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The neuroanatomical connectivity of cortical circuits is believed to follow certain
rules, the exact origins of which are still poorly understood. In particular, numerous
nonrandom features, such as common neighbor clustering, overrepresentation of
reciprocal connectivity, and overrepresentation of certain triadic graph motifs have been
experimentally observed in cortical slice data. Some of these data, particularly regarding
bidirectional connectivity are seemingly contradictory, and the reasons for this are unclear.
Here we present a simple static geometric network model with distance-dependent
connectivity on a realistic scale that naturally gives rise to certain elements of these
observed behaviors, and may provide plausible explanations for some of the conflicting
findings. Specifically, investigation of the model shows that experimentally measured
nonrandom effects, especially bidirectional connectivity, may depend sensitively on
experimental parameters such as slice thickness and sampling area, suggesting potential
explanations for the seemingly conflicting experimental results.
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1. INTRODUCTION
Synaptic connectivity forms the anatomical substrate which gives
rise to our cognitive abilities. It has been shown that much of
the lateral recurrent connectivity of the cortex is significantly
nonrandom. That is to say that the statistics of local connec-
tivity do not follow that of a directed Erdős-Rényi graph, i.e.,
a graph in which all possible connections exist with equal and
independent probability (Erdős and Rényi, 1960). For exam-
ple, Holmgren et al. (2003), Song et al. (2005), and Ko et al.
(2011) note the presence of greater than expected bidirectional
connectivity, a feature that has been suggested as a key require-
ment for the sort of large-scale recurrent excitation that is seen
and computation that is believed to take place in the neocor-
tex (Douglas et al., 1995). Lefort et al. (2009), on the other
hand, notes no excess of bidirectional connectivity. Song et al.
(2005) additionally notes greater than expected counts of certain
triangular or triadic network motifs (three-neuron connectivity
patterns) (Milo et al., 2002). Yoshimura et al. (2005) exam-
ines specific microstructure, including bidirectional connections,
within cortical columns. Perin et al. (2011) notes greater than
expected common neighbor clustering, a phenomenon in which
pairs of neurons sharing a greater number of common neigh-
bors are more likely to be connected themselves, while Perin et al.
(2013) further examines the structural implications of this above-
chance common neighbor clustering. Morgan and Soltesz (2008),
Litwin-Kumar and Doiron (2012), and McDonnell and Ward
(2014) highlight some of the functional implications of cluster-
ing in balanced cortex-like networks. Rubinov and Sporns (2010)
provides an overview of graph measures that might be applied to
brain networks.The abundance of nonrandom features suggests
that there may be some computational or metabolic advantage to

the particular connectivity structure of the cortex. It is an open
question which nonrandom features are developed as a result of
direct genetic programming, neural plasticity under structured
input, and spontaneous self-organization (Prill et al., 2005).

The connectome, which we take here to refer to the micro-
scale, or neuron-and-synapse connectivity of the brain Sporns
et al. (2005) is a detailed and difficult thing to study. Numerous
methods exist for its study, including (but not limited to) increas-
ingly detailed histological techniques (Kleinfeld et al., 2011, for
example) and, more commonly, as they allow access to synap-
tic strengths and dynamics in addition to structure, electro-
physiological recordings. We focus here on the most common
implementation of the latter, involving the preparation of and
recording from in vitro slices of cortical tissue. Though it pro-
vides more information about individual connections, the overall
picture provided by electrophysiological techniques is affected
by sampling biases and constraints (Seung, 2009). Traditionally,
the primary concern regarding such biases and constraints has
been accurate reconstruction of very small sections of circuitry.
However, as techniques improve and the available sections get
larger and more densely sampled, and in particular as statisti-
cal network measures are utilized more and more, it becomes
important to study the effect of these biases and constraints on
the network measures as well.

