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Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly
and accurately assess complex morphological and functional interactions between
neural cells. Current software-based identification methods of neural cells generally
fall into two applications: (1) segmentation of cell nuclei in high-density constructs
or (2) tracing of cell neurites in single cell investigations. We have developed novel
methodologies to permit the systematic identification of populations of neuronal
somata possessing rich morphological detail and dense neurite arborization throughout
thick tissue or 3-D in vitro constructs. The image analysis incorporates several
novel automated features for the discrimination of neurites and somata by initially
classifying features in 2-D and merging these classifications into 3-D objects; the
3-D reconstructions automatically identify and adjust for over and under segmentation
errors. Additionally, the platform provides for software-assisted error corrections to
further minimize error. These features attain very accurate cell boundary identifications
to handle a wide range of morphological complexities. We validated these tools using
confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying
degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We
demonstrated the robustness of these algorithms in a more complex arena through the
automated segmentation of neural cells in ex vivo brain slices. These novel methods
surpass previous techniques by improving the robustness and accuracy by: (1) the
ability to process neurites and somata, (2) bidirectional segmentation correction, and
(3) validation via software-assisted user input. This 3-D image analysis platform provides
valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-
D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular
matrix interactions.
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Introduction

The analysis of neural tissue or tissue surrogates is increasingly
performed within a three-dimensional (3-D) context as neural
engineers and neurobiologists gain an appreciation for cell-
cell and cell-extracellular matrix interactions across tissue-
level dimensions. The study of neural cells within 3-D
environments has increased in both in vivo and in vitro
applications, and has benefited from advances in image
acquisition technology. For example, imaging techniques such as
multiphoton microscopy permit visualization and monitoring of
neural cells at increasingly deep levels within the cerebral cortex
in live animals (Stosiek et al., 2003; Sullivan et al., 2005; Gobel
et al., 2007), providing a vast array of temporal and 3-D spatial
information. Additionally, researchers are increasingly utilizing
more representative 3-D cell culture systems over traditional two-
dimensional (2-D) cell cultures (Yu et al., 1999; Lin et al., 2005b;
Cullen and Laplaca, 2006; Cullen et al., 2011; Hopkins et al.,
2015). This 3-D context presents the advantages of traditional
in vitro systems, while allowing investigations of cellular behavior
in a more physiologically-relevant state, including cell-cell and
cell-extracellular matrix interactions that may be constrained in
planar cultures.

As image acquisition techniques and cell culture technology
advance to permit utilization of deep (i.e., thick) 3-D
environments, there is an increasing need for analysis tools
to facilitate the investigation of cell morphology and function
within this framework. Specifically, automated image analysis
routines for rapid and accurate segmentation of fluorescently
labeled neural cells and/or their processes would facilitate such
studies. Problems associated with automated image analysis
are amplified in neural systems, where typical analyses are
confounded by issues such as diverse cellular morphologies,
complex process outgrowth, and high cell densities.

Accordingly, our objective was to create a robust system
that allowed for rapid and accurate analysis of multiple cellular
morphologies without special or multiple staining regimes.
Current automated segmentation algorithms have difficulty
providing high throughput mapping of complex morphological
and functional interactions. For instance, although many
routines can accurately quantify nuclear (i.e., spherical) labeling
in 2-D or 3-D, nuclear stains alone are inherently limiting as they
omit information pertaining to such important measures as cell
morphology, neurite outgrowth, and cell-cell interactions (e.g.,
receptor-mediated or synaptic). When labeling neuronal somata,
commercial software is error-prone in the quantification of 2-D
neural images as large caliber processes are routinely counted
as cells (unpublished observations). Furthermore, publically
available systems generally fall into one of two different camps:
(1) user-driven systems (e.g., Neurolucida, StereoInvestigator),
which have excellent reconstruction capabilities, but are
extremely time-consuming, or (2) completely automated
systems, (e.g., ImageJ routines, Image Pro Plus), which may be
fast, but typically offer little user control and may be inaccurate
given irregular (e.g., non-spherical), process-bearing neural cell
morphologies. One recent alternative to these two categories
is the FARSIGHT framework that allows for complex analysis

and associative image analysis (Bjornsson et al., 2008; Luisi
et al., 2011). While powerful in its capabilities, this framework
requires multiple histological markers and is computationally
intensive. Likewise, neural-specific image processing techniques
presented in the literature tend to be along one of two different
applications: (1) cell population characterization, in which the
algorithms segment nuclei of medium to high density neural
constructs—including FARSIGHT Nucleus Editor (Solórzano
et al., 1999; Sarti et al., 2000; Chawla et al., 2004; Bjornsson et al.,
2008; Latorre et al., 2013), or (2) single cell (or low density)
reconstruction, with highly detailed traces of individual cell
processes—including FARSIGHT Trace Editor (Al-Kofahi et al.,
2002, 2003; Koh et al., 2002; Meijering et al., 2004; Zhang et al.,
2007; Luisi et al., 2011). Of note, FARSIGHT can either count
nuclei or trace neurites in distinct modules, but currently the
framework is not robust enough to handle somata and neurites
together.

Given this landscape, the goal of the current work was to fill
the gap in analysis capabilities. In particular, we have devised
a strategy that allows one to optimize the imaging parameters
for signal acquisition for neurites, which can be done via visual
inspection and the precise confocal settings are not necessary as
inputs into our software. Acquiring neurites often saturates the
signal for cell bodies. In contrast, if you optimize for somata, one
is often left with poor or non-existent information about neurites
(thus standard “auto-tuning” features omit important micro-
features). Of course, this issue can be partially overcome with
a severely restrictive optical thickness and z-stack increment,
but this often comes at the cost of requiring enormous times
for image acquisition. Moreover, our approach applies for any
method or stain that simultaneously labels fine feature(s) and
robust feature(s), thus deriving multi-faceted information. In
particular, our method allows the capture of information about
cell bodies without discarding (or not acquiring) information
about network connectivity when captured using a single
label (e.g., genetic fluorescent protein expression or other
cytoplasmic fluorescent markers). This method vastly increases
the throughput of 3-D work at every step of the process
from labeling/staining to image acquisition through quantitative
analysis. Additionally, we demonstrate that this increase in
throughput does not sacrifice the accuracy or quality of acquired
data. The work presented here offers researchers a simple,
tunable, single channel, automated image analysis tool with user-
controlled corrections that can be optimized to compensate for
application-specific issues associated with analysis of 3-D neural
systems. Specifically, in contrast to any other current option,
the analysis tool presented here offers the ability to identify
neuronal somata with dense neurite arborization within thick
3-D constructs or tissue.

