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Using diffusion-tensor magnetic resonance imaging and fiber tractography the
topographic organization of the human corpus callosum (CC) has been described
to comprise five segments with fibers projecting into prefrontal (I), premotor and
supplementary motor (II), primary motor (III), and primary sensory areas (IV), as well
as into parietal, temporal, and occipital cortical areas (V). In order to more rapidly
characterize the underlying anatomy of these segments, this study used a novel single-
shot T1 mapping method to quantitatively determine T1 relaxation times in the human
CC. A region-of-interest analysis revealed a tendency for the lowest T1 relaxation times
in the genu and the highest T1 relaxation times in the somatomotor region of the CC.
This observation separates regions dominated by myelinated fibers with large diameters
(somatomotor area) from densely packed smaller axonal bundles (genu) with less myelin.
The results indicate that characteristic T1 relaxation times in callosal profiles provide
an additional means to monitor differences in fiber anatomy, fiber density, and gray
matter in respective neocortical areas. In conclusion, rapid T1 mapping allows for a
characterization of the axonal architecture in an individual CC in less than 10 s. The
approach emerges as a valuable means for studying neocortical brain anatomy with
possible implications for the diagnosis of neurodegenerative processes.
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Introduction

The corpus callosum (CC) is a unique structure in placental mammals and by far the largest
fiber bundle in the human brain interconnecting the two cerebral hemispheres with more than
300 million fibers (de Lacoste et al., 1985; Clarke and Zaidel, 1994; Aboitiz and Montiel, 2003).
In humans and other primates the CC features a rough topographical representation of different
cortical areas, in which anterior cortical areas are connected through the anterior CC and posterior
areas through posterior regions (Aboitiz et al., 1992; Hofer and Frahm, 2006; Hofer et al., 2008;
van der Knaap and van der Ham, 2011). The CC has been the target of extensive in vivo studies
(e.g., see Thompson et al., 2003) indicating that its morphology may be related to a large variety of
disorders such as dyslexia (von Plessen et al., 2002), depression (Lacerda et al., 2005; Cyprien et al.,
2014), schizophrenia (Narr et al., 2002), HIV/AIDS (Thompson et al., 2006), autism (Prigge et al.,
2013), and neonatal motor function (Mathew et al., 2013).
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Although the CC can be identified by conventional magnetic
resonance imaging (MRI), there are no in vivo anatomic land-
marks that clearly delimit distinct callosal areas in a midsagit-
tal cross-section (van der Knaap and van der Ham, 2011).
Using diffusion tensor imaging and fiber tractography, Hofer
and Frahm (2006) distinguished five major segments of the CC,
containing fibers projecting into prefrontal (region I), premo-
tor and supplementary motor (region II), primary motor (region
III), and primary sensory areas (region IV), as well as into
parietal, temporal, and occipital cortical areas (region V). The
functional specialization of these segments most likely results
from well-defined pathways of interhemispheric communica-
tion where characteristic transfer properties are based on fiber
composition. The density of thin fibers is most apparent in the
anterior CC (genu, region I), with fiber diameters between 0.4 and
1 μm. The fiber density decreases to a minimum in the somato-
motor region (region III–IV; fiber diameter mostly between 2
and 7 μm), and increases again toward the posterior CC (sple-
nium, region V), with a mixed population of fiber diameters.
Unmyelinated fibers were found to be scarce, except in the genu
where they comprised about 16% of total fibers (Aboitiz et al.,
1992).

Qualitative tissue contrast of anatomic MR images is based
on differences in the density of water protons and their relax-
ation times. To exploit these relationships in order to obtain
more reliable information about the tissue microstructure, it
is necessary to detail the contributions of different contrast
mechanisms such as given by the relaxation times T1, T2, and
T2*. In fact, quantitative parametric MRI studies have been of
increasing interest in recent years. For example, the longitu-
dinal relaxation time T1 describes the recovery of magnetiza-
tion from a perturbed state to its equilibrium state. It mainly
reflects the mobility of water protons. Accordingly, quantita-
tive T1 evaluations have been shown to enhance the patholog-
ical specificity by an improved differentiation of healthy and
affected tissue within individual subjects. Anatomic variations
between “normal appearing white matter,” “diffusely abnormal
white matter” and discernable white matter lesions were the topic
of numerous clinical studies (Dreha-Kulaczewski et al., 2009;
Hagemeyer et al., 2012; West et al., 2014). In multiple scle-
rosis, increased water T1 values are linked to increased water
content, caused by edema, and increased extracellular space,
caused by extracellular loss and demyelination (Vrenken et al.,
2010).