We examine here a simple model for horizontal connectivity
in the cortex under intersomatic distance-dependent connec-
tion constraints. This simple distance-dependence results in the
formation of several nonrandom features including, but not
limited to, common neighbor clustering, excess reciprocal or
bidirectional connectivity, and an overrepresentation of certain
triadic motifs. We perform virtual slicing and sampling on this
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model, similar to what would be done in a physiological exper-
iment, and examine how the results depend on slice thickness
and the size of the sampling area from which cells are probed.
We find, encouragingly, that such complex nonrandom features
can be seeded (if not fully instantiated to the degree at which they
are experimentally observed) by such simple distance-dependent
phenomenon. We also find, more troublingly, that the observed
representation of some of these features depends strongly on
interactions of scale between the connectivity profiles, the cor-
tical structures, and the slicing and sampling thereof. We discuss
in this paper the implications of these phenomena and conclude
that in order to correctly interpret data on cortical connectiv-
ity and its nonrandom features, close attention has to be paid
to the exact experimental parameters such as slice thickness and
sampling area.

2. MATERIALS AND METHODS
Our model is designed to represent a virtual slab of cortical
layer V in rodents. The slab’s dimensions are 1000 × 1000 µm,
with a thickness of 300 µm (the lattermost dimension describing
the approximate thickness of layer V of the rodent cortical sheet
(Schüz and Palm, 1989) (see Figure 1). We assume a cortical neu-
ronal density of at least 20000 excitatory neurons per cubic mm,
resulting in a total population of 6000 neurons, which are pop-
ulated into the volume in a random, uniform fashion. This is a
slight reduction in neuronal density from biological values, but
is sufficient to demonstrate the phenomena we wish to explore
and is necessary for rapid computational tractability. Though is
is known that horizontal cortical axonal projections can reach
lengths of several millimeters (Hirsch and Gilbert, 1991), we
choose to focus on local, sub-millimeter connectivity, as this is
the scale of the microstructure typically being examined in net-
work measure studies of cortical wiring. Various connectivity
models, ranging in complexity from simple piecewise dense and
sparse connectivity radii (Voges et al., 2010a,b) to detailed recon-
structions based on axonal and dendritic structure (Stepanyants
et al., 2008; Kleinfeld et al., 2011), have been produced from
experimental data. We select a continuous radial function for
distance-dependent connectivity as solution between these two
extremes. Our profile is a Gaussian with a half-width of 200 µm.
This particular profile is chosen as a middle ground between the
results of Song et al. (2005), who find no distance dependence
up to a scale of 80–100 µm, and the results of Holmgren et al.
(2003) and Perin et al. (2011), who find exponential distance
dependence at a scale of 150–300 µm. The Gaussian compromise
coarsely approximates both the flat top of the former result and
the decay of the latter.

To produce the model graph, first, a 6000 × 6000 element
distance matrix is constructed, with each element representing
the euclidian distance between each pair of neurons. The bound-
ary conditions are non-periodic, corresponding to slice boundary
truncation. The connectivity profile function is then applied to
each element, producing an unnormalized probability matrix,
with each entry representing the pairwise connection probabil-
ity. Self-connection probabilities are set to zero. The matrix is
flattened into a vector and then the cumulative sum of the vec-
tor is taken and normalized, producing a cumulative distribution

function (CDF). A look up table map is generated mapping each
interval in the CDF to a particular pair of neurons.

The network is treated as a directed graph. A global connec-
tion fraction FC is chosen upon model initialization, and the
model is populated by generating random numbers in the inter-
val [0, 1] against the CDF and instantiating the edge mapped to
the CDF interval in which each random number falls (reject-
ing already-instantiated edges) until the total number of edges
reaches Nedges = FC × (N2

nodes − Nnodes).
Two sequential reduction procedures are then performed on

the graph in order to simulate experimental sampling of the net-
work. The first procedure simulates slicing. The virtual volume
of the network is truncated along the X axis in Figure 1 to corre-
spond to the dimensions of a typical slice (50–500 µm, depending
on the experiment). Edges and nodes that fall outside the trunca-
tion region are eliminated from the graph. The second procedure
roughly simulates probing and sampling. In this procedure, a
subset of nodes Nsample are randomly selected from a centered
cylindrical volume within the slice of radius rsample (50–300 µm,
depending on the experiment), and a subgraph is constructed
from these nodes and their respective edges. This subgraph is then
taken to be equivalent to an electrophysiologically obtained sam-
ple. An example geometry of this virtual slicing and sampling is
shown in Figure 1).

