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Longitudinal imaging studies of neuronal structures in vivo have revealed rich dynamics in

dendritic spines and axonal boutons. Spines and boutons are considered to be proxies

for synapses. This implies that synapses display similar dynamics. However, spines and

boutons do not always bear synapses, some may contain more than one, and dendritic

shaft synapses have no clear structural proxies. In addition, synaptic strength is not

always accurately revealed by just the size of these structures. Structural and functional

dynamics of synapses could be studied more reliably using fluorescent synaptic proteins

as markers for size and function. These proteins are often large and possibly interfere

with circuit development, which renders them less suitable for conventional transfection

or transgenesis methods such as viral vectors, in utero electroporation, and germline

transgenesis. Single cell electroporation (SCE) has been shown to be a potential

alternative for transfection of recombinant fluorescent proteins in adult cortical neurons.

Here we provide proof of principle for the use of SCE to express and subsequently image

fluorescently tagged synaptic proteins over days to weeks in vivo.
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Introduction

Advancements in imaging techniques and recombinant fluorescent protein design have allowed the
study of neuronal structures in the mouse neocortex in vivo (Denk and Svoboda, 1997; Miyawaki,
2005; Holtmaat and Svoboda, 2009). This has revealed that substrates of synapses, such as dendritic
spines and axonal boutons are dynamic, i.e., they grow and shrink or appear and disappear, even in
the adult cortex (Trachtenberg et al., 2002; De Paola et al., 2006; Holtmaat et al., 2006; Loewenstein
et al., 2011). Although spines and boutons are considered to be reliable proxies for synapses, their
presence does not correlate with synapses in a 1:1 fashion. Some spines, especially when they are
less than one-day old, rarely contain a synapse (Knott et al., 2006; Arellano et al., 2007; Nägerl et al.,
2007; Cane et al., 2014) and some boutons bear a synaptic contact with more than one spine (Sorra
andHarris, 1993; Knott et al., 2006; Toni et al., 2007). Although alterations in synaptic strength have
been shown to correlate well with short and long-term structural changes in organotypic slice cul-
tures (Matsuzaki et al., 2004; Nägerl et al., 2004; De Roo et al., 2008a; Hill and Zito, 2013; Wiegert
and Oertner, 2013), it is not clear how well-spine and bouton cytosolic volume dynamics report
synaptic plasticity in vivo.
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The most reliable measurement of synapse dynamics is
obtained through direct imaging of molecular components of the
pre- or postsynaptic complex (Okabe et al., 1999, 2001; Friedman
et al., 2000; Becker et al., 2008; De Roo et al., 2008b; Woods et al.,
2011). Fluorescently tagged postsynaptic scaffold proteins have
been shown to accurately label synapses in vivo, which enables
tracking of synapse dynamics (Gray et al., 2006; Chen et al., 2012;
van Versendaal et al., 2012; Cane et al., 2014). Expression of
synaptic proteins can be achieved through the electroporation of
recombinant DNA vectors in embryonic primordial cortical neu-
roblasts (Saito and Nakatsuji, 2001; Tabata and Nakajima, 2001).
Expression in these cells remains high upon differentiation, and
can be visualized through a cranial window in the adult animal
in vivo (Gray et al., 2006; Ako et al., 2011; Chen et al., 2012; van
Versendaal et al., 2012). In most cases, expression is robust, starts
immediately after birth, and occurs in a relatively large popula-
tion of cells, which makes this technique useful for a large array
of applications (Supplementary Table 1). However, the robust and
widespread expression patterns often increase background fluo-
rescence, which complicates in vivo imaging. Using conditional
promoters and co-transfection, expression can be restricted to
a sparse set of neurons (Ako et al., 2011; Chen et al., 2012).
In addition, the perinatal expression of synaptic proteins, which
possibly affects synaptic circuit formation and maturation can
be avoided using such approaches (Ako et al., 2011). Finally,
this technique does not allow to precisely target expression to a
particular microcircuit, such as a single cortical column.

Recombinant viral vectors provide other advantages. How-
ever, it is difficult to tame expression levels and to precisely time
the onset of expression. For certain viral vectors it may even
take several weeks for expression to reach maximum levels (Sup-
plementary Table 1). In addition, many viral vectors that are
well-suited for transfection of adult cortical neurons (e.g., AAV)
have limited packaging capacities. This complicates their use for
expressing proteins that are encoded by long reading frames, such
as some synaptic proteins (but see Mower et al., 2011 for a viral
vector approach to express a synaptic protein).

Single cell electroporation (SCE) may offer an alternative
method for the longitudinal study of cells in vivo (Haas et al.,
2001; Rathenberg et al., 2003; Kitamura et al., 2008; Judkewitz
et al., 2009). For this method, DNA vectors are electroporated in
a single (or several) neuron(s) in the cortex in vivo using a glass
pipette that is loosely attached to the neuron’s membrane (Kita-
mura et al., 2008; Judkewitz et al., 2009). Upon electroporation,
expression can usually be observed within 24 h, depending on the
promoter driving the transcription (Supplementary Table 1). The
electroporation can be applied to any cell type in the adult cortex
and there is no strict limit to the size of electroporated plasmids.
This technique has been used to transfect GFP (Kitamura et al.,
2008; Judkewitz et al., 2009) or for trans-synaptic labeling (Rancz
et al., 2011) in the mouse neocortex. When combined with the
implantation of a chronic cranial window, this technique poten-
tially provides a suitable preparation to study with high spatial
and temporal resolution the dynamics of synaptic proteins in
single adult cortical neurons over long times without disrupting
synaptic circuits. Here, we have adopted the SCE method (Kita-
mura et al., 2008; Judkewitz et al., 2009) and combined it with the

implantation of a chronic cranial window (Holtmaat et al., 2009)
to express and image synaptic proteins over days to weeks in vivo.
We provide a description of themethods, some examples of time-
lapse imaging of synaptic proteins and function, and an analysis
method for synaptic protein dynamics.