We accomplish this via themodification of existing techniques
as well as the development of novel features. Previous studies
have addressed 2-D and 3-D nuclear segmentation techniques
(Irinopoulou et al., 1997; Lin et al., 2005a). One particular
algorithm repeatedly employed is the highly efficient watershed
algorithm (Umesh Adiga, 2001; Lin et al., 2003). Despite the
widespread use of this algorithm for delineating cellular objects,
this technique is notorious for over-segmentation, an error that
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occurs when distinct nuclei are broken down into multiple
components. Other investigators have reduced this problem by
using a priori knowledge to skillfully sculpt image contours that
guide object segmentation. For example, one technique used a
hybrid of gradient cues and geometric distance transforms, to
shape the image based on both geometric and intensity features
(Lin et al., 2003). Another technique avoided region based
segmentation algorithms altogether and drew lines between
coupled indentations or “necklines” to split overlapping nuclei
(Belien et al., 2002). While these processing methods improved
segmentation results, they could not entirely prevent over-
segmentation. For the remaining errors, post-processing has
proven to be very effective. In particular, Lin and Adiga have
demonstrated excellent results by using geometric measures (e.g.,
area, convexity, and texture) to control merging of neighboring
segmented objects (Adiga and Chaudhuri, 2001; Lin et al., 2003,
2005a).

In addition to the classic segmentation problem, neural image
processing algorithms have the issue of rapidly distinguishing
somata from neurites. In our application, in which we extract
the boundaries of somata from images with dense neurites, the
watershed “over segmentation” of neurites becomes an asset. The
spiny and dimpled projections (or recessions) of the neurites
“misdirect” the watershed routine and produce heavily splintered
and fractured elements. Cell bodies, on the other hand, tend
to have rounder, smoother morphologies. In this regard, the
segmentation of cells and neurites take on entirely different
shapes and sizes, and it is on the basis of these differences that we
may classify and thus remove unwanted features from the image.
However, while fractured segmentation is intended for neurites,
it is undesirable when it occurs in somata. We can remedy cell
body over-segmentation by using 3-D context clues to identify
problem areas. Specifically, we can first segment cells in each 2-D
frame (z-slice at a particular z location), and then use information
from overlapping cells in adjacent frames (the z−1 and z+1
positions) to identify errors.

Though the 3-D context can eliminate many errors, we and
others have seen that it cannot eliminate all segmentation errors
(Latorre et al., 2013). Therefore, we also implemented a software-
assisted correction mode to reduce the error rate further.
Consequently, we have utilized a multilateral solution including
somata vs. neurite segmentation, 3-D context segmentation
correction, and software-assisted user validation to minimize
error rate.

In this paper, we present methods to rapidly and reliably
distinguish cell bodies from neurites and automatically identify
segmentation errors. In addition, we provide methods for
software assisted manual corrections for any remaining errors.
Our overall objective was to provide a quick, reliable, and
easy to use algorithm that included the ability to identify
neuronal somata across 3-D tissue or tissue surrogates in z-stacks
preserving morphological/connectivity data, thus improving the
scope and efficiency of analyses without sacrificing accuracy. We
experimentally validated these techniques using confocal z-stacks
taken from thick 3-D in vitro neural constructs consisting of
simple one channel fluorescently labeled neurons with increasing
neurite outgrowth and morphological complexity. Additionally,

we quantified fluorescently labeled neural cells across thick
organotypic ex vivo brain slices. The results attained by our
algorithm were statistically compared to the “gold standard,” i.e.,
manual human analysis. This analysis platform provides valuable
methods for unbiased measurements of neural cells within a 3-D
context and builds toward functional tracing of neuron-neuron
interactions over 4-D.

Materials and Methods

3-D Primary Cortical Neuronal Cultures and
Organotypic Brain Slice Cultures
All procedures involving animals conformed to guidelines set
forth in the NIH Guide for the Care and Use of Laboratory
Animals and were approved by the Georgia Tech Institutional
Animal Care and Use Committee. All cell reagents were
obtained from Invitrogen (Carlsbad, CA) or Sigma (St. Louis,
MO) unless otherwise noted. Tissue was harvested from Sasco
Sprague-Dawley rats (Charles River, Wilmington, MA) following
anesthetization using isoflurane.

Neurons were derived from embryonic day 17–18 rat fetuses
by isolating the cerebral cortices, which were dissociated
using trypsin (0.25%) + 1mM EDTA (10min at 37◦C)
followed by DNase (0.15mg/mL). Neurons were entrapped
in several formulations of 3-D culture matrices of Matrigel
(Matrigel is primarily collagen and laminin; 7.5mg/mL; BD
Biosciences) or SeaPrep agarose (1.5%; Cambrex), either with
or without collagen IV covalently crosslinked (0.3–0.6mg/mL),
as previously described (Cullen and Laplaca, 2006; Cullen et al.,
2007). The cultures were 500–1000μm thick at a final cell density
of 3750–5000 cells/mm3, were fed neuronal medium (Neurobasal
medium + 2% B-27 + 500 μM L-glutamine) and maintained
in a tissue culture incubator (37◦C, 5% CO2, 95% humidified
air).

Brain slices were acquired from postnatal day 11–12 rat pups
by isolating the brain and generating 400μm thick coronal
slices using a McIIwain Tissue Chopper (Mickle Laboratory
Engineering, United Kingdom). The media for the first 2 days
was 50% Opti-Mem+ 25% Hanks Balanced Salt Solution+ 25%
heat inactivated horse serum + 5 mg/mL D-glucose + 1mM
L-glutamine; thereafter the media was Neurobasal medium +
2% B-27 + 5 mg/mL D-glucose + 1mM L-glutamine. These
organotypic brain slice cultures were maintained in a tissue
culture incubator on Millipore membranes within 6-well plates
containing 1.2mL media per well.