In general, cerebral white matter often contains distinct
regions with either small unmyelinated fibers or large and
gigantic myelinated fibers. These differences in microstructure
lead to regional variations in water content and extracellular
space and in turn affect the respective T1 relaxation times.
Or conversely, T1 relaxation times of (normal) white matter
reflect the fiber anatomy and underlying cellular composition.
This work therefore applied a novel rapid T1 mapping method
(Wang et al., 2015) to study the CC in healthy human subjects
where the type and distribution of axonal fibers are well-known.
To properly cover callosal portions with densely packed small
fiber bundles and gigantic fibers with large extracellular space,
regions-of-interest for a quantitative T1 evaluation were placed

according to the CC parcellation scheme of Hofer and Frahm
(2006).

Materials and Methods

Ten healthy male subjects (age range 18–35 years) participated in
this study. Written informed consent, according to the recom-
mendations of the local ethics committee, was obtained from
all subjects prior to MRI. MRI studies were conducted at 3
T (Magnetom Prisma, Siemens Healthcare Erlangen, Germany)
using a 64-channel head coil. Anatomic images were based on
a T1-weighted 3D fast low angle shot (FLASH) MRI sequence
(repetition time TR = 11 ms, echo time TE = 4.9 ms, flip
angle 15◦).

Single-shot T1 mapping of the CC was performed at 0.75 mm
in-plane resolution and 6 mm section thickness in a midsagit-
tal position without involving the lateral and third ventricles as
well as the surrounding gray matter. T1 mapping was based on
a single-shot inversion-recovery experiment (Look and Locker,
1970; Deichmann and Haase, 1992) with radial undersampling
(25 spokes, TR= 3.29ms, TE= 2.00ms, flip angle 4◦) at a tempo-
ral resolution of 82.25 ms per frame. The total acquisition time
was 8 s and measurements were repeated three times.

The time course of the MRI signal can pixel-wise be
described by

M(t) = M0∗ − (M0∗ + M0) exp(−t/T1∗)

with M0∗ the observed steady-state magnetization, M0 the equi-
librium magnetization, and 1/T1∗ = 1/T1–1/TR log(cos(α)).
Assuming TR < < T1∗,T1, the desired T1 value can be calculated
(Deichmann and Haase, 1992) according to

T1 = T1∗ M0 / M0∗

Serial image reconstruction was performed in reversed chrono-
logical order based on regularized non-linear inversion (NLINV)
for parallel MRI (Uecker et al., 2008) which was extended to
real-time MRI at high temporal resolution (Uecker et al., 2010,
2012). The latter version was adapted to reconstruct the image
series obtained by the inversion-recovery experiment prior to
pixel-wise fitting (Wang et al., 2015).

To cover specific subregions of the CC, we used the geomet-
ric parcellation scheme described by Hofer and Frahm (2006).
ROIs were manually drawn on grayscale maps and placed within
the genu (region I = 1), the anterior midbody (region II = 2),
the somatomotor region (region III–IV = 3) as well as the
splenium (region V = 4) as indicated in Figures 1A–C. Data
analysis, reconstruction, and ROI definition were performed
usingMATLAB2013a (MathWorks, Natick, MA,USA). Regional
differences of mean T1 values were tested for significance
(Superior Performing Software System, SPSS Inc.) using ANOVA
combined with a post hoc test (Bonferroni) for multiple compar-
isons at a threshold of p < 0.05. Analyses were performed
between different CC regions in every individual as well as in a
group analysis.
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FIGURE 1 | (A) Fiber composition in the midsagittal corpus callosum
(CC; modified after Aboitiz et al., 1992) with large circles representing
thick fibers and small circles representing thin fibers. (B) Geometric
parcellation of the CC (Hofer and Frahm, 2006) with I = prefrontal,
II = premotor and supplementary motor, III = primary motor,
IV = primary somatosensory, and V = parietal, temporal, occipital.