Materials and Methods

Vectors
pCAG-DsRedExpress-WPRE and pCAG-PSD-95-eGFP-WPRE
were obtained from Svoboda, Janelia Farm Research Campus
(Gray et al., 2006; Cane et al., 2014). pCAG-eGFP-gephyrin-
WPRE was obtained from Levelt and Schwarz (van Versendaal
et al., 2012). pCAG-eGFP-CaMKIIα-WPRE was cloned from a
plasmid obtained from Hayashi (Takao et al., 2005). pCAG-
SEP-GluR1-WPRE was cloned from pCI-SEP-GluR1, obtained
from Malinow (Kopec et al., 2006). hSyn1-mRuby2-GSG-
P2A-GCaMP6s-WPRE plasmid was obtained from Rose and
Bonhoeffer (Addgene plasmid # 50942).

Intrinsic Optical Imaging, Single Cell
Electroporation, and Cranial Window
Implantation
These experiments were performed according to the guidelines
of the Swiss Federal Act on Animal Protection and Swiss Ani-
mal Protection Ordinance. All experiments were approved by the
ethics committee of the University of Geneva and the Cantonal
Veterinary Office (Geneva, Switzerland). The SCE as described
here has been adapted from Judkewitz et al. (2009) without major
modifications. However, we sought to combine this with intrinsic
optical imaging as well as the implantation of a cranial window
that allows targeted and longitudinal imaging of neuronal struc-
ture or function. Therefore, at particular points we emphasized
that what we thought is important for the successful combination
of the three techniques.

Anesthesia was induced and maintained by an intraperi-
toneal injection of a mixture (MMF) containing medetomidin
(Dorbene, 0.2mg kg−1), midazolam (Dormicum, 5mg kg−1) and
fentanyl (Sintenyl, 0.05mg kg−1) in sterile NaCl (0.9%). To pre-
vent potential inflammation, bradycardia, or salivary excretions,
carprofenum (Rimadyl, 5mg kg−1) and glycopyrrolate (Robinul,
0.01mg kg−1) were injected subcutaneously before surgery.

The mouse head was fixed using a head holder (Narashige).
The skin was disinfected with betadine and lidocaine (1% v/v)
was injected under the skin, which was subsequently gently
removed from the top of the skull. Sterile artificial cerebrospinal
fluid (ACSF; in mM: 125 NaCl, 5 KCl, 10 D-Glucose, 10 HEPES,
1 Ascorbic Acid, 2 CaCl2, 2 MgSO4) was applied to a well that
was constructed out of dental cement just above the somatosen-
sory cortex (coordinates from bregma: Rostro-caudal: −1.5mm,
Latero-medial: 3.5mm). This was covered with glass in order to
keep the skull moist and transparent. Next, the mouse was trans-
ferred to the intrinsic optical signal setup and intrinsic signals
were recorded as described previously (Figures 1A,B) (Gam-
bino and Holtmaat, 2012). In short, responses as evoked by C2
whisker deflections were imaged using an Imager 3001F (Opti-
cal Imaging, Mountainside, NJ) equipped with a CCD camera
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FIGURE 1 | Long-term expression and viability upon SCE. (A)

Schematic showing the mapping of the C2 whisker (red) onto the barrel

cortex. (B) Left, localization of the cortical representation of the C2

whisker, using intrinsic optical signal imaging. Right, the pipette for

electroporation is targeted to L2/3 of the mapped cortical area. Scale

bar, 500µm. (C) A targeted cell, filled with Alexa 488 upon

electroporation. Scale bar, 20µm. (D) The blood vessel pattern remains

stable between day 1 and 16 following the electroporation. Scale bar,

500µm. (E) Two photon images of SCE-mediated co-expression of

DsRedExpress on day 1 and 16. Scale bar, 50µm. (F) Reconstructions

of the cell in (E), showing that the large-scale morphology of the cell

remains unaltered. Rj, Schoenen Ramification Index.

and a halogen light source filtered at 700 nm. An image of the
brain’s surface vasculature was taken using green light (546-nm
bandpass filter). The image of the intrinsic signal was super-
imposed over the vasculature image. This was used as a ref-
erence for the position of the craniotomy and the electrode
for SCE.

The mouse was transferred back to the surgery setup and
head fixed using a head holder. A small craniotomy was per-
formed using an air driven dental drill just above the area that
showed the maximum IOS response. The craniotomy was per-
formed as described earlier (Holtmaat et al., 2009). The dura was
left intact and care was taken not to cause any bruising. The cran-
iotomy was adjusted to the size of the prospective cranial window
(3mm diameter). After the surgery the craniotomy was covered
with sterile gel foam soaked in cortex buffer to keep the dura
moist.

The mouse was transferred to a 2-photon laser-scanning
microscope (2PLSM). Glass pipettes (15–20M�) were pulled
from glass capillaries (Harvard Apparatus GC150F-7.5) on a ver-
tical pipette puller (Narishige PC-100). The backs of the pipettes
were fire polished. Pipettes were filled with 1–2µl of internal
solution (composed of, in mM: 266 KMeSO4, 14 KCl, 20 Na-
HEPES, 4 MgATP, 4 Na2ATP, 1 Na2GFP, and 0.1 EGTA; pH 7.2;
280–290mOsm), containing amixture of plasmids (final concen-
tration: 30–200 ng µl−1) and Alexa Fluor 488 hydrazide (50µM;
Life Technologies). Before filling, the solution was filtered using
a 0.45-µm centrifugal filter (Ultrafree-MC-HV, Millipore).