Fluorescent Labeling and Image Acquisition
Cells and brain slices were labeled using fluorescent
probes for distinguishing live and dead cells (LIVE/DEAD
Viability/Cytotoxicity Kit; Molecular Probes, Eugene, OR). Cell
cultures and brain slices were rinsed in buffer and incubated with
2μM calcein AM and 4μM ethidium homodimer-1 at 37◦C for
30min and rinsed in PBS. After viability/cytotoxicity staining,
cells/slices were viewed using a Laser Scanning Confocal
Microscope (Zeiss 510, Oberkochen, Germany) with Argon
and Helium-Neon lasers. Images were taken at 20× and 40×
magnification with a Zeiss LD Plan Apochromat 20× 0.80N.A.
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with a field of view of 460.7 microns × 460.7 microns or a
40×: Zeiss Fluar 40× 1.30N.A. Oil with a field of view of 230.3
microns × 230.3 microns. Settings (i.e., pinhole size, exposure
time, gain, scan time, dwell time, etc.) were optimized for each
sample in order to image the finest features of each sample (the
neurite processes). Multiple z-stacks (5–20μm plane-to-plane
separation, depending on the objective used—20× images were
10–20 microns and 40× 5–10 microns) were acquired from the
different culture conditions, and were exported as AVI files with
512 × 512 pixels (per z-slice/frame) and 24-bit color depth. For
each sample, a 100μm thickness was analyzed in a section away
from the top or bottom surface of the sample in order to avoid
edge effects. Confocal images were viewed using LSM 5 Image
Browser (Zeiss).

Segmentation Test Conditions
The automated segmentation routines were written in Matlab
(Mathworks, version 7.01) and tested on 16 confocal z-stacks
that were divided into four levels of culture complexity.
Various complexity levels were tested to examine whether
increasing complexity in neuronal morphology and neurite
outgrowth (network formation) to examine the capabilities
of our complex algorithms to minimize error (Figure 1).
All levels utilized 3-D cultures of primary cortical neurons
homogeneously distributed throughout thick (>500μm)
matrices. Different culture parameters such as matrix type
(bioactive Matrigel/collagen-laminin and relatively bio-inert
agarose) and cell seeding density (3750–5000 cells/mm3)
resulted in morphologically different cultures. The variables
leading to different culture levels were cell density/clustering (a
function of matrix and cell seeding density; impacting degree
of overlapping somata) neurite outgrowth (a function of matrix
permissiveness; influencing process, non-cell soma, counts), and
neuronal morphology (a function of matrix; altering shape of
cell soma). The first three categories (of four) utilized agarose
as the matrix material, and resulted in the maintenance of
a spherical or near-spherical neuronal morphology. Level 4
cultures were developed within a bioactive Matrigel/collagen-
laminin matrix where neurons were able to actively remodel
and thus assume a variety of complex in vivo-like (e.g., non-
spherical) morphologies not present in levels 1–3. The difference
among levels 1, 2, and 3 are the amount of neurite outgrowth
and resulting cell clustering. Specifically, level 1 represented
a baseline with spherical neuronal morphology throughout
culture, relatively low cell density (i.e., little clustering) while
demonstrating a paucity of neurite outgrowth. Level 2 cultures
had a moderate increase in neurite outgrowth with cell
densities and morphologies similar to level 1. Level 3 cultures
demonstrated extensive neurite outgrowth with an associated
increase in cell density. Level 4 cultures also demonstrated
significant neurite outgrowth, and although these cultures had
a moderate cell density, there was cell clustering in some cases.
Culture level descriptions are summarized in Table 1. In addition
to testing multiple categories of in vitro cultures, we assessed the
algorithm robustness by applying the automated segmentation
routines to confocal z-stacks generated from ex vivo brain
slices.

FIGURE 1 | Definition of test categories. Variation in testing conditions was
achieved by dividing cultures into four categories based on culture complexity.
Levels one through three consisted of mainly spherical neurons with increasing
amounts of neurite outgrowth. Specifically, (A) level one had spherical neurons
with few neurites and no cell clustering; (B) level two had mainly spherical
neurons with increased neurite outgrowth and little clustering; (C) level three
had robust neurite outgrowth with increased cell clustering (yellow circles).
Additionally, (D) level four had increased complexity due to more diverse,
non-spherical neuronal morphologies (white circle), cell clustering (yellow
circle), and significant neurite outgrowth. Images are 2D reconstructions of
confocal z-stacks (100μm total thickness) imaged at 20×; scale bar = 50μm.

TABLE 1 | Description of 3-D neuronal culture parameters by category
number.

Soma morphology Neurite outgrowth Cell clustering

Level 1 Spherical Low Low

Level 2 Spherical Medium Low

Level 3 Spherical High Medium

Level 4 Complex High Medium

Higher category numbers correspond to increased culture complexity.

Validation Methodology and Statistical Analysis
For validation of software performance, the total cell count,
fraction of false positive cells, and fraction of false negative cells
were recorded at various stages in the routine. The accuracy and
error percentage were calculated in comparison tomanual counts
attained by experienced technicians. Validation was performed
on all 16 culture confocal z-stacks as well as 2 brain slice z-stacks.
We chose a conservative validation approach to analyze the total
error present at various stages of the algorithm. Specifically, the
error analysis was based on the total error percentage, defined
as the percentage error based on the sum of the number of
false positives plus the number of false negatives (calculating
accuracy based purely on count output may artificially raise
performance as false positives and false negatives can potentially
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cancel out). Two-Way repeated measures general linear model
ANOVA was performed with culture complexity (i.e., level
1–4) as an independent variable, sub-routine point as the
repeated variable, and count accuracy, false positive (%), false
negative (%), and total error (%) as dependent variables. When
significant differences existed between groups, Tukey’s pair-wise
comparisons were performed. For all statistical tests, p < 0.05
was required for significance. Data are presented as mean ±
standard deviation.

System Development
We have developed algorithms to identify cell body boundaries
for images possessing richmorphological detail and dense neurite
outgrowth. For labeling 3-D cellular objects in a confocal stack of
2-D images (z-stack), we considered two different strategies: (1)
segmenting cells in 2-D slices and merging overlapping cellular
objects (Tekola et al., 1996; Irinopoulou et al., 1997; Belien
et al., 2002), and (2) segmenting cells in 3-D volumes (Sarti
et al., 2000; Adiga and Chaudhuri, 2001; Chawla et al., 2004).
We choose the former because an analysis of this type easily
lends itself to visual feedback and rapid error correction, and
the merging of 2-D “blobs” into 3-D cellular objects provides an
opportunity for error identification and correction. Furthermore,
2-D segmentation with 3-D “stitching” can be computationally
much less expensive than 3-D segmentation and may enable
more rapid processing. Undoubtedly, some of these advantages
are not exclusive to this strategy, but they do more naturally
fall out from this approach, which greatly simplifies algorithm
implementation. User feedback and rapid, click-and-correct
error correction were required for our applications, where both
high throughput and near perfect accuracy are desirable. The
ability to rapidly identify cell bodies, at any point during a live
experiment, influenced this work significantly. An overview of
the full segmentation process—including 2-D segmentation, 3-D
merging, automated error correction, and software assisted error
correction—is presented in Figure 2.

