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Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated

transcription factor that was originally identified as a regulator of peroxisome proliferation

and adipocyte differentiation. Emerging evidence suggests that functional PPARγ

signaling also occurs within the hypothalamus. However, the exact distribution and

identities of PPARγ-expressing hypothalamic cells remains under debate. The present

study systematically mapped PPARγ mRNA expression in the adult mouse brain using

in situ hybridization histochemistry. PPARγ mRNA was found to be expressed at high

levels outside the hypothalamus including the neocortex, the olfactory bulb, the organ

of the vasculosum of the lamina terminalis (VOLT), and the subfornical organ. Within

the hypothalamus, PPARγ was present at moderate levels in the suprachiasmatic

nucleus (SCh) and the ependymal of the 3rd ventricle. In all examined feeding-related

hypothalamic nuclei, PPARγ was expressed at very low levels that were close to

the limit of detection. Using qPCR techniques, we demonstrated that PPARγ mRNA

expression was upregulated in the SCh in response to fasting. Double in situ hybridization

further demonstrated that PPARγ was primarily expressed in neurons rather than glia.

Collectively, our observations provide a comprehensive map of PPARγ distribution in the

intact adult mouse hypothalamus.

Keywords: transcription factors, in situ hybridization, mouse brain, confocal laser scanning microscopy,

hypothalamus

Introduction

Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription
factor that was originally identified as a regulator of peroxisome proliferation and adipocyte
differentiation (Issemann and Green, 1990; Dreyer et al., 1992; Kliewer et al., 1994; Tontonoz et al.,
1994; Amri et al., 1995). PPARγ has been implicated in the cellular effects of endogenous fatty
acids in peripheral metabolic tissues (Debril et al., 2001; Ahmadian et al., 2013). Furthermore, the
thiazolidinedione drugs, which target PPARγ, are effective treatments for type 2 diabetes (Knouff
and Auwerx, 2004; Knauf et al., 2006). A large body of evidence also suggests that functional PPARγ

signaling occurs within the central nervous system (CNS). Specifically, PPARγ agonists coordinate

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://dx.doi.org/10.3389/fnana.2015.00120
http://crossmark.crossref.org/dialog/?doi=10.3389/fnana.2015.00120&domain=pdf&date_stamp=2015-09-03
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive
https://creativecommons.org/licenses/by/4.0/
mailto:laurent.gautron@utsouthwestern.edu
http://dx.doi.org/10.3389/fnana.2015.00120
http://journal.frontiersin.org/article/10.3389/fnana.2015.00120/abstract
http://loop.frontiersin.org/people/251188/overview
http://loop.frontiersin.org/people/251159/overview
http://loop.frontiersin.org/people/7864/overview


Liu et al. Neuroanatomy of brain PPARγ

the expressions of genes that are involved in neuronal fatty
acid metabolism and the responses to brain injury (Heneka
et al., 2000; Sundararajan et al., 2005; Tureyen et al., 2007;
Quintanilla et al., 2008; Schintu et al., 2009; Zhao et al., 2009).
PPARγ signaling has also recently been reported to be involved
in the central control of glucose, feeding behavior and energy
homeostasis (Diano et al., 2011; Lu et al., 2011; Ryan et al., 2011;
Garretson et al., 2015). The hypothalamus has been implicated
in the aforementioned actions of PPARγ on metabolic functions.
Thus, the identification of PPARγ-expressing sites and cell types
in the hypothalamus would greatly benefit our understanding of
the mechanisms that underlie the neural control of metabolic
functions.