For electroporation we used an Axoporator (800A) and
a headstage (AP-1AX1MU, Molecular Devices), attached to a
micromanipulator (LN Junior, Luigs-Neumann) and positioned
at an angle of 30◦. The target area was identified using the sur-
face vascularization as a guide. The pipette was monitored using
a 4x objective (Olympus) and an eyepiece camera (DinoLite
AM4023X). After the pipette was brought into the field of view
(Figure 1B) we switched to a 16x or 40x objective (Nikon, Olym-
pus, respectively) to image fluorescence (λexcitation = 940 nm).
A constant pressure of 250 mBar was maintained in the pipette.
It was vertically displaced until reaching the dura, which caused
a sudden increase in the pipette resistance to 30–40M�. The
pipette was then quickly moved back and forth along the axial
axis of the manipulator until the pipette penetrated the dura
and entered the brain, which was characterized by the resistance
returning to baseline. The flow of Alexa was still clearly visible,
ascertaining that the pipette was not clogged. The pipette was
lowered along its diagonal axis to layer 2/3, i.e., between 150
and 400µm, upon which pressure was decreased to 25 mBar.
The time in between entering the brain and reducing the pres-
sure was kept short (<30 s) in order to minimize damage to the
tissue. The diffusion of Alexa made the cell bodies stand out as
shadows. The pipette was then advanced toward a cell body until
the resistance started to increase up to 30–50% of the baseline
value, but not higher as this indicates that the pipette is push-
ing into the cell’s membrane. The positive pressure was released
to let the cell’s membrane attach to the pipette, which further
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increased resistance. The DNA and Alexa were electroporated
into the cell using a single pulse train (10 pulses, −12V, 500µs,
50Hz). We avoided applying extra pulse trains, as this may cause
damage. A successful electroporation resulted in a fast (in the
order of 100ms) filling of the cell body by Alexa (Figure 1C).
On average this procedure was repeated three times per mouse
(but no more than five). We used a single penetration tract and
tried to minimize lateral movements of the pipette (<50µm).
Ideally all electroporations were done using a single pipette, but
this was not always possible due to clogging. We were careful to
keep the preparation clean and avoided biological and chemical
contamination.

After removal of the pipette the dura was covered with sterile
Gelfoam (Pfizer). The mouse was transferred back to the surgery
setup. A sterile coverslip (#1, ∅ 3mm) was implanted immedi-
ately as described previously (Holtmaat et al., 2009), with one
difference: the coverslip was sunk into the craniotomy such that
the surface of the glass was flush with the surface of the skull.

In Vivo Two Photon Laser Scanning Microscopy
(2PLSM)
In between 1 to 5 days after the craniotomy we checked if cells
expressed DsRed, without acquiring high-resolution images in
order to avoid photodamage during the early stages of expres-
sion. Fifty-four out of 90 mice displayed fluorescence within this
time frame: pCAG-DsRedExpress-WPRE and pCAG-PSD-95-
eGFP-WPRE (five mice, 200 ng µl−1; two mice, 100 ng µl−1; 17
mice, 70 ng µl−1; three mice, 50 ng µl−1); pCAG-DsRedExpress-
WPRE (four mice, 200 ng µl−1; two mice, 100 ng µl−1;
two mice, 70 ng µl−1; two mice, 50 ng µl−1); pCAG-eGFP-
gephyrin-WPRE and pCAG-DsRedExpress-WPRE (one mouse,
70 ng µl−1; seven mice, 50 ng µl−1); pCAG-eGFP-CaMKII
(three mice, 50 ng µl−1); pCAG-SEP-GluR1-WPRE and pCAG-
DsRedExpress-WPRE (four mice, 50 and 100 ng µl−1, respec-
tively); hSyn1-mRuby2-GSG-P2A-GCaMP6s-WPRE-pA (two
mice, 30 ng µl−1). After 10 days, the mice were inspected again
and if the cells appeared healthy longitudinal imaging was started
(except for the mRuby2 and GCaMP6s example, for which
images were taken 2 days after SCE).

Imaging was performed using a custom-built 2PLSM
(https://openwiki.janelia.org/wiki/display/shareddesigns/Shared+
Two-photon+Microscope+Designs) and the data acqui-
sition software package ScanImage (https://openwiki.
janelia.org/wiki/display/ephus/ScanImage). For each imag-
ing session, mice were anesthetized with MMF and placed under
the microscope on a feedback controlled heating pad. As a
light source for imaging, we used a tunable Ti:Sapphire laser
(Chameleon Ultra II, Coherent) running at λ = 940 nm for
simultaneous excitation of DsRedExpress and various green
emitting fluorescent proteins. The power was typically between
80 and 120mW at the back focal plane of the objective. The
microscope was equipped with a 40x, 0.8 N.A. water immersion
objective (LUMPFLN40XW, Olympus) and high quantum
efficiency photomultiplier tubes (R3896, Hamamatsu). Green
and red fluorescence were spectrally separated using a 565 nm
dichroic mirror (565dcxr, Chroma) and two bandpass filters
(HQ510/50m-2P and HQ620/60m-2P, Chroma). There was no

DsRedExpress or GFP fluorescence bleed through across the two
detection channels. Images were acquired at 2ms/line (image
size, 512 × 512 pixels for a typical field of view of 50 × 50 µm).
Z-stacks were acquired with 1-µm steps and were composed of
50 to 200 frames. Imaging was repeated every day during the first
week after the electroporation and every 8 days afterwards. For
excitation of GCaMP6s and mRuby2, the laser was set at λ = 910
or 1040 nm, respectively, and image acquisition was performed
using a 20x objective (0.95 NA, XLUMPLFL20XW/IR-SP,
Olympus) and a GaAsP photomultiplier tube (10770PB-40,
Hamamatsu). Focus shifts (< 260 nm) between the green and
red signals due to chromatic aberration were negligible relative
to the sizes of spines, dendrites and the spatial extent of the Ca2+

responses. Time-lapse images were acquired at 3.91Hz (256
lines/frame, 1ms/line). The average excitation power was kept
below 40mW, as measured at the focal plane of the objective.