2-D Somata Segmentation and Neurite Filtering
Although the 3-Dmerging of 2-D cellular objects can compensate
for errors in 2-D segmentation, it is desirable for 2-D cell body
boundary identification to be as accurate as possible. For each
of the test categories, accurate identification of cell boundaries
required image preprocessing, 2-D watershed segmentation, and
object classification and neurite filtering, which are described in
detail below.

Color Filtering and Global Thresholding
As a first step toward identifying somata, we used color and
intensity cues to separate the image into foreground and
background regions. Through the graphical interface, the user
scrolled through color-specific intensity histograms for each
2-D frame in the z-stack. For a specified dye, the color
component was extracted, and each frame was transformed
into an achromatic intensity image (Figure 3A), whereupon
a global intensity-based threshold, T, was applied to separate
the image pixels into foreground and background (Figure 3B).
Pixels with an intensity value above the threshold were identified

as potentially belonging to somata, and were assigned a
value of 1. Pixels below the threshold were assigned a 0
or background value: I(x,y) = {1 I ≥ T; 0 Else}, where x
and y represent the pixel indices within a 2-D image frame.
Following the application of the threshold, the remaining objects
in the binary image consisted of somata, neurites, and image
artifacts.

Optional Morphological Filtering
After separating images into foreground and background
regions, morphological operators can be applied to remove
holes inside remaining objects (and to separate overlapping
objects that are connected with very narrow regions). In our
test images, there was very little intensity variation among the
pixels that represented somata; therefore, the application of
a global threshold did not produce holes in the foreground
objects. (In order to capture images with neurites and rich
morphological detail, we used a high intensity light source during
image acquisition, and, as a result, many of the soma and
neurite pixels were at or near saturation.) Thus, we did not
require morphological filtering to reshape the binary images;
however, in the case of level 3 images, where cell clustering
was rampant and neurite outgrowth pervasive, we used a 3 × 3
binary kernel with the center element and 4 nearest neighbors
set to 1 (i.e., a “diamond” shaping-element) to erode the
binary images. Successful usage of morphological filtering on
level 3 cultures indicates that flexibility of the system to work
independent of morphological filtering, culture morphology, or
image saturation.

In general, there may be advantages to avoiding
morphological filtering, as the resulting smoothing can
remove spatial cues that naturally indicate overlapping objects
(Crespo andMaoio, 1999; Kumar and Shunmugam, 2006). Given
the lack of intensity variation within the soma of our images,
morphological filtering was generally not needed. Without
morphological filtering, “necklines” and other inflection points
were preserved to help properly define the regional minima
that guide object segmentation, but the morphological filtering
performed in level 3 cultures showed that the algorithm is not
reliant on preserving this information or oversaturated images.
So, while the successive use of dilation and erosion operators
may help remove some neurite features, such measures may also
remove critical boundary indicators.

Distance Transforms
The successful application of the watershed algorithm requires
that each object is marked by a regional minimum and that
the image contours more or less follow the object boundaries.
Unfortunately, natural intensity gradients are not sufficient to
define the regional minima for each object (Lin et al., 2003). This
was particularly true of our test images, where nearly saturated
pixels presented very little texture in the soma region. Regardless,
the analysis tool was built to function properly independent of
a saturated or unsaturated soma region. To derive the regional
minima and object contours, the Euclidean distance transform
was applied to the stack of binary images (Figure 3C):
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FIGURE 2 | Flow diagram of segmentation routines. (A) Raw image
z-stacks were imported into the program. (B) Prior to initiating cell
segmentation, the user could optionally specify segmentation tuning
parameters (otherwise default parameters were used). (C) Objects of
interest, including potential somata, were identified in each 2-D frame in
the z-stack. (D) The segmented objects were further separated into
somata candidates and neurite fragments. (E) 2-D soma candidates

were evaluated against objects in neighboring z-slice and were either
stitched together into 3-D objects or removed from consideration. (F)
Following automated segmentation and error correction, the user could
choose to manually correct any remaining segmentation errors with
click-commands from the mouse. During the 3-D merging routines, if an
object failed to meet certain criteria, it was flagged to alert the user to
a possible error.

FIGURE 3 | Process flow for 2-D segmentation of cell bodies.
Graphic representation of 2-D segmentation process: (A) The color
component for the fluorescent dye of interest was extracted to form an
achromatic intensity image; (B) A global threshold was applied for each
2-D frame in the z-stack, separating pixels into foreground (regions of
interest) and background; (C) The regional minima were defined by
applying the Euclidean distance transform (or alternatively the Chebyshev
transform) to the “thresholded” image; (D) Following application of the

distance transform, the watershed algorithm was applied to the
transformed image: the mottled contours of the neurites produced very
fractured segmentation boundaries, while the rounder, smoother
morphologies of the soma produced accurate segmentation boundaries;
(E) Objects were classified as either soma or neurite fragments
according the area enclosed by the watershed lines, and neurite
fragments were removed from consideration. (F) Picture of the cell body
boundaries projected back onto the original image.

I
(
x, y

) =
√
(x− xb)2 + (y− yb)2 (1)

where xb and yb represent the coordinates of the nearest
background pixel. The local minima were assigned to pixels with
themaximum distance value to the nearest background pixel. For
most test images, the Euclidean transform produced satisfactory
results. However, for images with a high degree of clustering and
dense neurite outgrowth (level 3 and level 4), the Chebyshev or

“chessboard” transformwas used to minimize over-segmentation
errors:

I(x, y) = max
(|x − xb|, |y − yb|

)
(2)

The Euclidean distance transform accounts for the projection
along both the x- and y-axes between a given pixel and
its geodesic distance to background. Because the Chebyshev
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transform defines values based on themaximum projection along
the x- or y-axis, the determination of the local minima may
be more immune to erratic variations along one axis. Thus,
images with extremely rich and complex morphologies appear to
be less susceptible to segmentation errors when the Chebyshev
transform is applied.

2-D Watershed Segmentation and Object
Classification
After the regional minima were defined by the transformed
images, we applied a 2-D watershed algorithm to segment
the objects (Figure 3D). The watershed algorithm involves
interpreting the image as a surface in which points of the
same intensity value are at the same height, and classifying
points according to the direction of the gradient at their
respective locations: (1) regional minimum, points that reside
at a local minimum of the surface, (2) “catchment basins,”
points whose gradients point in the direction of the same
minimum, and (3) “watershed lines,” points that reside at a
local maximum, and thus could belong to any adjacent minima.
A common analogy for describing the watershed algorithm
involves punching a hole in each regional minimum and then
flooding the entire image from the bottom. Watershed lines
or segmentation boundaries are then constructed to prevent
distinct flooding regions from overlapping. Many details on 2-
D and 3-D watershed implementations have been previously
described (Adiga and Chaudhuri, 2001; Gonzalez and Woods,
2002).

