is then the smallest sum of connection lengths that lead
from neuron j to i via any intermediate neurons. We calculated
the weighted characteristic path length according to Rubinov and
Sporns (2010). Additionally, in order to study the connectivity
between subnetworks, we used Equation 9 to compute the average
path lengths from neurons in the intact zone (with intact input)
to neurons in the LPZ (deprived of input) and vice versa.

2.5.2. Weighted clustering coefficient
The clustering coefficient is an indication for how strongly neu-
rons in a network are interconnected. It measures how many of
any two neurons j and h that are both connected to node i are also
connected to each other, relative to all neurons connected to i:

C = 1

nex

nex∑
i

Ci = 1

nex

nex∑
i

∑nex

j,h aijaihajh

ki(ki − 1)
(10)

where aij, aih, ajh ∈ {0, 1} (1 if a connection between the respec-
tive neurons exists and 0 if not) and ki is the number of neurons
that neuron i is connected to. For weighted directed networks,
the clustering coefficient can be computed according to the for-
malism by Fagiolo (2007). We computed the clustering coefficient
at every update in connectivity according to the implementation
by Rubinov and Sporns (2010). In addition to the averaged clus-
tering coefficient of the entire network, we also computed the
clustering coefficient averaged over either the LPZ neurons only
or over the intact zone neurons only.
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2.5.3. Small-world parameter
To estimate the small-worldness of networks, we applied the
formalism by Humphries and Gurney (2008):

S = γ

λ
= C/Crand

L/Lrand
(11)

We replaced the clustering coefficient C and the characteristic
path length L by the version for weighted directed graphs as
described above. To obtain the normalized clustering coefficient
γ and the normalized characteristic path length λ, C and L were
divided by Crand and Lrand, respectively, taken from an Erdős-
Rényi random graph generated with the same number of neurons
and synapses as in the deafferentated networks at every update in
connectivity.

2.5.4. Betweenness centrality
Betweenness centrality measures the importance of neurons in
the network. Betweenness centrality of a neuron is calculated by
summing up the number of all shortest paths in the network that
go via this neuron and dividing it by the number of all other
shortest paths that do not pass this neuron. Global between-
ness centrality is the sum over the betweenness centrality of all
neurons:

BCglobal =
nex∑

i

∑
k �= i �= l

σkl(i)

σkl
(12)

where σkl is the total number of multiple shortest paths between
neuron k and neuron l, and σkl(i) is the number of shortest paths
that go via neuron i. Shortest paths are based on weighted exci-
tatory connections Wex,ex

i,j , and global betweenness centrality was
computed by the formalism for weighted directed networks by
Brandes (2001) as implemented by Rubinov and Sporns (2010).

2.5.5. Local efficiency
Local efficiency Eloc,i measures how well the neighbors of neuron
i, i.e., other neurons that directly form a synapse with i, are inter-
connected and is therefore related to the clustering coefficient. For
this, the average of the shortest path lengths djh(Gex

i ) between any
two excitatory neighboring neurons j and h of neuron i is com-
puted that uses only paths of the subgraph Gex

i consisting of all the
excitatory neighbors of i but not of i itself (Latora and Marchiori,
2001):

Eloc = 1

nex

nex∑
i

Eloc,i

= 1

nex

nex∑
i

∑nex

j,h, j,h �= i aijajh
[
djh(Gex

i )
]−1

ki(ki − 1)
(13)

where aij, ajh ∈ {0, 1} (1 if a connection between the respective
neurons exists and 0 if not) and ki is the number of neurons that
neuron i is connected to. We used the weighted, directed version
of local efficiency (Rubinov and Sporns, 2010).

2.5.6. Global efficiency
Global efficiency Eglob is related to the inverse of the characteristic
path length, but with the advantage that it can also be mean-
ingfully computed for unconnected graphs. Whereas the path
length between unconnected nodes is infinite (cf. Equation 9),
the inverse is zero and therefore adds neutrally to global efficiency
(Latora and Marchiori, 2001; Achard and Bullmore, 2007):

Eglob = 1

nex

nex∑
i

Eglob,i = 1

nex

nex∑
i

∑nex

j, j �= i d−1
ij

nex − 1
(14)

where Eglob,i is the efficiency of node i and nex is the number
of excitatory neurons. We used the version of this equation for
weighted, directed graphs (Rubinov and Sporns, 2010). Note that
local efficiency and clustering coefficient as well as global effi-
ciency and characteristic path length are closely related but not
identical measures. Local and global efficiency are frequently used
in clinical studies and are therefore presented here in addition to
clustering coefficient and characteristic path length.

3. RESULTS
3.1. PHYSIOLOGICAL NETWORK REWIRING
In our previous work (Butz and van Ooyen, 2013), we postu-
lated activity-dependent growth curves for axonal and dendritic
elements that gave rise to the same kind of network rewiring
as observed in primary visual cortex after focal retinal lesions.
With these growth curves (referred to as physiological growth
curves), in which axonal elements required higher levels of elec-
trical activity than dendritic elements to grow out (ηA = 0.4,
ηD = 0.1), the LPZ recovered from the outside to the inside and
the turnover of dendritic elements was surprisingly similar to
the experimental data on dendrtic spine turnover (Butz and van
Ooyen, 2013). In the present study, we investigated how network
topology changes in response to a focal loss of input, with neu-
rons rewiring their inputs (and outputs) locally in order to restore
a desired level of electrical activity. Our modeling results show
that networks employing physiological growth curves return to
a homeostatic range in electrical activity (Figure 2A) and, as a
result of compensatory rewiring, become more randomly con-
nected, as indicated by a lower value of the small-world parameter
S (Figure 2B) measured over the entire network. Although ran-
dom networks have no nodes of particular importance and hence
a low betweenness centrality, neurons in the LPZ have a higher
betweenness centrality after network rewiring than before the
lesion (Figure 2C).