However, reports on the expression level and distribution
of PPARγ in the CNS have been contradictory. For example,
early studies found that PPARγ protein and mRNA were either
absent or expressed at low levels that were close to the limits
of detection in the adult rodent brain (Issemann and Green,
1990; Braissant and Wahli, 1998; Cullingford et al., 1998; Wada
et al., 2006). However, recent mRNA mapping studies have
consistently demonstrated detectable PPARγ expression in the
cortex, hippocampus, and olfactory bulb (García-Bueno et al.,
2005; Bookout et al., 2006a; Ou et al., 2006; Victor et al.,
2006; Gofflot et al., 2007; Sobrado et al., 2009; Lu et al., 2011;
Liu et al., 2014). Evidence of significant PPARγ expression in
other brain sites is rather limited. Three studies have detected
PPARγ protein by western blot and immunohistochemistry in
the midbrain (Breidert et al., 2002; Park et al., 2004; Carta
et al., 2011). Additionally, several other studies have reported
a significant amount of PPARγ in the whole hypothalamus or
identified feeding-related hypothalamic nuclei using quantitative
PCR (qPCR) and antibody-based techniques (Mouihate et al.,
2004; Sarruf et al., 2009; Diano et al., 2011; Lu et al., 2011;
Ryan et al., 2011; Long et al., 2014). Other studies described
PPARγ in mediobasal hypothalamic neurons using in situ
hybridization histochemistry (ISH) (Long et al., 2014; Garretson
et al., 2015). Notably, the results of the latter studies are at
odds with those of prior mRNA studies that showed minimal
hypothalamic and midbrain PPARγ (Bookout et al., 2006a;
Gofflot et al., 2007). Additionally, antibody-based studies have
yielded highly inconsistent results and, therefore cast doubt on
the specificities of the currently available antibodies. Specifically,
PPARγ immunoreactivity has been found either in neurons
(Park et al., 2004; Ou et al., 2006; Victor et al., 2006) or in a
mixed population of neurons and unidentified glial cells (Moreno
et al., 2004; García-Bueno et al., 2005; Sarruf et al., 2009; Zhao
et al., 2009; Carta et al., 2011; Lu et al., 2011). Furthermore,
these same studies have described PPARγ immunoreactivities
in different cell compartments and furthermore disagree on
the exact anatomical distribution of PPARγ immunoreactive
cells within the CNS. In face of all of these aforementioned
inconsistencies in the available literature, this study sought to
evaluate the anatomical distribution of PPARγ–expressing brain
cells using ISH and qPCR in a spatially resolved manner, with
a special emphasis on the hypothalamus. Moreover, we studied
hypothalamic PPARγ mRNA regulation in response to metabolic
challenges.

Materials and Methods

Animals and Diets
Wild-type mice on a C57Bl/6 genetic background were obtained
from the UTSouthwestern Medical Center Animal Resource
Center. All mice used in our ISH study were young adult males
(4- to 8-week-old) that were housed in a light-controlled (12 h
on/12 h off; lights on at 7 a.m.) and temperature-controlled
environment (21.5–22.5◦C) in a barrier facility. The animals used
for histology were fed ad libitum on a standard chow (Harlan
Teklad TD.2016 Global). The above procedures were approved
by the Institutional Animal Care and Use Committee of the
University of Texas Southwestern Medical Center at Dallas.

Tissue Collection and Preparation
On the day of sacrifice, mice were anesthetized with an overdose
of chloral hydrate (500mg/kg, i.p.) between 8:00 a.m. and 11:00
a.m. For RNAScope R© ISH experiments, the brains were rapidly
dissected from anesthetized mice and frozen on dry ice on a piece
of aluminum foil. Using a cryostat, 14–16µm brain sections were
collected on SuperFrost slides and stored at−80◦C. For the qPCR
experiments, the samples were collected and prepared exactly as
we have previously described (Bookout et al., 2006b; Lee et al.,
2012).

Chromogenic and Fluorescent ISH
As summarized in Table 1, double-Z oligo probes were designed
by the manufacturer (Advanced Cell Diagnostic). The tissue
was processed for ISH following the manufacturer’s instructions.
Briefly, the tissue was fixed tissue in 10% formalin and pretreated
with a protease-based solution (pretreatment 4) followed by
hybridization at 40◦C for 2 h. The probes were mixed using
the recommended ratio of 50:1 by volume (c1:c2 probes).
Signal amplification was achieved using either diaminodenzidine
(chromogenic) or specific fluorophores (FITC and Cy5).
Incubation with diaminodenzidine was 10min. The sections

TABLE 1 | List of reagents used for in situ hybridization and qPCR.

ISH RNAScope probes

Gene name(s) Accession # Probe region Manufacturer Cat. #

PPARγ NM_0111463 170–1490 ACD 418821-c1

Rbfox3 (NeuN) NM_001039167-1 1827–3068 ACD 313311-c2

dapB EF191515 414–862 ACD 312037-c1

Cyclophilin B

(Ppib)

NM_011149.2 98–856 ACD 313911-c1

qPCR probes

Manufacturer Cat. #

PPARγ ABI Mm01184322_m1

Npy ABI Mm00445771_m1

Avp ABI Mm00437761_g1

Please note that the probes used in this study did not distinguish between the known

isoforms of PPARγ .
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were counterstained with either Fast-Red (Sigma #N3020) or
DAPI (Vector Laboratories; H-1500). Totals of 4 and 5 mice were
used for the chromogenic and fluorescent ISH, respectively.