The watershed algorithm produced segmentation boundaries
that were related to the image contours. Whereas, the mottled
contours of the neurites resulted in highly fractured objects,
the relatively smooth morphologies of cells produced larger and
rounder objects. It was on the basis of these differences that we
easily distinguished between object types. Figure 4 demonstrates
a typical bi-modal distribution for segmented objects binned by
pixel area that is presented to the user. Based on the histogram,
the user can intelligently set the area threshold based on their
particular microscope, culture, or tissue conditions. Objects less
than the area threshold, α, were labeled neurite fragments, and
objects greater than α were labeled cellular objects. Subsequently,
all segmentation boundaries corresponding to objects with areas
lower than αwere dismissed from consideration (Figure 3E), and
the result was visualized superimposed on the original image
(Figure 3F). The populations were not perfectly distinct, so there
was a small probability that some neurite fragments remained;
likewise, a few small cell bodies could have been removed. We
remedied the inclusion of segmentation errors by observing
idiosyncrasies that arose when merging 2-D objects into 3-D cell
bodies.

3-D Merging and Error Identification
Following watershed segmentation and object classification,
each 2-D frame contained segmented objects that fell into one
of three categories: (1) correctly segmented somata, (2) false
positives (neurites, artifacts, and over-segmented cells), and (3)
false negatives (under-segmented somata and unidentified cell
bodies). To finalize the segmentation of cells in three dimensions,

FIGURE 4 | Distribution of segmented objects binned according to
pixel area. The morphological differences between neurites and somata
produce watershed segmentation boundaries that, when binned according to
pixel area, fall into two distinct populations. The threshold, α (vertical, dashed
line), is used to separate objects into neurites and cell bodies. Objects with a
pixel count or area ≥ α are labeled “cells”; objects with an area < α are labeled
“neurite fragments.” (Inset) Watershed boundaries for somata and neurite
fragments.

we merged 2-D objects into 3-D cell bodies, and we used
conflicts that arose during merging to identify and, in most
cases, automatically correct segmentation errors (Figure 5). The
algorithm for merging 2-D “blobs” into 3-D cells involved
assessing the merger from two vantage points: (1) the forward
projection of a 2-D cellular object onto overlapping objects in
the adjacent frame and (2) the reverse projection of overlapping
objects back into the original frame. These two vantage points
ensured that only cells with maximum mutual overlap were
merged. (A scenario, which we refer to as “unrequited overlap,”
can arise where an object, C1, in Frame Fi maximally overlaps
with another object, C2, in Frame Fi+1 which shares the greatest
maximum, mutual overlap with yet another object, C3, in
Frame Fi).

In addition to the mutuality criteria for merging 2-D objects
into 3-D cell bodies, we required that the percentage of object
overlap between 2-D objects exceed an empirically defined
threshold, β—defined as the proportion of the intersecting
pixels, Area(ci n ci+1), to an object’s pixel count, Area (ci). If
multiple objects from either vantage point exceeded β, then a
segmentation error likely occurred. Any number of actions could
then be taken to resolve the conflict, such as merging over-
segmented objects, splitting under-segmented objects, or flagging
the offending object pixels for manual user validation (at the
conclusion of all automated routines). For our application, we
choose a simple mode of action: for all errors identified in the
forward projection, we merged objects and set flags for user
validation; for errors identified in the reverse projection, we only
flagged the offending objects for user validation. (Empirically,
it was determined that most identified errors required merging
but that under-segmentation, which requires splitting, was more
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FIGURE 5 | Illustration of 3-D merging and error identification.
(Left) This figure exemplifies segmentation results for three cells—A, B,
and C—which appear in z-slices/frames Fi, Fi+1, and Fi+2. In Frame
Fi+1, we show three correctly segmented somata. In Frames Fi and
Frames Fi+2 we illustrate over-and under-segmentation errors,
respectively. 2-D objects are merged into 3-D cell bodies if the
percentage overlap between the objects is ≥ β, where β can be any
number between 0 (no overlap) and 1 (100% overlap). The merging
algorithm considers two z-slices/frames at a time, and segmentation
errors are identified when multiple objects in a single frame exceed β.
(Top Right) For example, cell B from frame Fi+1 was projected into

Fi+2. All object(s) in Fi+2 that overlapped with B’s projection (dashed
cell boundary) were considered as merging candidates; in this case, the
object B + C satisfied the percentage overlap criteria. However, the
reverse projection of B’s best merging candidate, B + C, back onto the
previous z-slice/frame identified two objects that satisfied the merging
criteria: B and C. Because three objects - B, C, and B + C - were
eligible for merging, the under-segmentation error was identified (gray
box). (Bottom Right) In a similar fashion, the forward projection of A1
into Fi+1 overlapped best with A; however, the reverse projection of
A1’s best merging candidate significantly overlapped with two objects:
A1 and A2, thus identifying a 2-D segmentation error.

likely to be identified in the reverse projection.) The threshold,
β, took on any value between 0 (no overlap) and 1 (complete
overlap), where the smaller the parameter implemented, themore
sensitive the algorithm was to potential errors. In any frame, if a
2-D cellular object was not connected to pixels in the adjacent
frame(s) it was assumed to be an artifact or neurite and was
removed. The algorithm is summarized in pseudo-code form
below:

Procedure 3Dmerge_ErrorCheck

Fi = Frame in z-stack
CFi = {Set of 2-D objects in Frame, Fi}

C
j
Fi = 2-D object in CFi

Initialize: EFi = {0}; Set of
objects marked for error

Initialize: CeFi = CFi ∀ Fi; Set of objects
eligible for 3-D merging

For each Frame in the z-stack, Fi
For each eligible cell, Ce

j
Fi , in the current

Frame, Fi
Fk = Fi
Repeat

1. Project Ce
j
Fk onto Fk+1

Co←Ce
j
Fk∩CFk+1 ; Co is the set of

overlapping objects in CFk+1
If objects in Co exceeding β , Cb, are

greater in number than 1
A. Merge Cb in 2-D
B. Flag objects for error check;

EFk+1 ← EFk+1 ∪ Cb ∪ CejFk
2. Project Cb onto Fk

Co← Cb ∩ CFk ; Where Co is set of

overlapping objects in CFk
If objects in Co exceeding β , Cr, are

greater in number than 1
A. Flag objects for error check;