The decrease in small-world parameter S is determined by
the course of the clustering coefficient γ and the characteristic
path length λ. While λ converges to one, γ decreases markedly
(Figure 3) and is thereby responsible for networks becoming
more random. The decrease in clustering is not immediate but
sets in between 6 and 8 weeks after the lesion. As will be shown
below, it takes some time until network reorganization has man-
aged to restore neuronal activities to their homeostatic range.
During this time period, there is a temporary drop in characteris-
tic path length below one, which contributes to a temporary rise
in S (Figure 2B). However, after about 16 weeks, λ reaches stable
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FIGURE 2 | Physiological case. Compensatory network rewiring renders
neuronal networks more random and increases their betweenness centrality.
(A) Average electrical activities, as measured by the mean calcium
concentration of the respective area, are restored to the homeostatic range
for neurons in the LPZ (red) and the intact zone (green). Neurons
corresponding to the LPZ in a non-lesioned network do not alter their calcium
concentration (control, black). (B) Networks become more random after

deafferentation, as indicated by a decrease in small-world parameter S (red)
measured over the entire network, whereas control networks show no
change in small-worldness (black). (C) At the same time, betweenness
centrality increases in the LPZ (red) but decreases in the intact zone (green).
Betweenness centrality of neurons corresponding to the LPZ in a
non-lesioned network remains stable (control, black). Means over five
simulations per scenario. Shadings of the curves indicate standard deviations.

FIGURE 3 | The increasing randomness of networks after deafferentation

is due to a marked decrease in clustering, as shown by a decrease in the

normalized clustering coefficient γ (A). The average of shortest paths, as

measured by the normalized characteristic path length λ (Equation 11), shows
only very little change in absolute terms (B). Means over five simulations per
scenario. Shadings of the curves indicate standard deviations.

values around one. From the same time on, S stabilizes at lower
levels than in control networks without lesions.

From our previous work on modeling cortical rewiring after
focal retinal lesions (Butz and van Ooyen, 2013), we know that
functional network repair can be brought about by an, also exper-
imentally observed, ingrowth of connections from the intact zone
to the LPZ (Darian-Smith and Gilbert, 1994; Yamahachi et al.,
2009). For physiological network repair to go along with func-
tional retinotopic remapping (as shown in mice Keck et al., 2008),
we found that it is important that the majority of new connections
impinging on deafferentated neurons originates from intact areas
and transmits electrical activity from the intact zone to the LPZ.
Here, we further investigate whether the changes in global topol-
ogy parameters express this ingrowth of connections. For this, we
first focus on the activity-dependent changes in synapse numbers
and connectivity between the intact zone and the LPZ. The first

6 weeks are dominated by a loss of synapses originating from the
LPZ (Figure 4A). This is a direct consequence of neuronal activi-
ties being low and calcium concentrations being below ηA = 0.4
(Figure 4B), which causes axonal elements to be removed. By
contrast, axonal elements from the intact zone form additional
synapses with the LPZ right from the onset of the lesion. Between
6 and 8 weeks after the lesion, most neurons in the LPZ have
reached calcium levels of 0.4 and start forming additional axonal
elements, connecting to targets in the LPZ as well as the intact
zone. The number of recurrent synapses from the LPZ to the LPZ
does thereby at no time exceeds the number of synapses from the
intact zone to the LPZ, as required for a functional remapping to
emerge.

The change in λ and γ as shown in Figure 3 is measured over
the entire network. We further want to understand whether the
course of γ and λ is caused by the changing connectivity between
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FIGURE 4 | In the physiological case, compensatory network rewiring

relies on the formation of new synapses from the intact zone to the LPZ.

(A) Synapse numbers from the intact zone to the LPZ increase (green), while
synapses numbers from the LPZ to the intact zone decrease (red). (B) All
neurons in the intact zone (green) and most neurons in the LPZ (red) return to
the homeostatic range following deafferentation. Neurons lose axonal and
dendritic elements if their calcium concentration is lower than 0.1 or higher

than 0.75 (dark gray background). Neurons form only dendritic elements if
their calcium concentration is greater than 0.1 but lower than 0.4 (gray), and
form both axonal and dendritic elements if their calcium concentration is
greater 0.4 but lower than 0.65 (light gray). The homeostatic range, in which
synaptic element numbers do not change, spans from 0.65 to 0.75. The
diagram helps to match changes in topology with the current level of

(Continued)
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FIGURE 4 | Continued

electrical activity. (C) The normalized average clustering coefficient γ of
neurons in the LPZ (including connections with the entire network)
decreases while neuronal activities are very low (<0.1) and increases
as soon as activities of LPZ neurons are greater than 0.1. The first
bump in clustering is brought about by ingrowing synapses from the
intact zone into the LPZ, whereas the second rise in clustering is
caused predominantly by new synapses within the LPZ, which are
formed when calcium concentrations of LPZ neurons exceed 0.4. The γ

of neurons in the intact zone (considering all their connections to any
neuron in the entire network) decreases continuously after a temporary

rise. (D) Average shortest paths from neurons in the intact zone to
neurons in the LPZ show a steady decrease (green), while average
path lengths from LPZ to intact zone neurons return to initial levels
after a tri-phasic increase and decrease. (E) The clustering coefficient
with no normalization (Equation 10) does not show a decrease for
intact zone neurons as the normalized clustering coefficient γ does. (F)

No differences were found between the characteristic path length and
the normalized characteristic path length λ. Green curve indicates
changes in clustering coefficient of intact zone neurons with the entire
network. Means over five simulations per scenario. Shadings of the
curves in (A,C–F) indicate standard deviations.

the intact zone and the LPZ. For this, we assessed γ and λ for
the set of LPZ and intact zone neurons separately. We can distin-
guish three phases in the time course of both parameters. These
phases arise from the interaction between the loss of connections
from the LPZ and the formation of new connections from the
intact zone. The initial phase lasts for the first 4 weeks after the
lesion and is dominated by a loss of connections from the LPZ.
This is reflected by a decrease in γ , especially of LPZ neurons but
to a lesser extent also of intact zone neurons (Figure 4C). At the
same time, λ of paths from the LPZ to the intact zone increases
(Figure 4D) due to the loss of connections from the LPZ to the
intact zone. Conversely, λ of paths from the intact zone to the LPZ
decreases because new connections are being formed originating
from the intact zone.