For any selected network, be it complete, a virtual slice, or a
virtual sample, we compare properties against ensembles of two
types of control graphs. The first control is a comparison against

FIGURE 1 | An example of simulated slicing and sampling geometry,

using a 300 µm slice and a 50 µm radius sampling area.
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a purely random graph. It is a directed Erdős-Rényi graph (Erdős
and Rényi, 1960) parametrized by the same number of nodes and
number of edges as the selected network.

The second control is a graph that naturally and randomly
attains the amount of overrepresented bidirectional connections
induced by the distance dependent connectivity, but contains no
higher order effects. It is essentially a modified directed Erdős-
Rényi-like graph parametrized by the number of nodes and the
two independent probabilities of unidirectional connections and
reciprocal or bidirectional connections. More explicitly, from the
model graph, the fraction of node pairs that are unidirectionally
connected and the fraction of node pairs that are bidirectionally
connected is calculated. A new graph is then randomly populated
with the same fractions of unidirectionally connected and
bidirectionally connected edge pairs in an Erdős-Rényi-like
fashion. This controls against an overrepresentation of motifs
driven solely by excess bidirectional connectivity while preserving
overrepresentation of motifs driven by higher order or more
subtle forms of clustering.

The Python package NetworkX (Hagberg et al., 2008) and a
publicly available software script that counts triadic motifs in a
directed graph (Levenson and van Liere, 2011) are used to assist
in the construction and analysis of graphs.

We will make comparisons between different sample and slice
sizes based on overall connection fraction, bidirectional con-
nection fraction, triadic motif count, and common neighbor
clustering. We will demonstrate that sampling scale has a notable
effect on how such properties are observed.

3. RESULTS
We select a global target connection fraction of 0.025 for the
1000 × 1000 × 300 µm layer V slab, as this produces a local
connection fraction of 0.1 for a medium-sized slice and sam-
ple, as observed in numerous layer V slice studies (Thomson and
Deuchars, 1997; Thomson et al., 2002). We select three slice thick-
nesses (in addition to the complete network) and three sampling
radii with 100 neuron subsamples (except in the case of small
sections, in which case the maximum number of neurons in the
section is sampled). We will examine the complete network and

complete slice statistics, as well as the sample statistics for each
condition, and note how they vary. Unless otherwise specified, we
average over five network samples.

The global connection fraction and bidirectional connection
fraction for each condition is given in Tables 1, 2. We note
that in general, for a given slice size, the overall connection
fraction decreases with increasing sampling radius. This is an
obvious result of local clustering due to the distance-dependent
connection probability. Similarly, we note that as sampling
radius increases, the number of bidirectional connections over
chance (as compared to an Erdős-Rényi graph) increases. This
is also a result of local clustering due to the distance-dependent
connection probability.

We examine the common neighbor behavior in Figures 3–6.
The common neighbor effect is measured as follows. Pairs of
neurons sharing each possible number of commonly connected
neighbors (up to some maximum value) are counted, ignoring
directionality (see Figure 2). For each number of commonly
connected neighbors, the number of connected neuron pairs

FIGURE 2 | Common neighbor clustering illustrated. Tested nodes are
red; common neighbors are blue.

Table 1 | Overall connection fraction (standard error).