EFk ← EFk ∪ Cr
3. If CejFk AND Cb share the greatest

mutual overlap

A. Merge CejFk and Cb in 3-D
B. Remove Cb from the eligibility

set, CeFk+1
C. Increment Fk

Until CejFk is NOT attached to a new object in
3-D (Step 3A)

User Interface and Software Assisted Error
Corrections
The image processing algorithms discussed previously were
integrated into a graphical user interface (GUI) that was
designed to facilitate parameter selection, visual feedback,
and user-guided edits (Figure 6). The following features
were incorporated into the GUI: (1) 2-D and 3-D cell
databases for maintaining cell coordinates and boundary
information, (2) histograms and segmentation statistics for
assisting parameter selection, (3) saving and reloading options
for revisiting and revising z-stacks, (4) computer assisted manual
segmentation for error correction, (5) morphological operator
and process selection for preprocessing, and (6) 3-D idealized
graphic reconstructions of segmented cultures. Although it
is desirable for the software to achieve 100% accuracy with
zero user intervention, software guided edits enable rapid
adjustments or corrections to the segmentation parameters
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FIGURE 6 | Illustration of software tools. The segmentation algorithms
were integrated into a graphical user interface (GUI) to facilitate visual
feedback, parameter selection, and software assisted error correction. (A)
Segmentation boundaries (white) are projected onto individual frames in the
z-stack (a scroll bar, not shown, is used to switch between frames).
Segmentation data, including cell ID number, area, and diameter (white box),
are displayed for a selected cell. (B) Potential segmentation errors are
automatically flagged in red. (C) A user-applied mouse command instructs the
software to perform a merge operation. Blue pixels outline the object in the
forward adjacent z-slice/frame that is connected to the merged cell. (Gray
pixels, not shown, indicate connected objects in the previous frame). Images
were taken at 20×.

and results. (The program is available upon request to the
authors).

Software Assisted Error Corrections
During the 3-D merging routine, a database was constructed
to catalog information about each cell, including its geometric
properties (such as eccentricity and concavity) and pixel
coordinates. The benefits of the database were twofold: (1) it
provided valuable statistics and information about the segmented
cells, and (2) it was useful for rapid visual feedback and
user-guided corrections. The indices that corresponded to the
boundaries of segmented objects were projected onto the original
2-D images in the z-stack. The user validated the images
by scrolling through each 2-D z-slice/frame to observe the
segmentation boundaries. To expedite manual edits, conflicts
identified during 3-D merging were flagged (with red pixels)
to draw attention to the most probable areas that required
user input. The mouse was used to display statistics about
a suspicious or flagged cell (such as cell ID number, area,
equivalent diameter) to help assess the accuracy of a particular
cell boundary. Following a decision about the accuracy of the
automated boundary, the following mouse commands were used
to manually edit the image:

Left click: add/delete cell in current 2-D frame
Middle click: merge over-segmented 2-D cells
Right click (and hold): manually draw cell boundary

Each correction, addition, or deletion of a cell in a 2-D z-
slice/frame evoked a cascade of procedures that managed the
creation, deletion, merging, and splitting of 3-D cells. Cells
were automatically merged in 3-D if they satisfied the mutual

overlap criteria (as defined previously). Segmentation lines for
2-D cells in adjacent z-slices that were merged to a user-
selected cell were color-coded and displayed in the current z-
slice. These methods allowed the user to confidently produce
near 100% accuracy in very little time. This is especially useful
in applications where highly accurate on-line cell segmentation
and identification is required for optical tracking of network
activity.

Software Assisted Manual Segmentation
The same set of software tools that enabled automated
segmentation with click-and-correct manual edits were used for
an altogether different method of cell segmentation: software-
assisted manual segmentation. For this application, the 2-D
automated segmentation routines were executed (without 3-D
merging routines) to record the indices of potential cells. In
order to prevent biasing the user, visual feedback was suppressed
since the outline of cells was not shown, and the user clicked
on individual cells in each 2-D frame to indicate which objects
were cells. The index of the user’s click was compared against
a 2-D database of potential cells; if a match was found, the
automated segmentation boundaries of the potential cell were
displayed. Click commands selected or de-selected the cell,
provided an alternative (non-watershed based) segmentation
boundary, or allowed the user to manually segment the cell. As
the user moved between z-slices/frames, 3-D merge and split
operations were automatically performed, and visual feedback
was provided to indicate the relationships of cells between frames.
This method of software-assisted segmentation allowed us to
manually build a collection of test images with which to evaluate
our automated routines. For each image evaluated, skilled
technicians carefully identified each cellular object in both 2-D
and 3-D.

Results

The segmentation routines were rigorously tested in order to
assess both the accuracy and robustness of the algorithms.
Accuracy measures were attained by evaluating the efficacy
of the algorithms both with and without error correction
routines. Additionally, the influence of user-defined biases and
the applicability of these algorithms to ex vivo brain slices were
evaluated.

Quantification of In Vitro Performance
In order to assess the fidelity of the algorithms, automated
software segmentation boundaries were compared to the
software-assisted manual segmentation. Specifically, the
results of the automated routines were evaluated without 3-D
error correction, with 3-D error correction, and following
manual correction of software-defined probable errors (manual
correction was only allowed if the software flagged a potential
error; in other words, errors that were not flagged by the
software were ignored). At each of these stages, the following
parameters were attained: (1) cell count, (2) over-counted cells
(i.e., number of false positive cells), and (3) missed cells (i.e.,
number of false negative cells). Software defined probable error
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points were then manually assessed by experienced technicians
and the appropriate action was taken (i.e., correction or no
correction—although the vast majority of flagged errors required
correction). The software quantification parameters (e.g., area
threshold, α, and percent 3-D overlap, β) were empirically
optimized for only one image-stack in each level, thus the same
settings were maintained within each level to demonstrate
robustness of the system (e.g., the output was consistent
across samples for a give set of parameters). This multi-level
analysis permitted assessment of the value of somata vs. neurite
segmentation, 3-D context segmentation correction, and
software-assisted user validation in significantly reducing error
and enhancing the accuracy of the routine output (Figure 7 and
Table 2).