During the second phase, roughly between 4 and 8 week, we
see a temporal increase in γ of both the LPZ and the intact zone
neurons (Figure 4C). This increase essentially contributes to the
temporal increase in small-worldness of repairing networks as
shown in Figure 2B. During this phase, the decrease in number
of connections from the LPZ slows down, while new connec-
tions from the intact zone are still being formed. During this
second phase, especially λ for paths from the LPZ to the intact
zone shows a rapid decrease (Figure 4D). This rapid decrease is
brought about by a few new connections that are formed as soon
as LPZ neurons reach calcium levels of 0.4 (Figure 4B). This hap-
pens already slightly before the average number of synapses from
the LPZ to the intact zone increases significantly at about 6 weeks
after lesion.

A third phase can be distinguished from 8 weeks after the
lesion onwards, when LPZ neurons start forming outgoing con-
nections again. Especially the recurrent connections inside the
LPZ (Figure 4A) lead to an increase in γ of LPZ neurons
(Figure 4C), while neurons in the intact zone show a decrease
in γ after the temporary rise. However, γ of the LPZ neurons is
not strictly increasing over time; between 8 and 12 weeks after
the lesion, γ decreases a second time before it finally increases
toward a stable level. We can explain this fluctuation in γ by the
ongoing replacement of connections during this period. Only if
all neurons in the LPZ have reached calcium levels beyond 0.4,
and hence contribute to axonal element and (outgoing) synapse
formation, does the clustering coefficient strictly increase until
rewiring comes to a standstill. During the third phase, λ of paths
from intact zone to LPZ further decreases (Figure 4D). This fur-
ther decrease is brought about by additional connections inside
the LPZ, contributing to network repair and shortening paths to

neurons in the LPZ. The decrease in path lengths to the LPZ also
explains the increasing betweenness centrality of LPZ neurons,
since betweenness centrality by definition is a measure of how
many shortest paths go via certain nodes. As shown in Figure 4D,
λ of paths from the LPZ to the intact zone takes on values of a
randomized network.

Interestingly, the absolute clustering of neurons in the intact
zone shows very little change (Figure 4E), implicating that the
particular course of γ arises from changes in the number of
connections and their clustering in comparison with a random-
ized network. By contrast, the changes in clustering of the LPZ
(Figure 4E) as well as the characteristic path length for both the
LPZ and the intact zone (Figure 4F) show similar courses for the
non-normalized and normalized values. Therefore, we may con-
clude that networks become more random because of the increase
in number of connections, whereas the increase in betweenness
centrality (as a result of decreasing path lengths from the intact
zone to the LPZ) is a consequence of added specific projections
from the intact zone to the LPZ.

3.2. ABERRANT NETWORK REWIRING
Network repair does not in all cases lead to the formation of
synapses from the outside to the inside and a functional reor-
ganization of connectivity. In our previous study (Butz and van
Ooyen, 2013), we identified three different cases of network
rewiring depending on the relative values of the growth param-
eters ηA and ηD. For ηA > ηD, we observed network repair in line
with the exeperimental data (physiological case); for ηA = ηD =
0.1, we observed network repair brought about by massive recur-
rent connections (recurrent case); and for ηD > ηA, we observed
no network repair at all (no-repair case).

The network rewiring occurring in the last two cases are
referred to as aberrant network rewiring. Figure 5 depicts the
most evident differences in the layout of connections after com-
pensatory network rewiring between the physiological and the
recurrent case and shows the no-repair case for the sake of
completeness.

Whereas in the physiological case (Figure 5A) most of the
newly formed synapses from the intact zone terminate in the
LPZ, we do not see this ingrowing of new synapses in the recur-
rent case (Figure 5B) or in the no-repair case (Figure 5C). In the
recurrent case and the no-repair case, new synapses from any-
where in the intact zone predominantly connect to neurons in
the intact zone in the direct vicinity of the LPZ. In the pysi-
ological and the recurrent case, but not in the no-repair case,
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FIGURE 5 | The physiological case (A) is characterized by a pronounced

replacement of synapses, whereas the recurrent case (B) predominantly

adds new synapses and keeps pre-existing ones. The no-repair case (C)

does not form sufficient additional synapses to the LPZ. The figures show the
two-dimensional layout of the network, with excitatory neurons (red dots),
excitatory synaptic connections (red lines), inhibitory neurons (blue dots) and
inhibitory synaptic connections (blue lines). Black dots indicate deafferentated
neurons. The left column shows new synapses originating from anywhere in
the intact zone. Whereas the preferred target of new synapses in the
physiological case is the LPZ, only few new synapses from the intact zone to
the LPZ are formed in the recurrent case. Middle column shows that most of
the new synapses originating from the LPZ terminate in the LPZ in both the

physiological and the recurrent case. Insets in the middle column illustrate
the axonal projection pattern of an individual neuron in the LPZ. In the
physiological case, neurons at the border of the LPZ connect to neurons
more central in the LPZ, whereas in the recurrent case neurons have less
preferrence for particular targets. The right column shows that many
synapses originating from the LPZ are deleted in the physiological case but
not in the recurrent case. All measurements are based on the difference
between the number of synapses present before (T0 = 7950) and after the
lesion (T1 = 20000 updates in connectivity, corresponding to 24 weeks after
lesion), separately for excitatory and inhibitory synapses. Only excitatory
neurons and excitatory to excitatory connections were used in the
topological assessments.