qPCR
Whole hypothalamus and brown adipose tissue (BAT) samples
and laser-captured microdissected samples were collected
according to methods detailed in two of our previously published
studies (Bookout et al., 2006b; Lee et al., 2012). The BAT and
hypothalamus samples were taken from a cohort of C57/Bl6 male
mice of 8–9 weeks of age (n = 6; fed on Harlan Teklad #7001
chow) (Bookout et al., 2006b; Lee et al., 2012). Hypothalamic
laser-dissected samples were obtained from another cohort of
C57/Bl6 male mice of 6 weeks of age (n = 12/group) that
included groups that were fed ad libitum on chow diet, fasted for
24 h, or fed on high fat diet for 14 weeks (42% kcal from fat, 0.2%
cholesterol—Harlan Teklad TD.88137) (Lee et al., 2012). Real-
time qPCR gene expression analysis was performed exactly as
we have previously described (Lee et al., 2012). To avoid sample
bias, whole hypothalamus and BAT RNA were diluted to similar
levels as LCM derived RNA. All RNA samples were treated and
analyzed in parallel. All data are expressed as the mean ± SEM.
The statistical analyses were performed with GraphPad Prism
6 software. The data were analyzed with a Two-Way ANOVA
(nutritional challenge vs. brain site) followed by Dunnett post-hoc
tests. The probes are listed in Table 1. Graphs were made using
GraphPad Prism 6.

Digital Images Acquisition and Analysis
Bright-field images were captured using the 10×, 20×, and 40×
objectives of a Zeiss microscope (Imager ZI) attached to a digital
camera (Axiocam). A Zeiss Stemi 2000-C binocular miscroscope
was also used to capture low magnification dark-field images
of our diaminobenzidine-labeled tissues. Identical exposure
parameters were applied to samples within each experiment.
Fluorescent digital images were acquired with a 63× oil objective
of a Leica TCS SP5 confocal microscope (UTSouthwestern Live
Cell Imaging Core). Scanning parameters included a pinhole of
1 and a line average of 8. Laser intensity, gain and offset were
adjusted appropriately to improve the signal/background. We
collected stacks up to 25 optical sections separated by a step
of∼0.3–0.4µm in a 512×512 pixel format. NIH Image J software
was used to generate our final TIFF images with combined
Z stacks. The Imaris 8.1.2 software was also used to produce
orthogonal views of confocal z-stacks.

As done by us in the past (Gautron et al., 2010), the
distribution of PPARγ in the brain was evaluated in three
mice by considering the density of diaminobenzidine-labeled
cells per brain region independently of its surface (Table 2).
Densities were subjectively determined by visual inspection of
brain sections as follows: very low, ±; low, +; moderate ++;
high + + +. Our results are meant to provide inherently
qualitative estimates.

The distribution of PPARγ in the hypothalamus was also
represented on drawings. Briefly, the outline of hypothalamic
sections was drawn in Adobe Photoshop CS5.1 using images
taken with a Zeiss Stemi 2000-C binocular microscope.

TABLE 2 | Relative densities of diaminobenzidine-labeled cells per brain

region (outside of the hypothalamus).

Brain regions ISH signal strengths

OLFACTORY REGIONS

AOB +

Cl ++

CxA ++

DTT ++

En ++

EPl ±

Gl +

GrO ++

IPl ++

LOT +

Mi +++

Pir +++

VTT ++

VENTRICULAR SYSTEM

3Vep ++

Cc ±

ChP +

LV +

VENTRAL STRIATUM

CPu +

ICjM +

LGP +

VP ±

SEPTUM AND HIPPOCAMPUS

DG ++

DS ++

Fields CA1-2 +

Field CA3 ++

HDB +

LSD +

MS +

TS +

VDB +

VS ++

NEOCORTEX

Layers I-III +++

Layers IV-VII ++

Ent +

CIRCUMVENTRICULAR ORGANS

VOLT +++

SFO +++

THALAMUS

AM ++

APT ++

AV ++

CM +

DLG +

MG +

MHb +

(Continued)
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TABLE 2 | Continued

Brain regions ISH signal strengths

PG +

PV ++

PVA ++

Rt ++

STh +

VPM +

ZI ++

MIDBRAIN

ML +

MM +

VTA ±

SNR ±

IPR ±

IPC ±

AMYGDALA

BLA +

BMA +

BLP +

BMP +

PLCo ++

PMCo ++

HINDBRAIN

3N +

4N ±

5N ±

7N +

10N ±

12N ++

Amb ±

CIC ±

Cu +

DCDp ±

Dk +

DLL ±

DR ±

ECIC ±

Gi ±

LSO ±

Me5 ±

ILL ±

LC ±

LDTg ±

LPB ±

lRt ±

MdV ±

MnR ±

NTS ±

PAG ±

PCRtA ±

Pn ±

(Continued)