Slice size 50 µm radius sample 150 µm radius sample 250 µm radius sample Complete section

Complete network 0.1343 (0.0063) 0.1066 (0.0014) 0.0749 (0.0030) 0.0250 (0.0000)

500 µm slice 0.1343 (0.0063) 0.1057 (0.0024) 0.0720 (0.0012) 0.0401 (0.0001)

300 µm slice 0.1343 (0.0063) 0.1060 (0.0021) 0.0827 (0.0034) 0.0495 (0.0001)

100 µm slice 0.1343 (0.0063) 0.1151 (0.0016) 0.0936 (0.0025) 0.0566 (0.0007)

Table 2 | Bidirectional connection fraction (standard error) [fraction of chance – Erdős-Rényi control].

Slice size 50 µm radius sample 150 µm radius sample 250 µm radius sample Complete section

Complete network 0.0195 (0.0042) [1.0828] 0.0124 (0.0012) [1.0962] 0.0066 (0.0014) [1.1832] 0.0020 (0.0000) [3.1705]

500 µm slice 0.0195 (0.0042) [1.0828] 0.0126 (0.0013) [1.1228] 0.0065 (0.0006) [1.2561] 0.0034 (0.0000) [2.1140]

300 µm slice 0.0195 (0.0042) [1.0828] 0.0115 (0.0010) [1.0253] 0.0084 (0.0013) [1.2185] 0.0046 (0.0001) [1.8877]

100 µm slice 0.0195 (0.0042) [1.0828] 0.0143 (0.0014) [1.0841] 0.0101 (0.0017) [1.1517] 0.0060 (0.0001) [1.8915]
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is divided by the total number of neuron pairs, resulting in a
connection probability conditioned on the number of common
neighbors. The the steeper the slope of this measure as a function
of number of common neighbors is, the stronger the effect
(Perin et al., 2011). For an Erdős-Rényi graph, this common
neighbor effect measure will have, on average, a slope of zero and
a value equal to the overall connection probability (up until the
maximum number of neighbors). Common neighbor clustering
should not be confused with more traditional clustering measures
(Watts and Strogatz, 1998; Fagiolo, 2007). Common neighbor
effect is taken here as an undirected measure for two reasons:
alignment with the convention of Perin et al. (2011), and because
our simple structural model has no directional preference, and
can thus make no prediction about it. In an actual biological or
more complex simulated system, it is likely that in and out (to
and from) common neighbor effects would produce different
results, as is suggested in the supplementary material of Perin
et al. (2011).

Figure 3 shows the total common neighbor effect for each
entire slice. We note, firstly, that the slope of the common
neighbor clustering increases with decreasing section size, and
secondly, that the saturation point decreases with decreasing sec-
tion size. We speculate that this occurs due to the truncation
of connections that occurs upon slicing, and the resulting ten-
dency of only nearby neurons to be well-connected. Similarly, for
each individual slice thickness (Figures 4–6), the saturation point
increases with decreasing sampling radius. The overall effect also
becomes less pronounced for the smaller (in this case, 100 neu-
ron) samples, as would be expected. The strength of common
neighbor clustering is sensitive to both the neuronal and connec-
tion densities, and the size of the distance-dependent connection
probability, particularly as it relates to the sampling scale. It is the
sensitivity to the relationship between these scales that we wish to
emphasize in these results.

Experimental data (Perin et al., 2011) shows an above-chance
common neighbor effect stronger than the one demonstrated by
our model for similar sampling conditions, suggesting the pres-
ence of additional clustering mechanisms in the cortex beyond
the simple geometric ones examined in our model. One predic-
tion our model makes is that after a linear or near-linear rise in
connection probability as function of common neighbor count,
the connection probability saturates for some large number of
common neighbors. It can be extrapolated, despite the increased
common neighbor effect seen in physiological data, that this sort
of turnover and saturation effect will still necessarily occur for a
large number of common neighbors given a sufficiently thorough
sampling of a section of cortical tissue.