LPZ neurons contribute to network repair by forming additional
synapses. However, there is an important difference between
the physiological and the recurrent case in where LPZ neurons
project to. LPZ neurons in the physiological case form new con-
nections to neurons in the LPZ and preferentially to those in
its center (inset Figure 5A), whereas LPZ neurons in the recur-
rent case also project to neurons in the intact zone and show
less projection preference (inset Figure 5B). A marked differ-
ence between the physiological and the recurrent case is seen in
the loss of synapses originating from the LPZ. Whereas many

synapses are lost in the physiological case, almost no synapses
originating from the LPZ are eliminated in the recurrent case.
Therefore, network repair in the recurrent case is brought about
by addition of new synapses, whereas in the physiological case
network repair goes along with a replacement of synapses. The
no-repair case shows a considerable loss of synapses originating
from the LPZ. Neurons in the LPZ are not able to raise their
activity beyond ηA (Figure 6C) and therefore lose axonal elements
and outgoing synapses as a direct consequence of the growth
rules.
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FIGURE 6 | An increasing randomness of the whole network in

association with an increasing betweenness centrality of LPZ neurons

after deafferentation emerges only in the physiological case. (A)

Whereas the no-repair case (black) shows an increase in small-world
parameter S and the recurrent case (blue) shows little change in S, the

physiological case shows a clear decrease in S (red). (B) The recurrent case
shows the strongest increase in betweenness centrality. (C) The average
calcium concentrations of the LPZ and intact zone return quickest to the
homeostatic range in the recurrent case. Means over five simulations per
scenario. Shadings of the curves indicate standard deviations.

Whereas physiological network repair goes along with increas-
ing randomness of network connectivity, as indicated by a
decrease in small-world parameter S, we do not see a consider-
able change in S in the recurrent case (Figure 6A). Interestingly,
in networks that lack repair after lesions, we even see an increase
in S. The strongest increase in betweenness centrality of neurons
in the LPZ is observed in the recurrent case (Figure 6B) and sets
in much earlier (after about 2 weeks) than in the physiological
case due to a mere addition of synapses rather than a replace-
ment of synapses. Betweenness centrality goes to zero (Figure 6B)
when neurons do not return to the homeostatic range in activ-
ity (Figure 6C). Given that in the recurrent case, neurons in the
LPZ restore their activity most quickly and completely and with
the strongest increase in betweenness centrality, we may conclude
that the increase in betweenness centrality is an indicator for the
success of network repair in terms of restoring neuronal activity.

Local and global efficiency are additional measures quantifying
changes in network topology (Equations 13 and 14). Global effi-
ciency indicates how efficiently information can travel through
the entire network; i.e., global efficiency is the averaged sum of
the inverse of the shortest paths between any two neurons in the
entire network. By contrast, local efficiency of neuron i measures
how efficiently information can be exchanged among neurons
that are connected to neuron i; i.e., local efficiency is the averaged
sum of the inverse of the shortest path between any two neurons
connected to neuron i (excluding neuron i itself). Especially in
sparsely connected networks, efficiency as a topology measure is
preferred over characteristic path length and clustering coefficient
because it can be meaningfully computed also for unconnected
neurons. In the physiological case, we observe a decrease in
local efficiency (Figure 7A) but an increase in global efficiency
(Figure 7C) relative to the efficiencies before the lesion. Both local
and global efficiency go through an initial phase in which they
decrease, reaching a minimum at about 6 weeks after the lesion.
The global efficiency recovers and finally even exceeds its initial
level, whereas the local efficiency recovers little and remains lower
than before the lesion. By contrast, in the recurrent case, both

local and global efficiency increase immediately after the lesion
and exceed by far their initial levels and the levels in the phys-
iological case. A drop in local and global efficiency is observed
when no network repair takes place. The intact zone does not
show a considerable change in either local or global efficiency
(Figures 7B,D). The ratio of local to global efficiency indicates
the relative amount of local clustered and global long-range con-
nectivity. The stronger increase in global than in local efficiency
in the physiological case reflects the increasing ramdomness (cf.
Figure 2B), whereas recurrent networks with a strong increase
in global and local efficiency become even more small-world (cf.
Figure 6A).

The stronger increase in local efficiency in the recurrent case
compared with the physiological case is brought about by the
massive formation of partly recurrent connections originating
from the LPZ. In fact, the number of recurrent synapses in the
LPZ exceeds by far the number of synapses from the intact zone
to the LPZ and from the LPZ to the intact zone (Figure 8A). The
high number of recurrent synapses leads to a strong increase in
clustering coefficient (Figure 8B). The clustering coefficient of
the LPZ after rewiring even exceeds that of the intact zone; the
latter does not change notably after the lesion. Remarkably, the
average shortest paths from the intact zone to the LPZ and those
from the LPZ to the intact zone strongly decrease simultaneously
(Figure 8C).

3.3. CHANGES IN DEGREE DISTRIBUTION RESULTING FROM
NETWORK REWIRING

The different types of network rewiring have a direct impact not
only on global network topology but also on the local degree dis-
tributions of neurons. Before the lesion, neurons of the intact
zone and the LPZ have the same in- and out-degree distribution,
in the physiological case (Figures 9A,B) as well as in the recurrent
case (Figures 10A,B). The distributions in the physiological case
are slightly more tailed than in the recurrent case. After the lesion
in the physiological case, the center of the in-degree distribu-
tion of the LPZ neurons shifts to the right (Figure 9C), indicating
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FIGURE 7 | Local and global efficiencies of LPZ neurons, but not of intact

zone neurons, change as a consequence of network rewiring. (A) The local
efficiency of neurons in the LPZ increases strongest after deafferentation in the
recurrent case. In the physiological case, local efficiency of LPZ neurons first
decreases and later increases but remains lower than its initial value. If

networks do not recover, local efficiency decreases and remains low. (C) Global
efficiency increases in the physiological case (after a transient decrease) and in
the recurrent case (without a transient decrease). The no-repair case shows a
decrease in global efficiency. No changes were observed in either local (B) or
global efficiency of neurons in the intact zone (D).

