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The etiology of autism spectrum disorders (ASDs) is complex and largely unclear.
Among various lines of inquiry, many have suggested convergence onto disruptions in
both neural circuitry and immune regulation/glial cell function pathways. However, the
interpretation of the relationship between these two putative mechanisms has largely
focused on the role of exogenous factors and insults, such as maternal infection,
in activating immune pathways that in turn result in neural network abnormalities.
Yet, given recent insights into our understanding of human neurodevelopment, and in
particular the critical role of glia and the immune system in normal brain development,
it is important to consider these putative pathological processes in their appropriate
normal neurodevelopmental context. In this review, we explore the hypothesis that the
autistic brain cellular phenotype likely represents intrinsic abnormalities of glial/immune
processes constitutively operant in normal brain development that result in the
observed neural network dysfunction. We review recent studies demonstrating the
intercalated role of neural circuit development, the immune system, and glial cells
in the normal developing brain, and integrate them with studies demonstrating
pathological alterations in these processes in autism. By discussing known abnormalities
in the autistic brain in the context of normal brain development, we explore the
hypothesis that the glial/immune component of ASD may instead be related to intrinsic
exaggerated/abnormal constitutive neurodevelopmental processes such as network
pruning. Moreover, this hypothesis may be relevant to other neurodevelopmental
disorders that share genetic, pathologic, and clinical features with autism.

Keywords: autistic disorder, autism spectrum disorder, neurodevelopment, microglia, mini-columns, neural
networks

Introduction

The complex processes that lead to the fully formed human brain encompass a spectrum of
mechanisms spanning genetic determinates to environmental and experiential influences. While
the specific mechanisms underlying human disorders of neurodevelopment, such as autism
spectrum disorder (ASD), remain poorly understood, over the past several decades significant
advances have been made to document the cellular and anatomical events that occur as the
normal human brain develops and matures. It is therefore important to consider studies of
autism in the context of normal cellular/anatomic brain developmental patterns, as it is likely
that abnormalities in the autistic brain represent an over-exaggeration and/or under-utilization
of normal physiological processes that are constitutively operant in neurodevelopment. This
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hypothesis is particularly relevant to studies of cytokines, the
immune system, and glia in autistic patients, as abnormalities
in these processes are often thought of as reaction to
exogenous insults, yet it is entirely plausible instead that
these findings represent aberrations of otherwise normal
neurodevelopmental mechanisms. In this review, we explore this
hypothesis by integrating what is known about normal human
neurodevelopment with recent work suggesting immune and
glial abnormalities may play a role in the development of autism.

Discussion

Cellular human brain development is a protracted process
that begins around the third post-conception week (pcw) and
arguably extends nearly into adulthood (Stiles and Jernigan,
2010). Conventionally, human brain development is considered
in gross stages within which major cellular and anatomic
transitions occur: namely the embryonic, fetal, early and late
postnatal, adolescent, and adult periods (Insel, 2010).

Embryonic Period
Beginning early in the embryonic period (defined as conception
to eight pcw), the basic structures of the brain, spinal cord,
and peripheral nervous system are established. The first major
differentiating event of the embryonic period is gastrulation,
during which the single-layered blastula forms a trilaminar
structure containing the ectoderm, mesoderm, and endoderm.
Gastrulation is completed by the third pcw, at which time some
cells of the ectodermal layer differentiate into neural progenitors
(Ozair et al., 2013). The first well-defined neural structure, the
neural tube, begins forming during the third pcw and serves as
the basis of the early developing central nervous system (CNS),
within which reside populations of neural stem cells. From this
basic tubular structure, more specific neural patterning of what
will become themajor brain structures and compartments occurs
through the creation and migration of neural cells from the stem
cell proliferative zones. Through graded patterns of molecular
signaling, neural progenitors migrate outward from proliferative
zones and begin differentiation such that a primitive map of the
brain is established by the end of the embryonic period. For
instance, through comparative studies of other mammals it has
been suggested that the sensimotor regions of the neocortex,
the major compartments of the diencephalon and midbrain,
and the organization of the hindbrain and spinal column are
all well established by the end of the embryonic period in
humans (Lumsden and Keynes, 1989; Bishop et al., 2002; Gavalas
et al., 2003; Kiecker and Lumsden, 2004; Nakamura et al.,
2005).