Image Analysis
Gephyrin puncta were detected using custom-designed
algorithm running in MATLAB (MathWorks, Inc.). Dendritic
segments were traced in the red channel of 3D, mean-filtered
(one-pixel radius), image stacks using the Simple Neurite Tracer
(SNT) plugin (Longair et al., 2011) in FIJI (Schindelin et al.,
2012). This trace was transferred to the green channel, and for
each pixel along the trace the algorithm searched for the highest
pixel value in the original image within an ellipse perpendicular
to the axis of the trace, with a five-pixel radius along the major
axis (image plane) and a two-pixel radius along the minor
axis (across image planes). This typically spanned the width of
dendritic shafts. If a pixel value was found to be higher than the
original one of the trace, it was corrected. A rolling local baseline
value was calculated from the mean of the 70% dimmest pixels
found within a ±50-pixel window along the trace. For puncta
detection we used a threshold of 2 standard deviations (2 SD)
above the baseline. For volume corrections, a normalization
factor was calculated by dividing the median pixel value of the
trace in the red channel by the median pixel value of the trace in
the green channel. Subsequently, each pixel of the trace in green
trace was multiplied by this factor. This factor was also used
to plot a normalized eGFP-Gephyrin image. Trace and image
correction was achieved by pixel-by-pixel subtraction of the red
from the normalized green values.

Results

Long-Term Expression and Viability upon SCE
SCE was targeted to supragranular cells in the C2 barrel
column, which was identified using intrinsic optical imaging
(Figures 1A–C). On average, three cells were electroporated in
each mouse (using a mixture of vectors encoding cytosolic and
synaptic proteins). This resulted in one or two cells expressing
fluorescence over the following days in 60% of the experi-
ments. This percentage is negatively biased since these experi-
ments included practicing rounds, various kinds of plasmids, and
various DNA concentrations. Nonetheless, the electroporations
never lead to visible disturbances of the dura and the underlying
superficial vasculature (Figure 1D), similar to previous studies
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(Holtmaat et al., 2009). At first we used DNA concentrations
that were previously shown to result in expression over 24 h (i.e.,
70–200 ng µl−1) (Kitamura et al., 2008; Judkewitz et al., 2009).
We found that some cells displayed pathological signs (blebby or
fragmented dendrites) over the time course of 10 days. This may
have also been due to issues related to the cranial window implan-
tation. Therefore, the exact success rates of electroporation are
difficult to assess. Not correcting for other confounding issues, we
estimate that approximately 17% of the cells electroporated with
200 ng µl−1 were viable after 10 days. In general this percent-
age increased with lower DNA concentrations (25% for 100 ng
µl−1; 42% for 70 ng µl−1; 46% for 50 ng µl−1). These results sug-
gested that, although high DNA concentrations may be suitable
for expression of cytosolic or physiologically inert proteins (Jud-
kewitz et al., 2009), they are not well-tolerated by cells over long
times when encoding synaptic proteins. Therefore, we settled at
using a DNA concentration of 50 ng µl−1 (or lower). At this con-
centration cells could be imaged without obvious disturbances in
the neurons’ large-scale morphology (Figures 1E,F). We did not
systematically test the efficiency of lower DNA concentrations.
Expression was relatively stable over time (Figure 1E). Small dif-
ferences in expression levels could have occurred, but these were
difficult to assess due to variation in excitation and detection effi-
ciencies at different time points, which depend on the optical
properties of the cranial window prep (for discussion, see Holt-
maat et al., 2009). This is of importance when analyzing synaptic
protein aggregation and dynamics (e.g., see Figure 4).

SCE-Mediated Expression of Synaptic Proteins
In order to illustrate the use of SCE for imaging synapses we
expressed two postsynaptic scaffolding proteins (PSD-95 and
gephyrin), as well as two postsynaptic plasticity markers for
glutamatergic synapses (CaMKIIα and GluR1). PSD-95 is a
PDZ-domain protein that binds to various postsynaptic com-
ponents in most glutamatergic synapses, and modulates their
function and maturation (Kim and Sheng, 2004). It is highly
enriched in dendritic spines (Okabe et al., 1999). Gephyrin is
present in most inhibitory synapses where it clusters glycine and
GABAAreceptors (Fritschy et al., 2008). CaMKIIα is a calmodulin
dependent kinase that has been shown to act as a calcium oscil-
lation decoder in neurons (De Koninck and Schulman, 1998).
It plays a critical role in synaptic plasticity, and is activated
and translocates to spines upon LTP (Okamoto et al., 2009; Lis-
man et al., 2012). GluR1 is a glutamate receptor subunit that
is inserted into synapses upon strong synaptic stimulation (Shi
et al., 1999; Kessels and Malinow, 2009; Huganir and Nicoll,
2013).

