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A Corrigendum on

Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in

numbers of neurons and average neuronal cell size

by Herculano-Houzel, S., Manger, P. R., and Kaas, J. H. (2014). Front. Neuroanat. 8:77. doi:
10.3389/fnana.2014.00077

It has come to our attention that some of the data on the cellular composition of the brain of artio-
dactyls, presented in Table 1 of Kazu et al. (2014) and used in this review, neededminor corrections,
which were published in a Corrigendum to that paper.

While those corrections do not at all modify the conclusions of the present paper, some of the
power exponents reported here were influenced in minor, non-significant ways. We provide those
corrected power exponents below.

p. 4, Figure 2, top right—The mass of each brain structure varies as a similar, shared power
function of the number of non-neuronal (other) cells in the structure of exponent 1.050 ± 0.018
(p < 0.0001).

p. 6, Figure 3, top: Mass of the cerebral cortex increases with number of neurons raised to an
exponent of 1.694± 0.048 across non-primates.

p. 6, Figure 3, bottom: Neuronal density in the cerebral cortex decreases with number of neurons
raised to an exponent of−0.693± 0.048 (p < 0.0001).

p. 9, Figure 4: In non-primates, non-eulipotyphlans, cerebellar mass increases with number of
neurons raised to an exponent of 1.283± 0.035 (p < 0.0001) and cerebellar neuronal density scales
with number of neurons raised to an exponent of−0.282± 0.035 (p < 0.0001).

Figure 7:
A—Neuronal density in the cerebral cortex scales with neuronal density in the rest of brain

raised to an exponent of 0.876± 0.041, p < 0.0001 (excludes primates).
B—Neuronal density in the cerebellum scales with neuronal density in the rest of brain raised to

an exponent of 0.442± 0.049, p < 0.0001 (excludes primates and eulipotyphlans).
C—Neuronal density in the olfactory bulb scales with neuronal density in the rest of brain raised

to an exponent of 0.994± 0.118, p < 0.0001 (excludes primates and eulipotyphlans).
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D—Neuronal density in the olfactory bulb scales with neu-
ronal density in the cerebral cortex raised to an exponent of
1.139 ± 0.113, p < 0.0001 (excludes primates and eulipoty-
phlans).

E—Neuronal density in the cerebellum scales with neuronal
density in the cerebral cortex raised to an exponent of 0.516 ±

0.041, p < 0.0001 (excludes primates and eulipotyphlans).
F—Neuronal density in the olfactory bulb scales with neuronal

density in the cerebellum raised to an exponent of 1.706± 0.161,
p < 0.0001 (includes all clades).

p. 12, Figure 8A—Artiodactyls gain neurons in the cerebral
cortex faster than they gain neurons in the rest of brain, as a
power function of exponent 1.552 ± 0.056, p = 0.0013, r2 =

0.997 (excludes the giraffe).
p. 12, Figure 8B—Artiodactyls gain neurons in the cerebel-

lum faster than they gain neurons in the rest of brain, as a power
function of exponent 1.737± 0.304, p = 0.0107, r2 = 0.916.

p. 14, Figure 9B—The number of neurons in the cerebellum
varies as a power function of the number of neurons in the cere-
bral cortex with an exponent of 0.922 ± 0.110, p = 0.0036,
across artiodactyls. The relationship for the ensemble of clades
can also be fit with a linear function of slope 4.16 (p < 0.0001,
r2 = 0.985).

p. 15, Figure 10A—Artiodactyls have on average 7.35 ± 1.24
neurons in the cerebral cortex to every neuron in the rest of
brain. This ratio increases as a power function of the number of
neurons in the rest of brain with an exponent of 0.904 ± 0.132
(p = 0.0135, r2 = 0.902).

p. 16, Figure 10B—Artiodactyls have a ratio between numbers
of neurons in the cerebellum and in the rest of brain of 38.32 ±

6.19.
p. 17—Artiodactyls have an average ratio of neurons in the

cerebellum relative to the cerebral cortex of 5.28± 0.31.
p. 21, Figure 13:
A—The mass of the cerebral cortex increases across non-

primates with the mass of the rest of brain raised to an exponent
of 1.155± 0.027, p < 0.0001.

B—The mass of the cerebellum increases across non-primates
with the mass of the rest of brain raised to an exponent of 1.054±
0.019, p < 0.0001.

C—The mass of the olfactory bulb increases across non-
primates with the mass of the rest of brain raised to an exponent
of 0.812± 0.043, p < 0.0001.

D—The relative mass of the cerebral cortex increases across all
species in correlation with brain mass with a Spearman correla-
tion r2 = 0.7840, p < 0.0001.

E—The relativemass of the cerebellum varies across all species
in correlation with brain mass with a Spearman correlation r2 =
−0.5270, p = 0.0008.

F—The relative mass of the rest of brain varies across all
species in correlation with brain mass with a Spearman corre-
lation r2 =−0.7994, p < 0.0001.

p. 21, Figure 14—The cerebral cortex of artiodactyls gains
mass as a function of the number of neurons in the rest of brain
with exponent 2.759 ± 0.145, p = 0.0028. The cerebellum of
artiodactyls gains mass as a function of the number of neurons
in the rest of brain with exponent 2.142± 0.492, p = 0.0489.

p. 24, Figure S17—In artiodactyls, cerebral cortical mass
increases as a power function of body mass with exponent
0.589± 0.028, p = 0.0023; rest of brain mass increases as a power
function of body mass with exponent 0.378± 0.056, p = 0.0215;
the number of neurons in the cerebral cortex scales with body
mass raised to an exponent of 0.454 ± 0.107, p = 0.0511; and
the number of neurons in the rest of brain scales with body mass
raised to an exponent of 0.227± 0.027, p = 0.0136.
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