TABLE 2 | Continued

Brain regions ISH signal strengths

PnC ±

Pno ±

Pr5 ±

Pr5VL ±

R +

RtTg ±

SC +

Sp5 ±

SPO ±

SuVe ±

SuG ±

Tz ±

VCA +

VCPO ±

VLL ±

CEREBELLUM

P +

GrL ++

MoL +

Very low, ±; low, +; moderate, ++; high, + + +. Abbreviations follow the nomenclature

in the Franklin and Paxinos’s Mouse Brain in stereotaxic coordinates (3rd edition):

3N, oculomotor nucleus; 4N, trochlear nucleus; 5N, motor trigeminal nucleus; 7N,

facial nucleus; 10N, motor nucleus of the vagus; 12N, hypoglossal nucleus; 3Vep,

ependymal layer of the 3rd ventricle; AM, anteromedial thalamic nucleus; Amb, nucleus

ambiguus; APT, anterior pretectal nucleus; AOB, anterior olfactory bulb; Aq, aqueduct;

AV, anteroventral thalamic nucleus; BLA, anterior basolateral amygdala nucleus; BMA,

anterior basomedial amygdala nucleus; BMP, posterior basomedial amygdala nucleus;

BLP, posterior basolateral amygdala nucleus; CA1-3, field of the hippocampus; cc, central

canal; ChP, choroid plexus; CIC; central nucleus inferior colliculus; Cu, cuneate nucleus;

Cl, claustrum; CM, central medial thalamic nucleus; CxA, cortex-amygdala transition;

CPu, caudate putamen; DCDp, deep core of the dorsal cochlear nucleus; DG, dentate

gyrus; DLG, dorsal lateral geniculate nucleus; Dk, nucleus of Darkschewitsch; DLL, dorsal

nucleus lateral lemniscus; DR, dorsal raphe; DS, dorsal subiculum; DTT, dorsal tenia

tecta; ECIC, external cortex inferior colliculus; En, endopiriform cortex; Ent, entorhinal

cortex; EPl, external plexiform later; Gi, gigantoreticular nucleus; Gl, glomerular layer;

GrO, granule cell layer; HDB, nucleus of the horizontal limb of the diagonal band;

ICjM, island of Calleja, major island; ILL, intermediate nucleus lateral lemniscus; IPl,

internal plexiform layer; IPC, caudal interpeduncular nucleus; IRt, intermediate reticular

nucleus; IPR, rostral interpeduncular nucleus; LBP, lateral parabrachial nucleus; LC,

locus coeruleus; LDTg, laterodorsal tegmental nucleus; LGP, lateral globus pallidus;

LOT, nucleus of the lateral olfactory tract; LRt, lateral reticular nucleus; LSD, lateral

septal nucleus; LSO, lateral paraolivary nucleus; MdV, ventral medullary reticular nucleus;

Me5, mesencephalic trigeminal nucleus; ML, mediolateral mammillary nucleus; MG,

medial geniculate nucleus; MHb, medial habenular nucleus; Mi, mitral layer; MM, medial

mammillary nucleus; MnR, median raphe nucleus; MS, medial septal nucleus; NTS,

nucleus of the solitary tract; PAG, periaqueductal gray; PCRtA, anterior parvicellular

reticular nucleus; PG, pregeniculate nucleus; PLCo, posterolateral cortical amygdala; Pir,

piriform cortex; PVA, anterior paraventricular thalamic nucleus; PMCo, posteromedial

cortical amygdala; Pn, pontine nuclei; PnC, caudal pontine reticular nucleus; PnO, oral

pontine reticular nucleus; Pr5, principal sensory 5; PV, paraventricular thalamic nucleus;

Pr5VL, ventrolateral principal sensory 5; R, red nucleus; Rt, reticular thalamic nucleus;

RtTg, reticulotegmental nucleus pons; SC, superior colliculus; SCh, suprachiasmatic

nucleus of the hypothalamus; SFO, subfornical organ; SNR, substantia nigra reticular;

Sp5, spinal trigeminal nucleus; SPO, superior paraolivary nucleus; STh, subthalamic

nucleus; TS, triangular septal nucleus; Tz, nucleus of the trapezoid body; VCA, anterior

ventral cochlear nucleus; VCPO, posterior octopus of the ventral cochlear; VLL, ventral

nucleus lateral lemniscus; VDB, nucleus of the vertical limb of the diagonal band; VTT,

ventral tenia tecta; VOLT, vascular organ of the lamina terminalis; SuVe, superior vestibular

nucleus; VP, ventral pallidum; VPM, ventral posteromedial thalamic nucleus; VTA, ventral

tegmental area; VTg, ventral tegmental nucleus; VS, ventral subiculum; ZI, zona incerta.
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Diaminobenzidine-labeled PPARγ-expressing cells were
manually marked by individual dots.