Upon SCE, DsRedExpress homogenously filled dendritic
shafts and spines (Figure 2). In contrast, synaptic proteins did
not homogeneously fill the cytosol, and were rather enriched in
spines or formed clusters in the dendritic shaft (Figure 2). In neu-
rons transfected with PSD-95-eGFP we observed clear puncta of
various sizes in dendritic shafts and in dendritic spines, similar to
experiments in organotypic slices (Okabe et al., 1999) or in vivo
upon in utero electroporation (Cane et al., 2014) (Figure 2). We

FIGURE 2 | Examples of GFP-tagged synaptic proteins co-expressed

with DsRedExpress in vivo. 2PLSM-images (2PLSM-images (Maximum

Intensity Projection of 5–20 single imaging planes) of PSD95-eGFP (first row),

eGFP-Gephyrin (second row), eGFP-CaMKIIα (third row) and SEP-GluR1

(last row) through a chronic cranial window. All proteins display punctate

distributions. Scale bar, 10µm.
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have previously shown that the puncta nearly perfectly overlap
with asymmetric synapses, as detected using serial section elec-
tron microscopy (Cane et al., 2014). eGFP-gephyrin expression
also resulted in a punctate labeling along dendrites. In accordance
with studies using in utero electroporation (Chen et al., 2012; van
Versendaal et al., 2012), the puncta were mostly found in den-
dritic shafts, and incidentally in spines (Figure 2). CaMKIIα was
more diffusely distributed over dendrites (Figure 2). Nonethe-
less, there were clear hotspots in the dendritic shaft or in spines,
similar to what has been found in organotypic slice cultures
(Otmakhov et al., 2004). These clusters may represent synap-
tic locations that were recently activated and to which the pro-
tein has translocated (Lee et al., 2009). Similar to CaMKIIα, the
expression of SEP-GluR1 resulted in a somewhat diffuse labeling
with local accumulations of protein along dendrites and spines
(Figure 2), which is similar to previous experiments in organ-
otypic slices (Kopec et al., 2006; Patterson et al., 2010) and in vivo
upon in utero electroporation (Makino and Malinow, 2011).
These hotspots may represent synapses with a high rate of GluR1
subunit insertion (Ashby et al., 2004; Kopec et al., 2006; Patterson
et al., 2010).

These examples demonstrate that SCE is able to drive expres-
sion of synaptic proteins, resulting in local fluorescent clusters
that resemble the distribution of synapses. They are comparable
to the results of studies using other gene transfer techniques in
organotypic slices or in vivo.

Imaging and Analysis of Synapse Structural
Dynamics
The synaptic scaffold proteins PSD-95 and gephyrin are reliable
indicators of synapse size, and thereby form exquisite tools to
study structural dynamics of synapses (Okabe et al., 1999, 2001;
Friedman et al., 2000; Minerbi et al., 2009; Dobie and Craig, 2011;
Woods et al., 2011; Chen et al., 2012; van Versendaal et al., 2012;

Cane et al., 2014). SCE-transfected neurons expressing PSD-95-
eGFP and eGFP-gephyrin could be imaged under a cranial win-
dow over days to weeks (Figure 3). Stable and labile fluorescent
puncta could be observed.

We have previously shown that fluorescent puncta of aux-
iliary PSD-95-eGFP in L2/3 cells in vivo reflect the pres-
ence of glutamatergic synapses (Cane et al., 2014). Synaptic
PSD-95-eGFP clusters can readily be distinguished from the den-
dritic PSD-95-eGFP pool since this protein strongly and pref-
erentially binds to the synaptic scaffold (Kim and Sheng, 2004),
which is large and contains on average more than 300 PSD-
95 molecules (Sugiyama et al., 2005; Sheng and Hoogenraad,
2007). In addition, they mostly appear in spines. This spatially
separates the bound molecules from the unbound molecules in
the dendritic shaft. The fluorescence ratios between spines and
shafts can be used as a measure of cluster size, and to esti-
mate the fraction of diffusible molecules bound within spines
(Otmakhov et al., 2004; Cane et al., 2014). As a benefit of
these features, signals can easily be thresholded, which ren-
ders the puncta readily traceable over time (Okabe et al., 1999;
Minerbi et al., 2009; Woods et al., 2011; Cane et al., 2014).
Figure 3 shows an example of PSD-95-eGFP puncta at vari-
ous time points in unfiltered images. These data confirm that
some puncta are dynamic, whereas others are stable or persistent
(Okabe et al., 1999, 2001; Friedman et al., 2000; Minerbi et al.,
2009; Dobie and Craig, 2011; Woods et al., 2011; Cane et al.,
2014).

As compared to the PSD-95 in an excitatory synapse, the num-
ber of gephyrin molecules per synaptic cluster may be more than
twice as low (Specht et al., 2013). They mostly appear along
dendritic shafts (Dobie and Craig, 2011). Therefore, the auxil-
iary expression of eGFP-gephyrin may result in a relatively low
contrast between the fluorescence that is present in puncta and
the surrounding cytoplasm (Figure 4A). This complicates the
thresholding of images. In addition, the lack of spatial segregation