FIGURE 8 | The growth rules in the recurrent case, whereby axonal and

dendritic elements can already form at low neuronal activity, have a

considerable impact on network topology after the lesion. (A) A strong
increase in synapse numbers within the LPZ (black) is seen after the lesion.
(B) The surplus of recurrent synapses in the LPZ gives rise to an increasing
clustering coefficient of LPZ neurons (red) that even exceeds the clustering

of the intact zone (green). In computing the average clustering coefficients
over the excitatory neurons of the intact zone and the LPZ, we considered all
excitatory connections from the entire network. (C) Average path lengths
from neurons in the intact zone to neurons in the LPZ (green) and vice versa
(red) show a steady decrease after deafferentation. Means over five
simulations per scenario. Shadings of the curves indicate standard deviations.
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FIGURE 9 | Degree distributions of intact zone (green) and LPZ neurons

(red) before and after the lesion in the physiological case. In the bar
charts, the larger amount is always placed in the background and the minor
amount in the foreground. Before the lesion, the in-degree (A) and

out-degree distributions (B) are not tailed. After the lesion, the distributions
of in-degree (C) and out-degree (D) become more tailed. The diagram shows
data from one simulation at T = 7950 and T = 20000 updates in
connectivity, the latter corresponding to 24 weeks after lesion.

the presence of neurons with high in-degrees. The centers of the
out-degree distributions of LPZ and intact zone neurons do not
change, but the distributions as a whole become more fat-tailed
(Figure 9D). Thus, compensatory network rewiring generates
more hub-like neurons in the LPZ, but the majority of neurons
in the LPZ and the intact zone maintains its out-degree. In the
recurrent case, LPZ neurons shift the centers of their in- and out-
degree distributions completely to the right (Figure 10), but the
distributions do not become more fat-tailed. The in- and out-
degree distributions become markedly different from the ones
before the lesion and from the degree distributions of the intact
zone neurons. We may conclude that due to the massive recur-
rent connections, the LPZ neurons separate from the intact zone
in terms of degree distribution.

3.4. IMPACT OF INITIAL TOPOLOGY ON NETWORK REPAIR
Network repair is not dependent on a particular initial net-
work topology. The networks considered so far have a high
clustering and a low characteristic path length before the lesion
(small-world networks). However, even random networks with
low initial clustering and characteristic path length fully restore
their average electrical activity (in terms of calcium concentra-
tion) back to the homeostatic range, regardless of whether growth
rules of the physiological case (Figure 11A) or the recurrent
case (Figure 11D) are used. In random networks, the activity of
the LPZ does not decrease so strongly as in clustered networks,

because vacant axonal elements are available from anywhere in
the network and network repair is immediately effective. The
fastest restoration of electrical activity is seen for the recurrent
case with random networks (Figure 11D). In addition to the
availability of axonal elements from anywhere in the network, in
the recurrent case neurons with low activity also provide their
own vacant axonal elements, contributing to fast network repair.

Irrespective of growth rules and initial network topology,
restoration of firing rates is accompanied by an increase in
betweenness centrality (Figures 11B,E). For the physiological and
the recurrent case, betweenness centrality reaches higher abso-
lute values in small-world networks than in random networks.
However, the greatest increase in betweenness centrality is seen
for the recurrent case with random networks. Interestingly, for
all scenarios studied (Figures 11A,D), the strongest increase in
betweenness centrality is associated with the fastest restoration of
electrical activity. We conclude that the increase in betweenness
centrality is a generic effect of compensatory network rewiring
because it is independent of initial connectivity and strongly cor-
relates with effectiveness of network repair, in terms of speed and
completeness of restoring electrical activity. Moreover, the phys-
iological case with small-world networks is the only scenario in
which topology becomes more random (Figure 11C). In all other
scenarios (Figures 11C,F), we see only little change and initially
random networks become only slightly more structured (small
increase in S) after the lesion.
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FIGURE 10 | Degree distributions of intact zone (green) and LPZ neurons

(red) before and after the lesion in the recurrent case. In the bar charts,
the larger amount is always placed in the background and the minor amount
in the foreground. Before the lesion, the in-degree (A) and out-degree
distributions (B) are not tailed. After the lesion, the shapes of in-degree (C)

and out-degree (D) distributions do not change markedly, but the centers of
the in- and out-degree distributions of the LPZ neurons are shifted to the
right. The diagram shows data from one simulation at T = 7950 and
T = 20000 updates in connectivity, the latter corresponding to 24 weeks
after lesion.

4. DISCUSSION
We postulated that network repair after focal deafferentation
is brought about by a local neuronal mechanism that aims to
maintain homeostasis of neuronal electrical activity by adapting
the neuron’s number of input and output connections (home-
ostatic structural plasticity). In the model in which we studied
the implications of this mechanism for network topology after
deafferentation, we found that local changes in number of synap-
tic connections, as governed by homeostastic structural plasticity,
led to pronounced alterations in global network topology, espe-
cially in the connectivity between intact and deafferentated areas.
While local connections in the LPZ were massively eliminated,
new connections from the intact zone grew into the LPZ, helping
deafferentated neurons to restore their level of activity (see also
Butz and van Ooyen, 2013). This replacement of short- by long-
range connections lowered the clustering coefficient and reduced
the characteristic path length, making the network more random
than before the lesion. At the same time, neurons in the LPZ
enhanced their betweenness centrality. Furthermore, LPZ neu-
rons increased their global but decreased their local efficiency and
got longer tailed degree distributions, indicating the emergence of
hub neurons.