In addition, we evaluated the hybridization strengths within
select diaminobenzidine-labeled hypothalamic nuclei compared
to the motor cortex (Bregma −1.70mm). Brightfield images of
non-counterstained sections were taken at 40×. Image J was
used to select areas of interest containing labeling. To isolate
diaminobenzidine-labeled areas from background, images were
binarized. The mean integrated intensity was then calculated for
each selected area and divided by the surface of the area. This was
repeated in 2-3 sections per brain site in 3 different mice. The
resulting ratio reflected the intensity of the ISH strengths.

The image editing software Adobe Photoshop CS5.1 was used
to combine digital images into final plates with annotations.
The size, contrast, brightness, vibrance, and sharpness of our
images were adjusted for presentation purposes (as indicated
in the legends), while careful attention was applied to ensure
no adjustments showed anything that did not originally exist.
Specifically, the adjustments were always uniformly applied to all
of the images from the same experiment. DAPI-counterstained
nuclei were converted to gray to achieve better contrast. Finally,
the abbreviations were derived from Franklin and Paxinos’s
Mouse Brain in Stereotaxic Coordinates (third edition).

Results

General Distribution of Extra-hypothalamic
PPARγ-expressing Sites
The distribution of PPARγ-expressing cells was studied using
a novel chromogenic ISH technique (RNAScope R©) (Wang
et al., 2012). The ISH signal was represented as a brown
precipitate (diaminobenzidine) distributed in the cytoplasm
immediately surrounding the cell nuclei (Figure 1). This
approach generated virtually no background and therefore
facilitated the identification of individual PPARγ-expressing
cells. As a positive control, we attempted to detect the expression
of cyclophilin mRNA in the brain (Figures 1A,B). Consequently,
a very robust signal was ubiquitously detected across the entire
mouse brain. Brown adipose tissue (BAT) was used as a positive
control tissue for PPARγ expression. As anticipated, PPARγ was
detected in many cells across the BAT in presumptive adipocytes
(Figures 1C,D). Within the cortex, a robust PPARγ signal was
also seen in many cells (Figures 1E,F). As a negative control,
ISH was performed using a probe recognizing the prokaryotic
gene dapB. Brain sections were completely devoid of a signal
(Figure 1G). The distribution of PPARγ-expressing sites and the
strengths of the hybridization signals are briefly described below
and recapitulated in Table 2.

In the forebrain, the VOLT and subfornical organ (SFO)
both exhibited very robust signals (Table 2; Figures 2A,B). The
hybridization signal was particularly high in the ependymal layer
bordering the lower edge of the organ of the vasculosum of
the lamina terminalis (VOLT) and the SFO (Figures 2A,B). Less
robust signals were also detected in the central capillary plexus of
the VOLT and the ventromedial core of the SFO. Interestingly,
PPARγ was not observed in other known circumventricular
organs, including the median eminence and area postrema. The

FIGURE 1 | Chromogenic detection of PPARγ in the mouse brain.

(A,B) Hybridization signals (brown) of Ppib in the motor cortex. As expected,

Ppib was ubiquitously expressed across the entire brain including the cortex.

(C,D) PPARγ hybridization signals in the brown adipose tissue (BAT).

Presumptive adipocytes abundantly expressed PPARγ. (E,F) PPARγ

hybridization signals in the cortex. Note that PPARγ expression was

systematically higher in the outer layers of the neocortex. Black arrows

indicate representative Ppib- or PPARγ–expressing cells. (G) Absence of

signals in the neocortex hybridized with a probe against dapB and

counterstained with Fast-Red. Minor adjustments in contrast or brightness

were made uniformly. Abbreviations: BAT, brown adipose tissue; Scale bar in

(A,C,E) is 120µm; in (B,D,F) is 40µm; in (G) is 50µm.

entire neocortex exhibited positive hybridization signals that
increased intensity from the deepest to the most superficial
cortical layers (Figures 1E,F, 2C; Table 2). PPARγ expression
levels slightly varied among cortical areas differences, which
ought to be related to differences in neuron structure and glial
density (Elston et al., 2011). PPARγ was also expressed at high
level in the olfactory bulb and most prominently in the mitral
cell layer and granular cells (Table 2; Figure 2D). Other forebrain
structures with moderate signals included a region encompassing
the basomedial amygdala (Table 2; Figure 2G), select thalamic
nuclei (Table 2; Figure 3C), and the choroid plexus (ChP) and
ependymal cells of the cerebroventricular system (Figures 3D,E).
Moderate levels of expression were also observed in the
hippocampus and extended to the entire subiculum (Table 2;
Figures 3A,B). Significant signal was also present in the globus
pallidus and lateral portion of the caudate putamen (Table 2). In
the rest of the forebrain, PPARγ expression was quite limited.
Nonetheless, scattered cells exhibiting above-background signal
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FIGURE 2 | Chromogenic detection of PPARγ in select brain regions.