Fetal Period
Around the ninth pcw, the fetal period of development ensues
and extends until birth, during which time there is rapid growth
of the structures established during the embryonic period.
Grossly, the brain develops its characteristic gyri and sulci during
the fetal period, reflecting the underlying dramatic cellular
changes occurring during this period (Chi et al., 1977). The
majority of neuronal and glial proliferation occurs between the

9th and 16th pcw, with the peak period of migration of these cells
to their appropriate region following closely thereafter (Volpe,
2000). In fact, production of new neurons is largely finished by
mid-gestation, except for the ongoing production of neurons in
a few specialized areas (Bystron et al., 2008).

After their production in the proliferative regions, neurons
migrate in an orderly manner to their final position in the
developing brain. In the neocortex, the arriving cells establish a
6-layered structure, with the earlier migrating neurons forming
the deeper layers and the later migrating neurons forming the
more superficial layers (Cooper, 2008). Their migration from
the proliferative zone to their final position in the neocortex
is helped by the guidance of radial glial cells, a population of
stem cells that serve as a scaffold in the developing brain of
all vertebrates (Borrell and Götz, 2014). Different layers of the
neocortex contain different types of neurons as a result of both
cell-intrinsic mechanisms operant in the progenitor cells from
which they derive, and through soluble signaling cascades that
direct progenitors toward a restricted mature neuronal type
(Desai and McConnell, 2000; Leone et al., 2008).

Transient Structures
Of particular note in this migration process are a set of structures
that appear only transiently during the fetal period to help guide
the migration of progenitors to the developing neocortical layers.
The very first neurons to populate the developing neocortex form
a primitive and transient structure termed the preplate, which is
then split into two separate structures by arriving neurons—the
marginal zone and the subplate (Molnár et al., 2006). The region
between the marginal zone and subplate serves as a hub for
new arriving neurons, and will eventually become layer 6 (the
deepest) of the developing neocortex. Subsequently, all newly
arriving cells will form progressively more superficial layers of
the neocortex from this base structure.

Intriguingly, both the marginal zone and subplate have been
shown to highly express some of the genes most significantly
linked to neurodevelopmental disorders such as autism and
schizophrenia, such as Reelin and TBR1 (Hevner et al., 2001;
Bielle et al., 2005; Hoerder-Suabedissen et al., 2013). Specifically,
studies have shown that a complete loss of Reelin or TBR1
in post-mortem mouse brains results in severe disruption of
subplate and marginal zone formation, leading to significant
deficits in early-born cortical neuronal differentiation, migration,
and axonal generation, ultimately resulting in a loss of regional
identity (Hevner et al., 2001; Rice and Curran, 2001; Bedogni
et al., 2010). While complete knockout of these genes may
not be present in most ASD cases, it is plausible that smaller
changes affecting Reelin and TBR1, such as copy number
variations or single nucleotide variants, may cause changes
in their expression resulting in subtle changes in cortical
organization, and therefore contribute to the abnormalities in
neocortical connectivity thought to underlie much of ASD
pathology. While the marginal zone and subplate are clearly
instrumental in the proper migration and formation of neurons
to form mature neocortical networks, the transient nature of this
structure during development makes it impossible to study in
human post-mortem brain assessments of ASD patients. Further
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work to define the role of this structure in animal models
of ASD will be important to explore the contribution these
largely understudied structures may have to neurodevelopmental
disorders.

Cortical Mini-Columns
Similar to the unique structure and function of the marginal
zone and subplate, cortical mini-columns and their formation are
likely to be integral to the ASD phenotype. During the process
of neuronal migration in the normal brain, developing neurons
migrate from the germinal zones to predetermined areas of the
neocortex and form mini-columns, the basic organizational unit
of neuronal circuitry within the cortex (Rakic, 1988). Each mini-
column is composed of 60–100 neurons, all with apical dendrites,
myelinated, and double-bouquet axons (Mountcastle, 1997).
Groups of mini-columns are organized into radial structures
to form macro-columns, which then combine to make large
networks that span layers II through VI of the neocortex
(Mountcastle, 1978). The precise arrangement of neurons within
these mini-columns is essential to cortical development, as it has
been shown that even subtle alterations in the spacing of these
mini-columns can alter the processing of information and overall
circuitry of the neocortex (Seldon, 1981).