We examine the counts of occurrences of directed triadic
motifs (possible directed triangular subgraph configurations; see
Figure 7) in the simulated tissue sections compared with Erdős-
Rényi random graphs for complete sections and for a sampled
300 µm slice in Figures 8, 9 (which is representative of sliced
and sampled behavior, as it is observed that sliced and sam-
pled behavior does not vary much between slice sizes; only
sample radii). We note an excess of motifs with bidirectional
connections. This is trivially expected from distant-dependent
connection probabilities; since each direction in an edge is treated
independently it will of course be the case that many minimally
separated nodes will be bidirectionally connected, and, more
generally that inter-group connectivity will be increased among
tight groups of neurons. Furthermore, it is trivially the case that
given an excess of bidirectional connections, triads containing
them will be overrepresented. We wish to correct for this sec-
ond effect, and do so via the bidirectionality corrected control
described in the Materials and Methods section and elucidated
below.

We examine triadic motif counts against bidirectionality-
corrected random graphs for complete sections and for a sampled

FIGURE 3 | Common neighbor clustering for complete network and slices (full sampling): pairwise connection probability as a function of number of

commonly connected neighbors. Error bars indicate standard error of the mean. Average over five populations.
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FIGURE 4 | Common neighbor clustering for 500 µm slice: pairwise connection probability as a function of number of commonly connected

neighbors. Error bars indicate standard error of the mean. Average over five populations.

FIGURE 5 | Common neighbor clustering for 300 µm slice: pairwise connection probability as a function of number of commonly connected

neighbors. Error bars indicate standard error of the mean. Average over five populations.

300 µm slice in Figures 10, 11. Again, sliced and sampled behav-
ior does not vary much between slice sizes; only sample radii.
We note that even after bidirectionality correction, excesses of
closed-loop (i.e., connected on all sides) triadic motifs contain-
ing bidirectionally connected pairs remain. Of interest as well is
the excess of closed but non-bidirectional triadic motifs (num-
bers 10 and 11) remaining. We note, in general, that motifs
10 -16 remain overrepresented, a phenomenon seen as well in
Song et al. (2005). An underrepresentation of motif 8, which
is observed in Song et al. (2005) with a similar strength to the
aforementioned overrepresentations, is not seen in our model.

However, the purpose of this paper is not to fully analyze the
more subtle effects of distant-dependent clustering, but rather to
examine the implications of similar clustering occurring at the
same spatial scale as variations in sampling. We note, firstly, that
as slice size decreases, the statistics of the complete slice approach
the statistics of the sample. This follows logically from the fact
that the sample occupies an increasing fraction of the slice by
volume for a smaller slice. Along similar lines, we note that thin-
ner slices exhibit less variation in the counts between sampling
radii. For a sufficiently thin slice, one could hypothetically move
from a three-dimensional to a two-dimensional reference model,
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FIGURE 6 | Common neighbor clustering for 100 µm slice: pairwise connection probability as a function of number of commonly connected

neighbors. Error bars indicate standard error of the mean. Average over five populations.

FIGURE 7 | Triadic motif key.

FIGURE 8 | Triadic motif counts for complete sections (full sampling). Error bars indicate standard error of the mean. Average over five populations.
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FIGURE 9 | Triadic motif counts for 300 µm slice. Error bars indicate standard error of the mean. Average over five populations.

FIGURE 10 | Bidirectionally corrected triadic motif counts for complete sections (full sampling). Error bars indicate standard error of the mean. Average
over five populations.

approximating a sheet. We also note that post-bidirectionality
correction in the control, the variation between slice sizes and
sample radii is smaller than it was pre-bidirectionality correction
in the control. This is a strong indicator that any motif surveys
undertaken would benefit from using a bidirectionality or simi-
lar (as in Song et al., 2005) correction on the control in order to
maximize consistency and universality in results.

4. DISCUSSION
As we are able to access larger and denser subsamples of the
connectome, complex network measures (Rubinov and Sporns,

2010) are becoming an increasingly important way of under-
standing both the structure and function. Such measures have
already been applied to the complete connectome of C. elegans
(Varshney et al., 2011). While elements of this study are highly
telling, they do not provide a direct comparison to cortical slice
studies, which are subsampled portions of a very different struc-
ture, even if the individual elements are similar. Currently, cortical
slice studies provide some of the best information we have about
the wiring structure of the cortex on a microscopic scale.