(A) PPARγ hybridization signal (brown) in the VOLT. Note the presence of a

very strong signal in cell forming an epithelium-like structure. (B) PPARγ

hybridization signal in the SFO. PPARγ is present in both the ependyma

covering the SFO and, to a lesser extent, in its ventromedial core. (C) PPARγ

hybridization signals in the outer layers of the sensory cortex. (D) PPARγ

hybridization signals in the olfactory bulb. (E) PPARγ hybridization signals in

the cerebellum. The signal was concentrated in the granular layer. (F) Details of

the hybridization signal at the edge of the granular layer. Please note low levels

in Purkinje cells (P). (G) PPARγ hybridization signals in the amygdala were

more prominent in the posterior and mediobasal parts. Minor adjustments in

contrast or brightness were made uniformly. Tissue was counterstained with

Fast-Red (pink). Abbreviations: 3V, third ventricle; D3V, dorsal third ventricle;

GrL, granular layer; MoL, molecular layer; P, Purkinje cells. Other abbreviations

can be found in the legend of Table 2. Scale bar in (A–E,G) is 40µm. Scale

bar in (F) is 12µm. Arrows indicate representative positive cells.

were detected in the ventral pallidum, septal nuclei, islands of
Calleja, and zona incerta, among a few other sites (Table 2).
The hypothalamus will be separately described in a later section.
Outside of the forebrain, positive cells generally expressed PPARγ

at lower levels and were distributed in a more diffuse manner.
In particular, a large number of sites in the midbrain and
hindbrain exhibited a weak signal including many brainstem
nuclei containing sensory or motor neurons. Among these sites,
the hypoglossal nucleus (12N) displayed the most evident signal
(Table 2; Figure 3E). In the other sites, including, but not limited
to, the dorsal raphe (DR), the hybridization signals were very
low and inconsistent (Table 2; Figure 3F). In the cerebellum,
a moderate signal was distributed in the granular layer and,
to a lesser extent, in the Purkinje cells and the cells of the
molecular layer (Table 2; Figures 2E,F). Finally, it must be noted
that PPARγ was never observed in the white matter.

FIGURE 3 | Chromogenic detection of PPARγ in select brain regions.

(A) PPARγ hybridization signals (brown) in the dentate gyrus. Expression was

seen in granular cells and, to a lesser extent, in the hilus. (B) PPARγ

hybridization signals in the CA3 field of the hippocampus. Relatively abundant

expression is seen across hippocampal neurons. (C) PPARγ hybridization

signals in the thalamus. Scattered cells expressed moderate amount of

PPARγ. (D) The choroid plexus of the 3rd, lateral and 4th ventricles contained

moderate to low levels of PPARγ. (E) PPARγ hybridization signals in the

medulla was generally very low. Nonetheless, motor neurons in the

hypoglossal nucleus were positive. (F) Among other regions in the midbrain

and pons, the dorsal raphe (DR) contained inconsistent and very low level of

PPARγ. Minor adjustments in contrast or brightness were made uniformly.

Tissue was counterstained with Fast-Red (pink). Abbreviations: cc, central

canal; LV, lateral ventricle. Other abbreviations can be found in the legend of

Table 2. Scale bar is 40µm. Arrows indicate representative positive cells.

Detailed Analysis of Hypothalamic PPARγ

Expression and Regulation
ISH revealed very limited signals within the hypothalamus
(Figures 4, 5). The suprachiasmatic nucleus (SCh) was the
only hypothalamic nucleus in which the signal was clearly
above background (Figures 4A, 5A,B). Using the chromogenic
approach, cells with several brown dots per profile were
commonly observed in the SCh (Figures 4A, 5B). The signal
strengths were estimated to be roughly 5 times lower in the SCh
than in the outer layers of the motor cortex (Figure 5C). The
ependymal layer of the 3rd ventricle was also clearly positive
for PPARγ (Figures 4C,D). The signal was more concentrated
in the mediobasal portion of the 3rd ventricle (Figures 4C,D),
an area that is enriched in tanicytes (Robins et al., 2013). In
comparison, very little signal was contained within the rest of
the hypothalamus including in the paraventricular nucleus of the
hypothalamus (PVN), the retrochiasmatic area (RCA), and the
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FIGURE 4 | Chromogenic detection of PPARγ in the mouse

hypothalamus. (A) PPARγ hybridization signals (brown) in the

suprachiasmatic nucleus. Moderate expression was seen in scattered cells.