Intriguingly, post-mortem autistic brain tissue has been
shown to havemini-columns that are narrower and containmore
neurons than control brains, and additionally, the neurons within
the autistic mini-columns are more dispersed (Casanova et al.,
2002). Moreover, the abnormalities in mini-column structure
that the authors observed in this study were most apparent in
areas where GABA-ergic inhibitory interneurons predominated,
suggesting lateral inhibition may be disrupted in autism brains
(Marin-Padilla, 1970; DeFelipe and Jones, 1985; Casanova et al.,
2002). This is of particular interest as many other separate
investigations have provided support for global GABA-ergic
dysfunction in ASD (Palmen et al., 2004; Voineagu et al., 2011).
Specifically, aberrant GABA-ergic signaling in ASD is thought
to create a more hyper-excitable state and result in deficits of
filtering capacity and information processing within the cortex
(Casanova et al., 2003; Rubenstein and Merzendich, 2003). It has
been proposed that this deficit in inhibitory functionmay explain
in part some for the behavioral phenotype of autism and the
higher prevalence of seizures in ASD patients (Casanova et al.,
2003; Brooks-Kayal, 2010).

As with the pre-plate and subplate, the migration of neurons
into the developing mini-columns is impossible to study in
human brain tissue, and can only be assessed after the completion
of this process in post-mortem tissue from autistic patients. It
is therefore impossible to determine whether the migration into
mini-columns is aberrant, or if their migration is normal but the
patterning and wiring of these newly arrived neurons is aberrant
after they arrive in autistic patients. Animal and perhaps cellular
models such as induced pluripotent stem cells (iPSCs) again will
be important in helping to discern these possibilities, although
it is entirely possible that both mechanisms are abnormal. In
fact, there is a large body of evidence showing that fully-migrated
neurons abnormally join neural networks and these networks are
abnormally pruned in autistic brains, as is discussed next.

Microglia and Synaptic Pruning
After the process of neuronal migration, young neurons begin
to be incorporated into newly developing neural networks
through a dynamic process of synaptogenesis and pruning
that continues late into adolescence. Young neurons initially
develop processes (dendrites and axons) that allow them
to form synapses with other neurons both locally and
long-distance. The growth cone of an axon is able to sample
the neuron’s environment for both chemical and electrical
signals that guide its wiring to other neurons to create a new
synapse (Brown et al., 2002). Initial patterns of connectivity
in the fetal and early postnatal brain are characterized by
exuberant synaptic connections that will later be pruned away
to leave only the connections indicated through postnatal
experience (Stiles and Jernigan, 2010; Kettenmann et al.,
2013). This process of network refinement occurs through
both synaptic rewiring and neuronal apoptosis, with rates
of apoptosis as high as 70% of cells in some regions of
the cortex (Rabinowicz et al., 1996). Physiological neuronal
apoptosis in development occurs both as the result of intrinsic
neuronal cell death mechanisms mainly responding to the
absence of local neurotrophic factors, and also through
glial-initiated mechanisms which have recently become more
widely recognized (Marín-Teva et al., 2004; Takahashi et al.,
2005; Bessis et al., 2007).

While most research in the glial contribution to
neurodevelopment has focused specifically on astrocytes,
microglia—the resident immune cells of the CNS—were
recently demonstrated to be involved in many fundamental
neurodevelopmental processes including directing the invading
vasculature and removing apoptotic cells (Parnaik et al., 2000;
Streit, 2001; Stevens et al., 2007; Calderó et al., 2009; Paolicelli
et al., 2011). Importantly, Paolicelli et al. (2011) demonstrated
that microglial pruning of developing synapses is an absolute
requirement for normal brain development. Moreover, others
have shown that microglial cells in the developing cerebral cortex
of prenatal and postnatal macaques and rats limit the production
of cortical neurons by phagocytizing neural precursor cells
as neurogenesis nears completion (Cunningham et al., 2013).
Furthermore, studies of mice with abnormal numbers of
microglia have shown that an alteration in microglial number
perturbs neural development by directly affecting embryonic
neural precursors and inducing astrogliosis (Antony et al., 2011).
There is even evidence that microglia contribute to network
remodeling in response to learning and stimulation (Dong and
Greenough, 2004).