In order to understand this microstructure, it is very impor-
tant to study and examine the statistics of connectivity at scales
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FIGURE 11 | Bidirectionally corrected triadic motif counts for 300 µm slice. Error bars indicate standard error of the mean. Average over five populations.

of tens to hundreds of µm—this will be vital to understanding
the self-organizational and computational principles underlying
the structure of the brain (Prill et al., 2005; Sporns et al., 2005;
Seung, 2009). However, at the same time, extreme care must be
taken, as relatively small variations in section size and sampling
density can lead to significantly differing results, as this is also the
scale at which naturally occurring simple clustering may occur,
and at which the statistical transition from microstructure to
macrostructure may take place as well.

It is thus of great importance that experimenters take this
into account and, accordingly, provide all available information
regarding neuron type and approximate density, sampling space
distribution, slice thickness, and other parameters that might
lead to sampling biases. Various studies of such microstructure
have shown conflicting results. Reiterating, Song et al. (2005) and
Holmgren et al. (2003) noted an excess of bidirectional connec-
tivity in layer V and layer II / III, respectively. However, Lefort
et al. (2009) noted no such excess. It is possible that this could
be a result of sampling from different parts of the cortex which
exhibit significantly different micro-organization, or that small
differences in sectioning size and sampling procedure could lead
to such differences. It is this latter concern that we would like to
emphasize.

We have not reproduced the sampling procedures used in these
studies exactly, but rather provided a generic sampling simulation
from which we can gain some qualitative insight into real-world
experimental results. Examining the aforementioned studies, we
note that Song et al. (2005) used a 300 µm slice (Sjöström et al.,
2001) with a roughly ellipsoid sampling area with radii of approx-
imately 100 and 50 µm on the major and minor axes, respectively.
Holmgren et al. (2003) also used a 300 µm slice, recording in
an irregular shape out to a maximal radius of nearly 300 µm.
Our model does not reproduce the high degree of excess bidirec-
tional connections observed under these parameters, but it does
result in an above-chance representation. Lefort et al. (2009), who

noted no excess of bidirectional connections, used a 300 µm slice
as well, further subdividing these into 100 µm sections, which
would correspond to a centered recording radius of 50 µm—a
radius at which our model does not exhibit a noteworthy excess of
bidirectional connectivity, and suggesting an explanation for why
their results appear potentially at odds with other cortical slice
studies.

Our model demonstrating this concern is a simple graph
model that, while it does not completely reproduce the nonran-
dom features noted in electrophysiological surveys, does repro-
duce some of them at a presumably natural scale. It is our belief
that such a model provides a more reasonable, realistic, and gen-
eral baseline for measuring the statistics of nonrandom cortical
connectivity than a simple Erdős-Rényi graph. Certain observed
complex features have been necessarily excluded to avoid an
overly ad-hoc model. For example, our model does not repro-
duce the common neighbor clustering asymmetry in the in- and
out-degree noted in the supplementary materials of Perin et al.
(2011).

That the examined features depend so sensitively on section
size in the presence of order 100 µm scale clustering should be
both enlightening and concerning, particularly when most sam-
pling procedures operate around this scale. Other factors such
as neuronal type and local density almost certainly play into
such effects as well. The model is not exhaustive, and numerous
parameters, including the exact size and form of the connection
probability profile and neuronal connection densities, could be
varied. The thrust of the example provided in this paper is not
to provide an exhaustive catalog of scenarios, but to demonstrate
how sensitive the observed nonrandom effects of clustering mech-
anisms are to small variations in sampling. With this brief and
simple demonstration in mind, the authors encourage experi-
menters to include all available information about neuronal and
connection density and scale, as well as the full extent of exact
sampling techniques in any study of such nonrandom features
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so that they can be best understood in the context of a complete
graph.
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