(B) PPARγ hybridization signals in the paraventricular hypothalamus were very

limited. (C) PPARγ hybridization signals in the retrochiasmatic area are

observed in the mediobasal portion of the 3rd ventricle, but virtually absent

from adjacent neurons. (D) The mediobasal portion of the 3rd ventricle

contained positive ependymal cells. Neurons in adjacent ARC showed very

little expression. Minor adjustments in contrast, brightness and sharpness

were made uniformly. Tissue was counterstained with Fast-Red (pink).

Abbreviations: 3V, third ventricle; ARC, arcuate nucleus of the hypothalamus;

PVN, paraventricular nucleus of the hypothalamus; RCA, retrochiasmatic area.

Scale bar is 40µm. Arrows indicate representative positive cells.

arcuate nucleus (ARC) (Figures 4B–D, 5A). In the latter regions,
PPARγwas expressed in scattered cells at very low levels that were
close to the limit of detection. For example, the signal strengths
were estimated to be roughly 45 times lower in the ARC than in
the outer layers of the motor cortex (Figure 5C).

Because our results were at odds with two studies describing
abundant ARC PPARγ (Long et al., 2014; Garretson et al.,
2015), we next further investigated hypothalamic PPARγ mRNA
by qPCR. As depicted in Figure 6, PPARγ mRNA expression
was detected in the whole hypothalamus (Figure 6A). However,
PPARγ expression in the hypothalamus was 140-fold lower
than that in the BAT. To determine which hypothalamic nuclei
accounted for the detected expression, we analyzed PPARγ

expression in laser-capture microdissected hypothalamic nuclei
according to the methods we have previously utilized (Bookout
et al., 2006b; Lee et al., 2012). In agreement with our ISH
results, the hypothalamic site that exhibited the highest level of

expression was the SCh (Figure 6B). PPARγ was also detectable
in the ARC, albeit at a low level (mean Ct ∼29.2). In all other
examined hypothalamic nuclei, PPARγ was near the limit of
detection (mean Ct >30) (Figure 6B). Because studies reported
an up-regulated PPARγ mRNA in the mediobasal hypothalamus
of high-fat fed mice (Diano et al., 2011; Long et al., 2014;
Garretson et al., 2015), we considered the possibility that the
PPARγ expression level might be up-regulated by nutritional
challenges. Therefore, we systematically compared samples from
fasted, chow fed and high-fat fed mice. In the SCh, PPARγ

was significantly upregulated in response to fasting (Figure 6B).
However, in other nuclei, the levels of PPARγ expression were not
regulated either by fasting nor high-fat feeding (Figure 6B). To
further validate the sensitivity of our approach, we concurrently
examined two marker genes that known to be abundantly
expressed in identified feeding-related hypothalamic nuclei
and to be regulated by nutritional challenges. As anticipated,
neuropeptide Y (NPY) was only detected in the Arc and was
up-regulated by fasting (Figure 6C). Vasopressin (AVP) was only
found in the SCh and PVN (Figure 6D). AVP expression in the
PVN was reduced by fasting.

Identities of the PPARγ-expressing Cells
We used a multiplex fluorescent approach to further characterize
the identities of the PPARγ-expressing cells (Wang et al.,
2012). The hybridization signal was represented by individual
fluorescent dots that decorated the cytoplasm adjacent to
the cell nucleus (Figures 7A–D). In the brain, signals were
detected in the previously described PPARγ-expressing areas
that included, among other examples, high levels in the
cortex (Figure 7A) and VOLT (Figures 7B–D). The overall
distribution of the observed fluorescent signals was directly
comparable to that reported with the chromogenic approaches.
Nonetheless, the fluorescent approach was less sensitive since
areas previously described to contain very low levels of PPARγ

mRNA did not contained fluorescent signals (i.e., feeding-
related hypothalamic nuclei). Several elements suggested that
the PPARγ-expressing cells in the parenchyma were primarily
neurons. First, the distribution in well-defined parenchymal
nuclei was suggestive of a neuronal localization. Second, based on
the size (>10µm), morphology (round with multiple nucleoli),
and distribution (almost exclusively in the gray matter) of
the DAPI-counterstained nuclei of the parenchymal PPARγ-
expressing cells, the majority of these cells could be inferred
to be neurons. Third, double fluorescent ISH revealed that
PPARγ extensively colocalized with the pan-neuronal marker
Rbof3 mRNA (also known as NeuN) (Figure 7A). For example,
we observed nearly complete colocalizations between the
PPARγ and Rbof3 mRNAs in the cortex (Figure 7A). Similar
observations were made across the rest of the parenchyma. The
VOLT, SFO, and the cerebroventricular system were the only
sites containing PPARγ-expressing cells that did not exhibit
colocalized Rbfox3 mRNA (Figures 7B–D). The arrangements of
PPARγ-expressing cells in the latter structures were reminiscent
of that of ependymocytes (Nehmé et al., 2012) (Figure 7D).
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FIGURE 5 | (A) Drawings of PPARγ hybridization signals in serial sections at the level of the hypothalamus. The estimated distance from the bregma (mm) is indicated