Fully automated and user-corrected quantification were
compared to manually-attained cell counts in order to assess
the overall accuracy and error sources of the software. The
results are tabulated in Table 2, which depicts the raw counts
for the different points of the sub-routine in addition to the false
positive and false negative counts (including error percentages).
Analysis of the total error percentage (based on false positive
cells plus false negative cells) was found to be a sensitive measure
of software performance. The total error percentage was found
to depend significantly on cell culture level (p < 0.05) and
sub-routine point (p < 0.001), with no interaction between
these factors. Overall, the application of 3-D error correction
significantly reduced the total error percentage (p < 0.001
for each). There was an additional significant reduction in the
total error percentage when software-assisted error correction
was applied following automated 3-D error correction (p <

0.05). Pair-wise comparisons within the four cell culture levels
clearly demonstrated the importance of 3-D segmentation and

error correction as culture complexity increases (Figure 7).
However, such analysis techniques did not significantly improve
performance in relatively simple samples (level 1) where
somata assume spherical morphologies and bear few or no
processes.

Sensitivity to User-defined Parameters
To investigate the influence of parameter selection on the
accuracy of the segmentation routines, we examined cell count
error as a function of the area classification criteria, α, and
intensity threshold, T, for a level 2 test image. The area threshold
was normalized to one standard deviation less than the mean
of the cell bodies [i.e., 100% = Mean(cell bodies) – StdDev(cell
bodies)], and the parameter was swept from 15 to 100%. The
intensity threshold was swept from 35 to 100% of the maximum
pixel intensity. Error was defined as the percent deviation of the
automated cell count from the “gold standard” cell count, and
was tabulated for the segmentation algorithms run both with and
without automated 3-D error correction.

Figure 8 depicts error as a function of the user-defined
parameters, α and T (the dashed-box indicates parameters that
were most likely to be manually selected based on histogram
feedback provided by the software, for example, refer to
Figure 4). In general, the automated cell count increased as
the thresholds were decreased. Thus, in the case without 3-
D error correction, the cell count was artificially raised by a
lower threshold and the inclusion of over-segmented somata and
neurite fragments, which was corrected for in the case with 3-
D error correction. Figure 8 demonstrates that using the 3-D
context to identify and correct segmentation errors generates a
much more robust and resistant parameter space with which to
achieve accurate cell-count results. Therefore, there is a larger

FIGURE 7 | Summary of results. The total error percentage, defined as the
number of false positives counts plus the number of false negative counts in
comparison to the actual number of cells, was calculated for levels one
through three (spherical morphology with increasing levels of neurite
outgrowth) and level four (complex morphology with high neurite outgrowth).
Two-Way repeated measures ANOVA revealed that the total error was

reduced by the presence of automated error correction (p < 0.001), and was
further reduced by correction of software-identified probable error points
(p < 0.05). Tukey’s post-hoc pair-wise comparisons revealed significant error
reduction within levels two through four; asterisks denote significant
reduction in total error percentage vs. “Before Automated Error Correction”
within each level (*p < 0.05; **p < 0.01; ***p < 0.001).
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FIGURE 8 | Sensitivity to user-defined parameters. Cell count error as a
function of α and T with (A) and without (B) 3-D error correction. The dashed
box indicates the parameters an operator would likely select based on
histogram data from the software. In (A) the 5% error region occupies 44%

of the shown parameter space; in contrast, the same error region occupies
only 18% of (B). The removal of neurite segments and the merging of
over-segmented somata in (A) accounts for the reduced sensitivity to user
defined parameters.

error tolerance for parameter selection, and future versions of the
software may be able to automate parameter selection.

Performance Validation in Brain Slices
In addition to 3-D in vitro cultures, the image processing
algorithms were also applied to 3-D ex vivo brain slices. As a
demonstration of system robustness, the algorithms were tested
on confocal z-stacks acquired from cerebral cortical brain slice
cultures. We choose samples with varied densities of viable cells,
ranging from relatively low to high densities (Figure 9). The z-
stacks tested also varied based on range of morphologies and the
contrast in cell features (e.g., cell pixels ranged from relatively
faint, low intensity, to saturated, high intensity). Apart from the
global intensity threshold, T, the user-defined parameters were
identical for these two image stacks (α = 50, β = 0.15, TA =
60%, TB =95%). Following the same protocols defined for the
in vitro cultures, the software achieved 93 and 97% accuracies for
the low and high cell density z-stacks, respectively.

Discussion

We have demonstrated novel methodologies for the systematic
and unbiased identification of neural cells distributed throughout
thick 3-D tissue or in vitro constructs. We utilized novel
features, including neurite/soma classification, 3-D merging and
segmentation error identification, and software assisted user
validation, to attain highly accurate cell boundary identification
over a wide range of morphological culture complexities.
This toolset addresses a gap between automated segmentation
routines for multi-cell nuclear images (with no neural processes
present) and single-cell (or low density) images with rich
morphological detail. Additionally, this toolset allows users
to make rapid, computer-assisted manual corrections to the
automated segmentation database, which is particularly attractive
when highly accurate assessments of cell body locations must be
made during a live experiment (e.g., optical tracking of network
activity using Ca2+-sensitive dyes). We further validated these

tools using the complex application of neural cell quantification
in ex vivo brain slices. Moreover, we demonstrated that our
algorithms leverage the increased complexity inherent in 3-D
systems as an effective means to minimize quantification errors
by applying the rich set of spatial data to automatically correct
segmentation errors. Collectively, these techniques improve
the scope and efficiency of automated neural-specific analyses
without sacrificing accuracy by identifying neuronal somata
across 3-D tissue or tissue surrogates in z-stacks preserving
morphological/connectivity data. This novel 3-D image analysis
platform offers neural engineers and neurobiologists a valuable
set of tools for the analysis of neural tissue or tissue surrogates
within a 3-D context, appropriate for the study of cell-cell and
cell-extracellular matrix interactions.

While simple morphologies similar to somatic or nuclear
staining did not require the novel error correction methods,
the significant improvements in accuracy for complex
neurobiological examples underscore the benefit of this
toolset. Although other options exist, they lack capabilities of this
toolset, namely the ability to examine complex neurobiological
examples with somata and neurites with one fluorescent marker
(Bjornsson et al., 2008; Luisi et al., 2011; Latorre et al., 2013).
We have validated these tools in the specific application of
automated segmentation of neuronal somata with dense neurite
arborization within 3-D constructs. Despite a conservative
validation scheme, the algorithms performed very well for a
variety of test images, with an accuracy ≥ 95% over a wide range
of morphological culture complexities. Similarly, in brain slices,
we performed a proof-of-concept test of the algorithms with an
accuracy > 90%. It is surprising that the lower density slice had a
lower accuracy, but the image may have had a fainter signal for
some cells and large-caliper neurites that could have contributed
to the slightly reduced accuracy. Since we only ran the algorithm
on two ex vivo samples, we cannot determine if the algorithm
performs better on higher density slices. During the validation
process, users were not allowed to correct unmarked errors that
were otherwise obvious to the investigator. Thus, the accuracy
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FIGURE 9 | Demonstration of system robustness: soma
segmentation in ex vivo brain tissue. Custom 3-D segmentation
algorithms were applied to z-stacks attained from confocal imaging of
brain slices from cerebral cortex. The z-stacks tested varied based on
the density of viable cells, ranging from relatively low (A) to high (B)

densities. Following the same protocol of the in vitro testing, the
algorithms achieved accuracies of 93% (A) and 97% (B) (α =50,
β = 0.15, TA = 60%, TB = 95%). Images were taken at 40×. (Inset)
White pixels indicate soma boundaries for a single slice within the
z-stack. Scale bar = 20μm.

of the presented algorithms should approach 100% in practical
applications.