Despite these recent findings, the number of studies assessing
the role of microglia in autistic brain tissue directly is
strikingly small. Pardo et al. (2005) initially demonstrated that
post-mortem brain tissue from patients with autism exhibits
an increased microglial density in gray matter. Moreover,
it was shown that microglia from MeCP2-null mice—a
model of Rett Syndrome—produced a conditioned media that
damaged synaptic connectivity via a glutamate-excitotoxicity
mechanism (Stevens et al., 2007). Importantly, this effect was
not seen in MeCP2-null astrocytes from the same animals,
suggesting aberrant microglial activation during development
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may lead to improper brain development independent of
other glial populations. Additionally, it was shown that
microglia in autistic brain samples display an activated
morphology and secrete a cytokine profile consistent with a
pro-inflammatory state (Bailey et al., 1995). Furthermore, we
recently demonstrated abnormal expression of both microglial-
and astrocyte-specific cell markers in two regions of post-
mortem autistic brain tissue (Edmonson et al., 2014). These
findings are interesting as the immune response in the CNS
of patients with ASD has received a considerable amount
of attention since autism was first described. However, most
theories suggest either an exogenous factor stimulating neuro-
inflammation or an autoimmune activation in the CNS. Yet,
as the contribution of microglia to proper neuronal network
formation—independent of their immune function—becomes
increasingly recognized, it is important to consider that
the intrinsic developmental component of microglia may be
perturbed in ASD, such that their role in construction of
neural networks is abnormal independent of inflammatory
reaction (Garbett et al., 2008). This is in contrast to the
traditional view that an exogenous immune response causes
neural network destruction, although again it is possible that
both mechanisms may contribute to the ASD phenotype. We
suggest, however, that the former has received far less attention
in the ASD literature and a more thorough assessment of this
hypothesis may help significantly reconcile the disparate findings
of neural network dysfunction and immune/glial abnormalities
in ASD.

Postnatal Development
By the end of fetal development, all major adult brain structures
are present, major connections between them are established,
and the brain is poised for the rapid and dynamic growth that
occurs in the first few years of life. The brain develops rapidly
in the first few years after birth, reaching almost adult volume
by age six (Lenroot and Giedd, 2006). While the production
and migration of neurons are mainly prenatal events (with
the notable exception of subventricular zone), glial progenitors
have been shown to proliferate and differentiate throughout
childhood, likely helping to sculpt the developing synaptic
networks (Cayre et al., 2009).

One main function of proliferating glial cells during the
early and late postnatal periods is to accomplish the extensive
amount of axon myelination that occurs during this time.
Increased myelination of axons allows for increased growth of
axon diameter, and ultimately enables faster and long-distance
neuronal connections (Zalc et al., 2008). Robust increases in
myelination have been reported across the brain from ages 5–12
years, with a varying rate of fiber tract myelination in various
brain regions (Lebel et al., 2008; Lebel and Beaulieu, 2009).
These findings led to the thought that aberrant myelination
may be contributing to ASD pathology, and contributed
to the recent trend in the field towards diffusion tensor
imaging (DTI) and functional magnetic resonance imaging
(fMRI) studies. Kleinhans et al. (2012) reported white matter
microstructure changes in multiple tracts of ASD brains across
postnatal development as compared to control brains using DTI.

Specifically, they reported decreased fractional anisotropy with
increased radial diffusivity in all tracts except the brainstem,
hypothesizing that these observed changes may reflect an
underlying defect in long distance myelin tracts in ASD
(Kleinhans et al., 2012). These findings support a previous report
that showed post-mortem autistic brains had a decreased number
of long distance axons in the white matter, and additionally,
that the axons in autistic brains had increased branching
and thinner myelin when compared to controls (Zikopoulos
and Barbas, 2010). Integrating these observations with studies
supporting increased local synaptic excitation in ASD, many
have hypothesized that abnormalities in the autism brain are
a consequence of increased local neocortical connectivity and
decreased cortical inter-region connectivity (Courchesne and
Pierce, 2005; Casanova et al., 2006; Casanova and Tillquist,
2008).