(C) Color-coded T1 map of the CC (subject VII) with ROI definitions:
low T1 values are in blue and high T1 values appear in red. (D)
Corresponding mean T1 relaxation times in the four regions (subject
VII). Filled asterisks indicate significant differences to all other areas,
open asterisks indicate significant differences to other areas except to
the second area marked with an open asterisk.

Results

The three repetitive measurements in each subject resulted in
very similar T1 values with no statistically significant differ-
ences (not shown here). Because of this high intra-subject repro-
ducibility, the subsequent results only used the first data set
for each subject. We further found the single-shot measure-
ments for T1 mapping to be virtually free of motion artifacts.
Moreover, in contrast to other quantitative MRI studies, we eval-
uated absolute T1 relaxation times across all subjects without
individual normalization (Hofer and Frahm, 2006; Hofer et al.,
2008).

As shown in Figure 1C (color-coded T1 map) and Figure 1D
(regional distribution of T1 values) for a single subject, the T1
relaxation times in the most anterior part of the CC (genu) were
significantly lower compared to the anterior midbody, somato-
motor region, and splenium. Only subject IX presented with
significantly lower values in the genu compared to the somato-
motor and splenium region, but no significant different values
to the anterior midbody. The color-coded T1 maps for all 10
subjects are shown in Figure 2, while quantitative T1 values and
statistically significant differences are summarized in Table 1. The
T1 relaxation times in the somatomotor region were in most
subjects significantly higher compared to all other CC regions;
significance only failed in subject VIII for the anterior midbody.
In contrast, the T1 relaxation times of the anterior midbody
and splenium with its mixed fiber population were not signifi-
cantly different to each other in individual subjects in almost all
cases.

The same findings were obtained by taking the mean T1
relaxation times averaged across all 10 subjects (Figure 3). This

observation demonstrates that T1 relaxation times in midsagittal
CC sections are highly reproducible between individuals.

Discussion

In this study, we found variations of T1 relaxation times in
four different regions of the human CC, which are in line with
the known fiber anatomy in respective topographic locations.
Our data show a trend for higher T1 values in the somatomo-
tor region with large fiber diameters and lower axon density.
Accordingly, there is no common T1 relaxation time for the
entire CC: the longitudinal relaxation mechanism directly reflects
differences in water content and mobility which are associated
with fiber anatomy and in turn depend on fiber thickness, degree
of myelination, extracellular space, and fiber density.

In contrast to other white matter areas in the brain (e.g.,
in parietal, occipital, or frontal hemispheric areas) which are
characterized by small u-fibers and large association and projec-
tion tracts including populations of gigantic myelinated and
small unmyelinated fibers (Mori et al., 2002; Schmahmann and
Pandya, 2006; Schmahmann et al., 2007), the CC consists of
regions with distinct and well-described fiber populations (de
Lacoste et al., 1985; Aboitiz et al., 1992; Clarke and Zaidel,
1994; Aboitiz and Montiel, 2003). These established anatomic
features render it possible to define relations between in vivo T1
values and underlying white matter microstructure. In partic-
ular, the lowest T1 relaxation times were found in the genu
of the CC with densely packed thin fibers with less myelin,
whereas the highest T1 relaxation times were found in the
somatomotor region characterized by bundles of gigantic fibers.
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FIGURE 2 | Color-coded T1 maps of the CC for all 10 subjects.

In fact, increased water proton T1 relaxation times, as shown
here in areas with gigantic fibers, are linked to increased
water content and mobility caused by increased extracellu-
lar space (Vrenken et al., 2010). On the other hand, mixed
fiber populations with large and small myelinated fibers as in
the anterior midbody and parts of the splenium show simi-
lar T1 values, due to similar axonal densities and degrees of
myelination.