FIGURE 3 | Long-term expression and imaging of synaptic scaffold

proteins. Unfiltered time-lapse image examples of PSD-95-eGFP (first row)

and eGFP-gephyrin (second row). Dendritic spines (arrows) are revealed by

DsRedExpress. Putative excitatory (PSD-95) and inhibitory (gephyrin)

postsynaptic elements (arrowheads) are in green. Some spines and synaptic

puncta are persistent (open arrows and arrowheads) throughout the imaging

period. Transient appearances (closed arrows and arrowheads) can be seen

as well. Scale bar, 3µm.
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FIGURE 4 | Quantification of synaptic eGFP-Gephyrin puncta. (A) Time

lapse imaging of a portion of the dendrite expressing DsRedExpress and

eGFP-Gephyrin. Scale bar, 6µm. (B) Maximum pixel value projections of an

image stack of a dendritic segment co-expressing DsRedExpress (left) and

eGFP-Gephyrin (middle). Scale bar, 5µm. The outline of this dendritic branch

is in blue. The green and red lines connect the brightest pixels (in 3D) along

the dendritic shaft in the image of the red channel. Right, the fluorescence

(Continued)
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FIGURE 4 | Continued

intensity profile along this trace for the green channel. The threshold for

puncta detection (black line) is defined as the baseline + 2xSD. Some

examples of eGFP-gephyrin puncta with fluorescence intensities above

threshold are marked (d1, d2, d3, and d4). (C) Time lapse images of

the same dendrite as in (A), but now thresholded in green to reveal the

puncta. This image is blurred to remove single-pixel signals that are

most likely not related to eGFP-gephyrin puncta. Dendritic puncta and

spines are marked by “d” and “S,” respectively. Closed arrowheads,

transient puncta. Open arrowheads, persistent puncta. White arrows,

transient puncta in spines. (D) The temporal dynamics of eGFP-gephyrin

puncta may be monitored from the intensity profiles on each time point

(green lines and corresponding thresholds as black lines). Gray shadows

illustrate the spatial window over which puncta are considered to be the

same. The inset shows the mean threshold over time (left). The sizes of

eGFP-gephyrin puncta are estimated by integrating the parts of the

peaks above threshold (or the 2D integrated peaks above the threshold

plane for spines) (middle). The examples illustrate that puncta dynamics

can be tracked despite the fluctuations in ambient fluorescence levels

(e.g., because of low threshold at day 17 puncta can still be detected).

The fluorescence of several puncta fluctuates around threshold (right).

(E) Images of a spine bearing an eGFP-gephyrin punctum and the

corresponding 2D fluorescence profiles in the green (left) and red (right)

channel. Scale bar, 1.5µm. The threshold is indicated as a black sheet.

(F) Raw (top left) and normalized (bottom left) spatial intensity profiles

along the trace in the red and green channel. Based on this

normalization the image of the green channel was normalized (middle)

and the dendritic trace and image were corrected (right).

makes it harder to quantify cluster sizes and to track them over
time.

To facilitate the unbiased scoring of eGFP-gephyrin puncta,
we aimed at subtracting the ambient fluorescence levels from
puncta fluorescence, assuming that the ambient (i.e., cytosolic)
fluorescence reports the total expression levels of eGFP-gephyrin.
We traced the shaft of the dendritic branch of interest in 3D on
the DsRedExpress image stack (Figure 4B, left) using the Simple
Neurite Tracer module in Fiji (Longair et al., 2011). This trace
was transferred to the eGFP-gephyrin image stack (Figure 4B,
middle), and used to plot an intensity profile of the brightest
pixels in the dendritic shaft (Figure 4B, right; see Materials and
Methods). Each eGFP-gephyrin fluorescence peak larger than a
defined threshold (Figure 4B, right, black line; see Materials and
Methods) was considered to represent a punctum. This proce-
dure mainly detected puncta in the dendritic shaft or small spines
protruding in the optical axis, since laterally protruding spines
were usually not included in the trace. To track eGFP-gephyrin
puncta over time each image was thresholded (Figure 4C). Peaks
at subsequent time points that were located within a spatial win-
dow of 40 pixels relative to their initial position along the trace
(Figure 4D, gray zones) were considered to be the same (e.g., the
position of peaks d1, d2, d3, and d4 in Figure 4D slightly varied
across time points). Peak integrals above threshold were plotted
and used to estimate puncta brightness (Figure 4D, middle and
right). This revealed that even though puncta could persist, their
brightness varied over time. Some seemed to appear or disap-
pear when their brightness exceeded or dropped below thresh-
old (Figure 4D, right). Puncta in spines were detected separately
using the mean value of the threshold (Figure 4D, middle and
right, see Materials and Methods).

The abovemethod allows a quick assessment of puncta bright-
ness. However, puncta brightness may be overestimated in large
volumes such as large spines or dilations in the dendrite. An
example of this is given in Figure 4E. The spatial fluorescence
profile of eGPF-gephyrin suggests that the spine contained a
large “synaptic” cluster (Figure 4E, left). However, the profile of
DsRedExpress also showed a peak in fluorescence, indicating that
the volume of this spine was large (Figure 4E, right). To cor-
rect for variations in volume, the green intensity profile along
the trace was normalized to the red signal (Figure 4F, left, see
Materials andMethods). The green fluorescence profile remained

distinct from the red fluorescence profile, indicating that the dif-
ferences in eGFP-gephyrin fluorescence did not merely reflect
variations in dendritic volume. To generate a corrected image of
the green signal, the red image was subtracted from the normal-
ized green image (Figure 4F, middle and right). The corrected
profile in green indicates the “real” relationship between the peak
eGFP-gephyrin intensities at various locations (Figure 4F, right).