So far, only very few models have addressed dynamic changes
in network topology after brain lesions. Li et al. (2013) described
changes in topology merely phenomenologically and did not

include any neuronal mechanism such as the formation and
deletion of synapses. Others have applied neural mass models
with various rules of plasticity and assessed by graph theoreti-
cal methods the changes in inter-area connectivity in response to
lesions and degeneration (Rubinov et al., 2009; Stam et al., 2010;
de Haan et al., 2012). In contrast with these more abstract mod-
els, our neuronal network model is more detailed and strongly
inspired by the notion that neurons after a permanent loss of
input, e.g., after focal retinal lesions, aim to restore their firing
rates homeostatically by morphological adaptations such as the
replacement of dendritic spines and axonal boutons. Therefore,
we can derive predictions on how morphological alterations in
individual neurons rewire intra-area connectivity in response to
lesions or lasting loss of input. Insight into intra-cortical topology
changes after loss of input is particularly important because local
topographic features influence restoration of vision in humans
(Sabel et al., 2011, 2013; Gall et al., 2013).

As yet, there are no experimental studies on dynamic changes
in intra-area or inter-area network topology after focal retinal
lesions, the experimental paradigm our model is most closely
linked to (cf. Butz and van Ooyen, 2013). However, massive
rewiring of synaptic connections not only occurs after focal reti-
nal lesions in the visual cortex (Keck et al., 2008; Yamahachi et al.,
2009; Marik et al., 2014) but also accompanies functional recovery
after focal or subcortical stroke (Carmichael, 2003, 2006; Cramer,
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FIGURE 11 | The strong increase in betweenness centrality of LPZ

neurons during network repair in the physiological case (A–C) and

the recurrent case (D–F) is also obtained if the initial network

topology is random. (A) In the physiological case, random networks
(black) restore activity levels after the lesion in a comparable manner to
small-world networks (blue), but because levels do not drop as far as in
small-world networks, random networks restore activity earlier than
small-world networks. (B) The increase in betweennes centrality is
obtained for random as well as small-world network topologies. (C)

Random networks become slightly more structured after the lesion, as

indicated by a small increase in small-world parameter S. (D) In the
recurrent case, random networks restore activity levels after the lesion in
a comparable manner to small-world networks, but because levels do not
drop as far as in small-world networks, random networks restore activity
earlier than small-world networks. (E) Betweenness centrality markedly
increases in random networks, but to lower values than in small-world
networks. (F) A small increase in small-world parameter S is also seen
in the recurrent case with initial random topology. Means over five
simulations per scenario. Shadings of the curves indicate standard
deviations.

2008). The findings from our model provide useful predictions
also for focal or subcortical stroke, because the way a subcortical
stroke affects cortical motor networks is essentially a depriva-
tion of inputs from the lesioned subcortical to the intact cortical
motor areas. Indeed, brain regions deafferentated by stroke show
a restoration of electrical activity to normal levels in chronic
patients, as measured by fMRI, that go along with persistent
changes in inter-area topology (Sharma et al., 2009). We hypoth-
esize that the, as yet not investigated, lesion-induced topology
changes in intra-area connectivity may follow the same underly-
ing rules as the observed changes in inter-area connectivity after
focal stroke (Wang et al., 2010).

Lesion-induced structural plasticity does not always lead to
restoration of impaired functions, and miss-wiring of brain cir-
cuits after lesions may even give rise to post-traumatic epilepsy
(Topolnik et al., 2003). An additional interesting outcome of
our model is that homeostatic structural plasticity can over-
compensate a loss of input, resulting in pronounced oscillatory

network activity that may account for the emergence of post-
traumatic epilepsy (Butz and van Ooyen, 2013).

4.1. FROM MICRO- TO MACRO-SCOPIC
Remarkably, network reorganization in the model shows striking
similarities with intracortical network reorganization on a meso-
scopic scale [e.g., a retinotopic remapping with filling of the LPZ
from the outside to the inside (Butz and van Ooyen, 2013); meso-
scopic defined as in Liljenstroem, 2001] and may also account for
macroscopic network changes after, for example, focal, subcorti-
cal stroke. An impairment of motor function of the hand after
subcortical stroke coincides with a loss in effective connectivity of
inter-area cortical motor networks, especially between pre-motor
and primary motor cortices in the hemisphere ipsilateral to the
stroke site (Grefkes et al., 2008). Conversely, restoration of electri-
cal activity and functional recovery are associated with increasing
effective connectivity from prefrontal to motor cortices (Sharma
et al., 2009). The functional effects are thought to arise from a loss
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of local connections within the motor network and the formation
of additional long-range excitatory connections from prefrontal
to motor areas (Sharma et al., 2009). In our model, we also
observe the local removal of connections from the deafferentated
neurons in the LPZ and an ingrowth of more long-range connec-
tions from the intact zone into the LPZ. Note that in the model as
well as in the brain, the loss of local connections is not a mere
consequence of degeneration caused by the primary lesion but
a secondary effect due to network reorganization (Rehme et al.,
2011).

In stroke patients, even brain regions remote from the lesion
site change their topology (Carmichael, 2006). However, not the
entire brain changes its topology but only those regions directly
connected to the primary lesion site (Carmichael et al., 2001;
Dancause et al., 2005; Rehme and Grefkes, 2013). Provided that
connected brain regions become deafferentated by the primary
lesion site, homeostatic structural plasticity, as revealed by our
modeling study, may account for the observed changes in macro-
scopic topology after a lesion, i.e., an increased randomness of
network connectivity and an increased or decreased betweenness
centrality of particular regions (Wang et al., 2010; Shi et al., 2013).
Wang et al. (2010) reported an increase in betweenness central-
ity of brain regions that became deafferentated by a subcortical
stroke, namely the ipsilesional primary motor area and the con-
tralesional cerebellum. Note that the predominant cortico-ponto-
cerebellar fiber tract crosses in the brainstem to the contralateral
side, and a subcortical lesion will therefore deafferentiate the
contralesional cerebellum. By contrast, the contralesional pri-
mary motor cortex and the ipsilesional cerebellum decreased their
betweenness centrality. The latter two regions are not directly
affected by deafferentation but are still involved in reorganization,
since especially contralateral areas seem to support their homo-
topic regions by compensatory sprouting during stroke recovery
(Carter et al., 2010). An increase in betweenness centrality of deaf-
ferentated brain regions and a decrease in betweenness centrality
of brain regions supporting recovery perfectly match with our
model findings, so we hypothesize that the observed topological
changes in the brain of stroke patients may be accounted for by
homeostatic structural plasticity. Furthermore, in the model, the
increase in betweenness centrality has proven to be the strongest
indicator of network repair under different conditions. Therefore,
increasing betweenness centrality could be a biomarker for brain
repair after lesions such as stroke. In future work, we intend
to implement homeostatic structural plasticity in a large-scale
model of micro- and macroscopic connectivity containing mul-
tiple brain regions (Potjans and Diesmann, 2014).