We have addressed the challenge of parameter selection by
taking measures to ensure that the process parameters were
relatively easy to tune. The empirically derived operator variables
that influenced the performance of the segmentation routines
included (1) the pixel intensity threshold, T, (2) the soma/neurite
area threshold, α, and (3) the 3-D merging overlap percentage,
β. The area and intensity parameters, α and T respectively, were
assigned based on histograms generated by the software. The
overlap percentage, β, was used primarily to specify the sensitivity
of the software to segmentation errors. Although careful tuning
of the parameters certainly improved performance, the accuracy
of the software was relatively robust to changes in these
parameters (as indicated in Figure 8). Thus, it was only necessary
to tune the parameters for one z-stack in each test category.

One of the challenges in image segmentation is to define a
metric for object classification. In order to optimize performance
(speed and accuracy), we chose to distinguish between neurite
fragments and somata using very simple criteria—object pixel
area. Although area thresholds have been reported in the past
to separate nuclei from artifacts (Adiga and Chaudhuri, 2000),
we have shown that watershed segmentation produces boundary
areas with remarkably distinct populations for neurites and
somata. Despite the efficacy of this method, inevitably some
cell body objects were excluded while some neurite fragments
were included. The 3-D merging algorithms all but eliminated
this problem. For example, objects which only appeared in a
single z-slice were assumed to be artifacts or neurite fragments
and were removed. Furthermore, the exclusion of cell bodies
(false negatives) usually occurred near the cells termination in
the z-axis where the cell possessed a very small 2-D diameter;
in this case, the cell was usually represented in neighboring z-
slices, where confocal slices captured a larger 2-D perspective

of the cell (a typical cell occupied from 3 to 6 z-slices in
our application, although this will be a function of confocal
microscopy parameters).

We have developed novel techniques for merging 2-D objects
into 3-D somata and identifying 2-D segmentation errors.
These techniques improve on previous methods (Irinopoulou
et al., 1997; Belien et al., 2002) to merge 2-D objects into 3-
D nuclei. Specifically, we introduced (1) criteria to evaluate
cell mergers from multiple vantage points and (2) methods to
identify potential segmentation errors. Previous techniques only
considered the forward projection of 2-D nuclei into neighboring
z-slices and could not recognize 2-D segmentation errors, thus
opening up the possibility for more errors with no means
to identify them (Umesh Adiga and Chaudhuri, 1999). One
novel feature of our 2-D to 3-D merging strategy is that it
identifies both false positives (over-segmented objects) and false
negatives (under-segmented objects) by evaluating cell mergers
from multiple vantage points. Previous techniques have had to
run multiple algorithms to perform certain cell mergers and have
lacked user validation capabilities to eliminate their remaining
errors ranging from 5 to 8% (Latorre et al., 2013).

In the future, we plan to implement improvements to the
merging algorithm. While our algorithm identifies both false
positives and false negatives, we have no method in place to
distinguish between these error types, nor do we have routines
to “split” under-segmented cells. Additionally, we only used two
z-slices to determine if and how adjacent 2-D objects should be
merged. In the future, it would be beneficial to use information
from all overlapping 2-D objects (that typically traverse 3 or
more z-slices) to arbitrate decisions about the error type (false
positive, false negative) and the appropriate action (merge, split).
One approach could use geometric statistics from local (only
overlapping objects) and global (all 2-D objects) segmentation
boundaries, along with an empirically derived cost function, to
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facilitatemerging and splitting decisions. Themethod of applying
a cost function to arbitrate merging decisions was demonstrated
with great success (Lin et al., 2003). By integrating this approach
into our merging routines, we could automatically correct over-
and under-segmented somata, thereby requiring less software
assisted manual input.

Future extensions of this software may prove useful
in addressing challenging neural-specific image analysis
applications where efficient and accurate automated routines
are required. For instance, our 3-D context segmentation
correction algorithms may improve the efficiency and accuracy
of analyzing systems with increased densities of labeled cells
(e.g., dense cortical regions in brain tissue or dense in vitro
neural constructs) or the assessment of 3-D co-localization of
multiple fluorescent labels. Additionally, although the presented
methods were used exclusively to catalog information regarding
somata, investigators may be able to utilize knowledge of cell
body boundaries to facilitate additional morphological analyses,
such as quantifying the spatial extent and volume of neurite
outgrowth. Such detailed analyses based on cell geometry
and connectivity are particularly relevant to neurobiological
applications, yet are obviously not possible based solely on
traditional nuclear staining. For instance, neuron-specific
morphological-functional relationships have been noted
previously, including that electrophysiological and/or membrane
properties correlate with geometrical parameters such as volume
and surface area. Additionally, increased somatic volume has
been shown to correlate with increased dendritic complexity
and axonal enlargement, while the number of synaptic sites
remains fairly constant along dendrites and axons (Gutierrez-
Ospina et al., 2004; Seeger et al., 2005). Thus, measurements of

somatic/neuritic volume may correlate strongly with the number
of synapses per neuron. Additionally, points of neuritic-neuritic
or neuritic-somatic junctures may be identified morphologically
as sites of potential synapses for network mapping applications.

The work presented here is an important step toward
our long-term objective of developing algorithms that enable
automated real-time analyses, thus incorporating temporal
analyses over three spatial dimensions. Notably, we have recently
begun utilizing the next generation of these techniques for
functional neural network tracing by assessing the relative
fluorescent intensity and signal propagation using voltage or ion-
sensitive dyes in neural cultures. Clearly, for this application,
data pertaining to full neuronal morphology and network
connectivity across relevant spatial dimensions are crucial.
Ultimately, with further development these techniques may
lead to the ability for automated real-time 4-D analysis of
ensemble electrophysiological network functionality and signal
propagation across neural tissue or constructs.
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