Finally, while much of the organization of the postnatal
brain is genetically determined, it has been clearly demonstrated
that this intrinsic development remains extremely malleable
to experience-dependent processes (Hubel and Wiesel,
1977; Markham and Greenough, 2004; Stiles and Jernigan,
2010). Moreover, epigenetic mechanisms that ultimately
converge to influence gene expression have been shown
to be one of the main mediators between environmental
experiences and developmental synaptic plasticity (Fagiolini
et al., 2009). For instance, studies in mice have shown that
environmental enrichment results in increased chromatin
remodeling that modifies gene expression patterns in the
hippocampus, resulting in improved spatial memory (Fischer
et al., 2007). Alternatively, an increase in methylation of
the BDNF promoter and consequent decrease in BDNF
mRNA in the prefrontal cortex was found in association
with exposure to periods of abusive maternal care, and these
effects are perpetuated to the F1 generation suggesting a role
for trans-generational effects (Champagne, 2008). Similarly,
environmental insults to the developing brain, such as in
fetal alcohol syndrome, have been shown to effect glial
cells and their subsequent ability to effectively modulate
neuronal development (Guizzetti et al., 2014). Yet, while
studies of model organisms are beginning to demonstrate
that gene expression represents a critical nexus of experience
dependent plasticity, human studies of neurodevelopmental
disorders in which this process may go awry are limited, and
the general landscape of gene expression in the developing
human brain as relates to neurodevelopmental disorders like
autism is largely unexplored in relation to their corresponding
cellular and network level changes. Integrating these scales
of evidence will be an important future endeavor for the
field to begin to truly integrate environmental/experiential
influences with intrinsic mechanisms that ultimately shape
neural network development and their aberration formation
in ASD.

Conclusion

In summary, great progress in understanding the anatomical
and cellular trends underlying human brain development
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have been made over the past few decades. We have
come to appreciate though various approaches that human
neurodevelopment is a dynamic and protracted process,
characterized by an initial period of neurogenesis leading
to the formation of the basic CNS framework in early
embryonic development. This is followed by substantial cellular
proliferation, migration, and differentiation in the fetal period
that establishes the main areas and pathways of the brain
by birth. The early postnatal period is a time of rapid
growth through glial proliferation, myelination, and organization
of developing neural networks. Importantly, this process is
very malleable particularly with regard to environmental and
experiential events. Precise refinement of these developing
neural networks occurs throughout adolescence and into early
adulthood.

Previous research has led to the notion that ASD represent
a complex interplay between the genome, immune signaling,
and synaptic wiring; specifically, many of these studies
have focused on the consequences of exogenous events on
already developed neural networks. However, another potential
explanation for these findings is that they represent an
exaggeration or abnormality of normal processes that occur
during the completion of brain development. Here, we propose
that exaggerated and/or underutilized glial processes may be
contributing to the construction of aberrant neural networks,
apart from their more well-recognized immune functions.

Moreover, as the genetic, pathologic, and clinical features
of other neurobehavioral diseases like schizophrenia overlap
considerably with ASD, it is possible that this hypothesis
linking known immune and glial cell dysfunction in autism to
aberrations in normal processes of neurogenesis may be broadly
relevant to other neurodevelopmental disorders (Burbach and
van der Zwaag, 2009; Tuchman et al., 2010; Mitchell, 2011).
For instance, a large body of evidence has demonstrated glial
abnormalities in both post-mortem human brain and animal
models of Fragile × Syndrome (the most common single-
gene disorder with autism as a component) and in Down
Syndrome (Goodison et al., 1993; Greco et al., 2006; Jacobs
and Doering, 2010). Future work should concentrate on further
understanding precisely how these normal neurodevelopmental
mechanisms go awry in autism and in related disorders,
and how we can use these findings to develop biomarkers
to help diagnose and ultimately treat neurodevelopmental
disorders.
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