4.2. TIME COURSE OF NETWORK REPAIR
The time course of changes in topology in our self-repairing net-
work model shows remarkable similarities with the time course of
topology changes during brain repair, especially in patients with
subcortical stroke. Subcortical stroke involves, apart from dam-
age to a circumscribed volume of brain tissue, a loss of input
to other brain regions, particularly those of the motor network.
The model predicts a pronounced increase in small-worldness
of the entire network during the initial phase of compensatory
network rewiring, before the network in the end becomes more

random. Indeed, brain networks after subcortical stroke increase
their small-world property in the subacute phase (about 1 week
post-infarct) (van Meer et al., 2012) and thereafter become con-
tinuously more random. As in our model, the change in small-
worldness of brain networks is brought about by a marked change
in clustering.

From our model we further predict that right after the lesion,
local as well as global efficiency drops markedly as a result of loss
of connections. The decrease in efficiency is in agreement with
changes in network topology observed after stroke (Honey and
Sporns, 2008; Alstott et al., 2009). In the model, local efficiency
remains always lower than before the lesion, but global efficiency
increases markedly and reaches values higher than before the
lesion. Strikingly, even in well-recovered stroke patients, brain
networks are found with low local but high global connectivity
(Rehme and Grefkes, 2013). However, brain network topology
with low local and high global efficiency may contribute to less
stable performance of sensorymotor skills (Rehme and Grefkes,
2013).

Interestingly, in the model we observe only small changes
in topology within the first 4 weeks. Network repair in stroke
patients is also not immediate. From monkey studies it is well
known that it takes about 7–14 days after stroke until axonal
sprouting occurs, and new connections are visible not before 28
days (Carmichael, 2003), with lesion-induced network rewiring
continuing for at least 3–6 months (Carmichael, 2006; Cramer,
2008). The time course of axonal sprouting in the experiment is
comparable to the time course of axonal element formation in our
model and also matches the physiological time course of struc-
tural plasticity in mice (Keck et al., 2008; Butz and van Ooyen,
2013). The model illustrates that network repair after deafferenta-
tion and stroke can be brought about by local, homeostatic
growth rules.

The time course of network repair is determined by the rela-
tion between the growth curve parameters ηA and ηD. If axonal
elements require more activity to form than dendritic elements
(i.e., ηA > ηD), networks will show a compensatory growth of
connections from the intact zone into the LPZ. However, if axonal
and dendritic elements grow at the same low level of activity,
deafferentated neurons will literally pull them selves by their own
bootstraps by forming massive recurrent connections to restore
activity to the homeostatic set-point (Butz and van Ooyen, 2013).
By contrast, the course of reorganization is not crucially depen-
dent on the particular choice of parameters for neuronal electrical
activity (Figure S1), as long as the network is able to reach a home-
ostatic equilibrium before the external input is removed. Other
parameters, such as the width of the kernel σ = 150 µm, have
been chosen in agreement with experimental findings (De Paola
et al., 2006). Likewise, the decay time of intracellular calcium
was chosen to be of the same order of magnitude as measured
experimentally (Hofer et al., 2011).

4.3. HOMEOSTATIC STRUCTURAL PLASTICITY vs. SYNAPTIC SCALING
The notion that neurons strive to restore their level of electrical
activity after loss of input is now widely accepted (Hengen et al.,
2013; Keck et al., 2013). Even in stroke, the need of neurons to
restore electrical activity to a homeostatic set-point may be an
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underlying principle of recovery (Avramescu et al., 2009). Today,
the predominantly discussed mechanism for maintaining home-
ostasis in electrical activity is synaptic scaling (Turrigiano and
Nelson, 1998). However, synaptic scaling restores activity within
48 h, yet network reorganization continues massively for several
months. Therefore, synaptic scaling cannot be the only mech-
anism involved in network reorganization after deafferentation
and stroke. Moreover, Hengen et al. (2013) showed that firing
rates in V1 after focal retinal lesions restore within the first 48 h
but drop again thereafter before they slowly rise again. This find-
ing is in line with previous reports on the extended time course
of network repair (up to 12 months) after focal retinal lesions and
the restoration of electrical activity from the outside to the inside
of the LPZ (Giannikopoulos and Eysel, 2006). In the first 48 h
after the lesion, homeostatic synaptic scaling may upregulate fir-
ing rates (Keck et al., 2013), but the continuing structural changes
in connectivity beyond 48 h may alter activity levels and may
bring neurons again outside their homeostatic range of activity.
Rewiring connectivity may provide a straightforward explanation
for the experimental observation that activity levels drop again
after 48 h (Hengen et al., 2013) and slowly recover over several
weeks (Giannikopoulos and Eysel, 2006; Hu et al., 2009, 2010).
In the model, the removal of connections is accounted for by
the minimal levels of activity needed for maintainance and for-
mation of axonal and dendritic synaptic elements (ηA and ηD,
respectively); required minimal levels of activity have not been
discussed in recent concepts of homeostatic plasticity (but see
van Ooyen et al., 1996). In our model as well as in visual cor-
tex after focal retinal lesions, activity slowly recovers over periods
of weeks and months (Giannikopoulos and Eysel, 2006; Butz and
van Ooyen, 2013). We hypothesize that the increase in firing rates
is due to the ingrowth of long-range connections from intact
regions, which may be guided by homeostatic structural plastic-
ity. Therefore, we postulate that homeostatic plasticity is more
than just synaptic scaling and needs to be extended to encompass
structural plasticity, including the reorganization of synaptic con-
nections. With the present model, we have provided growth rules
that can govern homeostatic structural plasticity and that can lead
to physiologically realistic network reorganization on a micro-
scopic, mesoscopic (Butz and van Ooyen, 2013), and macroscopic
level.