Imaging of Proteins Marking Synaptic Function
Enrichment of GFP-tagged GluR1 in the postsynaptic membrane
can be seen upon the induction of LTP (Shi et al., 1999), and
is thought to reflect synaptic strengthening (Kessels and Mali-
now, 2009; Huganir and Nicoll, 2013). Using GFP-tagged recep-
tors, GluR1-enriched synapses are hard to distinguish, since the
fraction of GluR1 stored in vesicles is relatively high under base-
line conditions. Recently, super ecliptic pHluorin-tagged GluR1
(SEP-GluR1) has been used to facilitate the visualization of GluR1
dynamics (Ashby et al., 2004; Kopec et al., 2006; Patterson et al.,
2010; Makino and Malinow, 2011). In these constructs the eclip-
tic pHluorin (a pH-sensitive form of GFP) is tagged to the
N-terminus of the receptor. Upon activity-mediated exocyto-
sis the fluorophore translocates from the acidic environment of
the vesicles to a neutral pH in the extracellular space, resulting
in a strong increase of fluorescence (Miesenböck et al., 1998).
Therefore, the SEP-GluR1 fluorescence provides a direct measure
of the rate of GluR1 receptor subunit exocytosis (Ashby et al.,
2004; Kopec et al., 2006; Patterson et al., 2010). We longitudi-
nally imaged SEP-GluR1 after SCE (Figure 5A). On each time
point we detected various hotspots, presumably representing
synapses that were activated just before imaging. Interestingly,
some hotspots were repeatedly seen at the same location, which
suggests that some synapses may be persistently activated and
undergo constitutive GluR1 insertion under baseline conditions.

Genetically encoded calcium indicators (GECIs) are used to
longitudinally track synaptic activity in vivo (Tian et al., 2009;
Chen et al., 2013). We tested if SCE can be used to express
GECIs. We electroporated a bicistronic expression vector encod-
ing mRuby2 and GCaMP6s, linked by a P2A cleavage peptide
(Addgene plasmid # 50942) (Figure 5B, bottom). This resulted
in readily detectable mRuby2 fluorescence (Figure 5B, right).
GCaMP6s was usually much dimmer (Figure 5B, left), which
may be due to the low resting fluorescence of GCaMP6 (Chen
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FIGURE 5 | SCE and longitudinal imaging of SEP-GluR1 and

GCAMP6s. (A) Unfiltered time-lapse images (maximum value projections) of

a dendritic branch co-expressing SEP-GluR1 and DsRedExpress over 17

days. Some hotspots persistently appear at the same location (open

arrowhead), others appear transiently (closed arrowhead). Scale bar, 5µm

(B) Maximum pixel value projection of an image stack of a neuron

co-expressing GCaMP6s (left) and mRuby2 (right). The white arrowhead

points toward the cell nucleus, which is not filled by GCaMP6s. Bottom,

schematic of the bicistronic plasmid sequence (gift from Rose and

Bonhoeffer). Scale bar, 15µm (C) Gcamp6s (left) and mRuby (right)

fluorescence dynamics in three ROIs from the boxed areas in (B). (D) Time

lapse image of GCaMP6s fluorescence along a dendritic segment. The time

interval between two successive frames is 256ms. The Ca2+ transient in the

spine likely represents synaptic input (arrowhead). Scale bar, 3µm.

et al., 2013). The spatial distribution of GCaMP6s within the cell
was similar to what has been reported (Chen et al., 2013). The
cell nuclei remained largely spared (Figure 5B, white arrowhead),
whereas in the rest of the cell the distribution resembled that of
mRuby2 (Figure 5B, compare left and right).

We observed localized and spontaneous fluctuations in
GCaMP6s fluorescence in the dendritic tuft. Neurons located in
supragranular layers of the barrel cortex are known to display
spontaneous local Ca2+ transients (Svoboda et al., 1997; Gam-
bino et al., 2014; Palmer et al., 2014). Imaging of small dendritic
regions (∼1–2µm) with high temporal resolution (3.91Hz)
under wakefulness revealed similar transients (Figure 5C left).
Simultaneously recorded mRuby2 fluorescence amplitudes were
considerably smaller (mRuby2, δF/F mean = 0.099 ± 0.17, max
= 0.94; GCaMP6s, δF/F mean = 0.215 ± 0.36, max = 3.83),
confirming that the dynamics were not due to movement arti-
facts, and likely reflected Ca2+ transients. They could also be

observed in and around dendritic spines (Figure 5D, arrowhead),
presumably reflecting excitatory synaptic activity. This indicates
that GCaMP6s can be used to image Ca2+ in small dendritic
compartments in combination with cytosolic mRuby2.

Taken together these results indicate that SCE provides a use-
ful tool to express and track markers of synaptic activity and
plasticity in layer 2/3 neurons in vivo.

Discussion

Here we have provided a proof of principle for combining SCE of
L2/3 neurons in the mouse neocortex with long-term 2-PLSM of
synaptic proteins in vivo. In a substantial portion of the cells that
were successfully transfected, synaptic structures could be imaged
over several weeks. Over this time frame the surrounding tissue
and cell morphology were not visibly affected. Spines did display
turnover, in accordance with previous work (Trachtenberg et al.,
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2002; Holtmaat et al., 2005; Chen et al., 2012; van Versendaal
et al., 2012; Cane et al., 2014). We did not quantify and system-
atically compare turnover rates. Previously we have studied PSD-
95-eGFP dynamics and showed that SCE-mediate expression of
PSD-95-eGFP generated fluorescent puncta that exactly matched
the presence of asymmetric synapses as detected using electron
microscopy (Cane et al., 2014). Here we show, in addition, that
the auxiliary expression of eGFP-Gephyrin, eGFP-CaMKIIα, and
SEP-GluR1 using SCE results in punctate labeling in dendritic
shafts and spines, analogous to the distribution of postsynap-
tic elements. We observed stable and dynamic eGFP-gephyrin
puncta, similar to the PSD-95 experiments (Cane et al., 2014)
and other gephyrin studies (Chen et al., 2012; van Versendaal
et al., 2012) in vivo. In our experience, the manual scoring of
eGFP-gephyrin-puncta dynamics was less straightforward than
scoring of PSD-95-eGFP puncta, since they were of lower con-
trast and mainly located in dendritic shafts. Therefore, tracking
of eGFP-gephyrin puncta over time is best done based on spatial
intensity profiles. We showed for a small number of puncta that
such an unbiased analysis is useful for revealing eGFP-gephyrin
dynamics. The method can be further improved by normaliza-
tion of eGFP-gephyrin-derived pixel values to red fluorescence,
which corrects for variation in dendritic or spine volumes. Ret-
rospective electron microscopy will be needed to verify which
threshold renders puncta representing GABAergic synapses with
high fidelity, and detects the appearance and disappearance
of synapses.