A common problem for in vivo MRI studies of tissue
microstructure is partial volume effects. In white matter partial
volume effects are to be considered when different fibers or fiber
bundles reside in a single image voxel. Here, the use of ROI
analyses of specific CC regions in healthy subjects circumvented
most of this problem and helped to establish a robust relation-
ship between fiber composition and absolute T1 relaxation time.
Moreover, overlapping signal contributions from white matter,
gray matter, and cerebrospinal fluid could be minimized by
choosing an adequate slice thickness to avoid any coverage of
the ventricles as well as cingulate white and gray matter. Finally,
high-resolution mapping of the midsagittal fiber profile of the
CC was ensured by using 0.75 mm in-plane resolution, while
the novel rapid single-shot method (Wang et al., 2015) not only

TABLE 1 | T1 relaxation times (ms, mean ± SD) in the corpus callosum and
significant regional differences (p < 0.05).

Subject 1 Genu 2 Anterior midbody 3 Somatomotor 4 Splenium

I 691 ± 6 734 ± 6 804 ± 7 743 ± 6

II 671 ± 7 761 ± 7 861 ± 8 734 ± 7

III 695 ± 7 756 ± 7 838 ± 10 777 ± 8

IV 689 ± 7 771 ± 6 874 ± 8 747 ± 8

V 703 ± 6 739 ± 6 800 ± 7 770 ± 6

VI 649 ± 8 714 ± 7 768 ± 8 693 ± 6

VII 716 ± 6 764 ± 6 827 ± 8 760 ± 7

VIII 680 ± 7 718 ± 6 752 ± 7 712 ± 7

IX 679 ± 7 705 ± 6 823 ± 9 729 ± 8

X 684 ± 6 719 ± 6 778 ± 7 739 ± 6

I 2,3,4 1,3 1,2,4 1,3

II 2,3,4 1,3 1,2,4 1,3

III 2,3,4 1,3 1,2,4 1,3

IV 2,3,4 1,3 1,2,4 1,3

V 2,3,4 1,3,4 1,2,4 1,2,3

VI 2,3,4 1,3 1,2,4 1,3

VII 2,3,4 1,3 1,2,4 1,3

VIII 2,3,4 1 1,4 1,3

IX 3,4 3 1,2 ,4 1,3

X 2,3,4 1,3 1,2,4 1,3

FIGURE 3 | Mean T1 relaxation times in the four regions of the CC
averaged across all 10 subjects. Filled asterisks indicate significant
differences to all other areas, open asterisks indicate significant differences to
other areas except to the second area marked with an open asterisk.

minimized putative motion artifacts, but also resulted in highly
reproducible T1 values in each subject within a measuring time
of seconds.

The current finding of T1 differences in relation to CC
fiber anatomy is in line with previous results obtained by
other techniques (Hofer and Frahm, 2006; Hofer et al., 2008;
Horowitz et al., 2014) and further agrees with postmortem
findings (Aboitiz et al., 1992). A recent diffusion MRI study
(Horowitz et al., 2014) revealed a similar distribution of fiber
diameters in the CC as originally demonstrated by electron
microscopy (Aboitiz et al., 1992): axon diameters are narrow in
the genu, broad in the body part, and moderate in the splenium.
However, the diffusion-weighted echo planar imaging method
required a long acquisition time of about 10 min and also
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resulted in image distortions (Horowitz et al., 2014; Innocenti
et al., 2015).

Seewann et al. (2009) showed in a combined post-
mortem MRI and histopathological study of the brains of
patients suffering from multiple sclerosis that T1 relax-
ation times in diffuse abnormal white matter are correlated
with diffusion metrics such as fractional anisotropy, appar-
ent diffusion coefficient and axonal counts, as well as with
axonal and myelin density. Higher T1 relaxation times
in brain tissue were reported to correlate with reduced
myelin density, increased fibrillary gliosis, inflammatory brain
regions, or axonal loss (Seewann et al., 2009; Vrenken et al.,
2010).

In comparison to previous studies (Hofer and Frahm,
2006; Hofer et al., 2008), the T1 mapping proposed here
appears to be the fastest and most sensitive neuroanatomical
mapping technique in vivo, with the potential for interindividual

regional comparisons without the need for value normaliza-
tion. Furthermore, the high experimental accuracy provides great
flexibility, and will allow for the monitoring of disease progres-
sion and brain development or plasticity processes in individual
subjects.

Absolute T1 relaxometry with access to microstructural tissue
properties may find manifold clinical applications. For example,
this may in particular apply to abnormal white matter in chronic
multiple sclerosis with special emphasis on the CC as an indicator
for neocortical atrophy.
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