4.4. A POTENTIAL ROLE OF HOMEOSTATIC PLASTICITY IN
EPILEPTOGENESIS

Partial deafferentation, as caused by focal stroke for example,
can lead to epileptiform activity and seizures (Topolnik et al.,
2003; Avramescu and Timofeev, 2008). It has been discussed that
homeostatic synaptic plasticity may contribute to post-traumatic
epileptogenesis in chronically isolated cortex (Houweling et al.,
2005). Synaptic scaling (Turrigiano and Nelson, 1998), a well-
studied mechanism for homeostatic synaptic plasticity, is known
to generate epileptiform activity (Froehlich et al., 2008). However,
synaptic plasticity does not include the rewiring of networks
and acts on timescales of hours rather than weeks or months.
Although a previous modeling study (Houweling et al., 2005)
has suggested that anatomical network rewiring is not required
for epileptiform activity to occur, we argue that without network

rewiring an important aspect of lesion-induced plasticity is left
out. For example, models without structural plasticity cannot
account for the clinical observation that although spontaneous
seizures are most frequent within months after the lesion, they
can occur up to 5 years post-lesion (Temkin, 2001). Therefore,
we propose that synaptic scaling may account for spontaneous
seizures early after the lesion but that for the pathogenesis of post-
traumatic epilepsy months after the lesion, homeostatic structural
plasticity may be a more suitable explanation (see also van Oss
and van Ooyen, 1997).

In the model, a change in the value of just a single parameter,
namely the level of activity needed for axonal elements to form
(ηA), leads to massive recurrent connections, which, as we showed
in a previous study (Butz and van Ooyen, 2013), can generate
strongly synchronized activity patterns comparable to epilepti-
form activity. In an in vitro injury model of epilepsy, Srinivas
et al. (2007) showed that epileptogenesis goes along with a marked
increase in connectivity [also supported by findings on recurrent
mossy fiber sprouting in an organotypic cell culture model of hip-
pocampal epilepsy (Kharatishvili et al., 2007)] and that the shape
of the degree distribution of the neurons changes from power-
law to Gaussian. Interestingly, in the recurrent case of our model,
which generates epileptiform activity after network reorganiza-
tion, the degree distribution of LPZ neurons is much less tailed
than in the physiological case after network repair. Therefore, we
hypothesize that the way brain networks rewire after lesions deter-
mines whether or not patients develop post-traumatic epilepsy.
This notion is further supported by the finding that the shape of
the lesion can affect epileptogenesis (Volman et al., 2011), since it
is more likely that the shape of the lesion can influence epileptoge-
nesis with growth of new connections than with synaptic scaling.
Importantly, our model predicts that the sensitivity of axonal out-
growth to low levels of activity might be decisive for whether
recurrent connections with epileptiform activity, or physiological
network repair with normal activity patterns, emerge after brain
lesions. This insight may help find novel molecular targets for
pharmacological treatments to prevent post-traumatic epilepsy,
which are urgently needed as post-traumatic epilepsy is often
impervious to medical treatment (Herman, 2002; van Breemen
et al., 2007).

4.5. HOMEOSTATIC STRUCTURAL PLASTICITY AS AN ORGANIZING
PRINCIPLE FOR BRAIN REPAIR

Homeostatic structural plasticity is a new concept for network
reorganization, with large implications for understanding and
stimulating brain repair after lesions. Models of homeostatic
structural plasticity can help integrate recent clinical findings on
changing brain topology after a variety of pathologies, including
stroke, Alzheimer’s disease and multiple sclerosis. These models
can assist us in uncovering the mechanisms underlying func-
tional reorganization and in finding biomarkers for successful
brain repair, such as an increased betweenness centrality of brain
regions deprived of input from primary lesion sites. Most impor-
tantly, however, homeostatic structural plasticity puts functional
reorganization of brain networks into a different light. The pre-
dominant dogma of plasticity is still Hebbian plasticity, with its
“fire together, wire together” slogan (Hebb, 1949). With Hebbian
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plasticity, enforcing (synchronous) activity strengthens synapses.
By contrast, the homeostatic nature of structural plasticity implies
the need for a moderate level of activity, because the formation
of axonal and dendritic structures is maximal for activity levels
slightly below a desired set-point of electrical activity. We pos-
tulate that the brain has the highest plasticity for recovery when
neurons and brain regions, especially those supporting deaf-
ferentated regions in the recovery process, have not yet returned
to their homeostatic equilibrium. We might call this initial phase
a critical period for brain repair, in analogy to critical periods in
neural development. During network development, too, neurons
shape their connectivity until desired activity levels are reached
(Tetzlaff et al., 2010). As a consequence, in neurorehabilitation
treatment, not only stimulation by physical training or direct elec-
trical stimulation but also pauses in treatment may be important.
Stimulation may increase electrical activity beyond the homeo-
static set-point, inducing pruning of existing synaptic connec-
tions, whereas treatment pauses may lower activity and bring
activity levels into an optimal range for the formation of new
connections (Butz et al., 2009a). Moreover, network reorganiza-
tion does not always need to be functional; as our model suggests,
post-traumatic epilepsy could be the result of miss-wiring or
over-compensation. Treatments must therefore focus more on the
time course and current state of network repair. Lastly, large-
scale computer models, such as those developed in the context
of the human brain project (www.humanbrainproject.eu) will,
once structural plasticity has been incorporated, be valuable tools
in finding and testing treatment strategies for patients with brain
damage.
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