We showed that SCE could also be used to express and longi-
tudinally image SEP-GluR1 dynamics.We observed hotspots that
were likely representing highly active synapses displaying high
exocytosis levels of vesicles containing GluR1 subunits (Ashby
et al., 2004; Kopec et al., 2006; Patterson et al., 2010). Interest-
ingly, some hot spots appeared at identical positions (spines)
along the dendrite, suggesting that some synapses are highly
active under baseline conditions (at least at the time of imaging)
(Makino and Malinow, 2011). Other spots transiently appeared
which may represent incidental synaptic strengthening. Imag-
ing of GCaMP6s also revealed hotspots, presumably generated
by spontaneous, synaptically evoked Ca2+ transients. It will be
interesting to see whether some Ca2+ transients also persistently
appear at identical locations over time. This would confirm the
GluR1 experiments, which suggested that some synapses display
high levels of spontaneous activity and therefore constitutively
insert GluR1 receptors.

Technical Considerations
In our experience, the SCE method, combined with long-term
imaging, bears various technical issues that need some consid-
eration. The electroporation itself can be harmful for neurons,
as discussed previously (Kitamura et al., 2008; Judkewitz et al.,
2009). As a result, not all electroporated cells will survive until the
first imaging time point. To increase success rates several cells can
be electroporated (Judkewitz et al., 2009). However, it should be
noted that increasing the cell numbers will take more time, which
may reduce the probability to obtain a clear cranial window.

We experienced that the electroporation of DNA at high con-
centrations (e.g., 200 ng.µl−1) damaged neurons over subsequent

days. These concentrations have been shown to suit well the
visualization of GFP within the first day after electroporation
(Judkewitz et al., 2009). However, in our case strong overexpres-
sion of the synaptic proteinsmay have resulted in dominant nega-
tive interference with endogenous synaptic proteins, or produced
artificial and harmful protein aggregates. This raises the question
as to what are the lowest DNA concentrations that minimally
impact synaptic function; yet produce sufficient levels of fluo-
rescence for imaging in vivo. We went as low as 30–50 ng.µl−1,
which provided a reasonable throughput and did not produce
obvious changes in dendritic morphology. Nonetheless, this con-
centration may not yet be optimal, and may have impacted the
neurons’ physiology. Indeed, cytosolic protein levels of PSD-95-
eGFP and eGFP-gephyrin may have been higher than reported
upon in utero electroporation (Chen et al., 2012; van Versendaal
et al., 2012). Since we did not further characterize the physio-
logical properties of the transfected neurons, we cannot be cer-
tain that 50 ng.µl−1 DNA is a “safe” concentration. Nonetheless,
the possible impact of protein overexpression on the neuronal
physiology does not distinguish the technique from most other
transfection techniques. In fact, in contrast to many other tech-
niques, SCE allows one to search for conditions leading to opti-
mal expression levels with higher turnaround times than most
other transfection techniques. However, the best way to avoid any
interference with synaptic function would be to generate a locus-
specific knock in that renders the endogenous pool of synap-
tic proteins fluorescent in a conditional manner (Fortin et al.,
2014).

Despite the relatively low throughput, SCE has some dis-
tinct advantages (see Kitamura et al., 2008; Judkewitz et al., 2009
for extensive discussion). Similarities and differences with other
transfection techniques in the neocortex are given in Supplemen-
tary Table 1. The most important advantage of SCE is the ability
to target expression to a specific location or cell type. As shown
here, it allowed for imaging of a single neuron in a predetermined
cortical column. This may facilitate the comparison of data across
mice, since all cells would be located in the same cortical environ-
ment. In addition, when combined with cell-specific fluorescent
transgenic mouse lines, particular cell types could be targeted
under visual (2-PLSM) guidance, and studied in a highly repro-
ducible manner, even in infragranular layers (Andrásfalvy et al.,
2014). Temporal control of expression could be improved by
the use of conditional promoters, similar to approaches taken to
optimize the in utero electroporation method (Ako et al., 2011).
SCE potentially provides means to force co-express proteins of
arbitrary sizes. For example, here we electroporated pCAG-SEP-
GLUR1-WPRE, which size (5.7 kb) exceeds the packaging limit
of AAV (4.7 kb) (Wu et al., 2010). Theoretically, SCE also allows
transfection of RNA vectors or oligonucleotides that would oth-
erwise demand complex vector systems. The labeling of a single
neuron in a completely naïve background is another advantage.
It ascertains that any labeled structure (e.g., a remotely located
axonal element) is derived from the neuron of interest. In addi-
tion, due to the high fluorescence contrast it allows imaging of
subcellular structures with high spatial resolution. Indeed, in our
experiments the low background fluorescence facilitated imaging
of SEP-GluR1, a protein that usually yields very low fluorescence.
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