in blue next to each section. Each red dot represents one identified diaminobenzidine-positive cell. Abbreviations can be found in Table 2. (B) PPARγ hybridization

signals (brown) in the SCh (tissue was not counterstained). (C) Semiquantitative analysis of the ISH signals strengths in select hypothalamic nuclei compared to the

cortex. Data represent mean ± S.EM. for three different animals. In the horizontal axis of this graph, arbitrary unit is used to express the ratio of the mean ISH

signals/area (see methods for details). Scale bar is 50µm. Abbreviations: Opt, optic chiasm; ARC, arcuate nucleus; CX, cortex; DMH, dorsomedial hypothalamus;

VMH, ventromedial hypothalamus; SCh, suprachiasmatic nucleus of the hypothalamus.

Discussion

This study examined PPARγ mRNA expression in the intact
adult mouse brain. Although many different types of cultured
glial cells have been shown to express PPARγ (Bernardo and
Minghetti, 2008; Dentesano et al., 2014), our data indicate that
PPARγ is enriched in neurons in the intact brain. Contrary to our
expectations, PPARγ mRNA was expressed at very low levels in
all feeding-related hypothalamic nuclei. In contrast, PPARγ was
found to be expressed in neurons at high tomoderate levels in the
entire neocortex, hippocampus, allocortex, and cerebellar cortex.
The general pattern of PPARγ-expressing cells was reminiscent of
those of other members of the PPAR family in the brain (Gofflot
et al., 2007). Moreover, the enrichment of PPARγ in cortical
and hippocampal neurons is consistent with the documented

neuroprotective actions of PPARγ agonists in these neurons.
PPARγ was also observed in select sensory and motor nuclei
and in previously uncharacterized PPARγ-expressing sites, such
as the SCh and circumventricular organs. We hope that our
study will serve as a foundation for future research that aims
to systematically delineate the physiological significance and
transcriptional targets of PPARγ in both hypothalamic and extra-
hypothalamic sites. The functional significance of our findings in
the central regulation of metabolism is discussed below.

Technical Considerations

This study used ISH approaches to detect PPARγ mRNA in
the mouse brain. In our hands, chromogenic and fluorescent
ISH were all suitable for the mapping of PPARγ transcripts.
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FIGURE 6 | QPCR analysis of PPARγ in the mouse hypothalamus.

(A) PPARγ mRNA expression in the whole hypothalamus (hypo) and brown

adipose tissue (BAT) of chow fed mice. (B) PPARγ mRNA expression in

laser-capture microdissected samples from various hypothalamic nuclei in

mice submitted to nutritional challenges. (C) Neuropeptide Y (NPY) mRNA

expression in laser-capture microdissected samples from various

hypothalamic nuclei in mice submitted to nutritional challenges.

(D) Vasopressin (AVP) mRNA expression in laser-capture microdissected

samples from various hypothalamic nuclei in mice submitted to nutritional

challenges. The value beneath each sample is the cycle number at threshold

of the chow-fed group. Asterisks identify results that were significantly different

from chow at p < 0.05. Abbreviations: ARC, Arcuate nucleus; BAT, Brown

adipose tissue; DMHvl, dorsomedial nucleus of the hypothalamus,

ventrolateral part; Hypo, hypothalamus; PVH, paraventricular hypothalamus;

SCh, suprachiasmatic nucleus of the hypothalamus; VMHdm, ventromedial

nucleus of the hypothalamus, dorsomedial part; VMHvl, ventromedial nucleus

of the hypothalamus, ventrolateral part.

Nonetheless, the chromogenic technique (RNAScope R©) was the
most sensitive of all. This technique also presented the advantage
of generating almost no background and aided the identification
of mRNA-expressing cells. Moreover, our ISH approaches
present the advantage of not relying on the use of antibodies.
This is important because peripheral immunoglobulins tend
to accumulate in circumventricular organs and the ARC near
the median eminence (Hazama et al., 2005; Yi et al., 2012),
hence often resulting in the unwanted staining of these brain
sites. Notably, the brain accumulation of immunoglobulins is
exacerbated in metabolically-challenged animals (Hazama et al.,
2005; Yi et al., 2012). Nonetheless, we must acknowledge one
caveat regarding our findings. Although we don’t expect the
distribution of PPARγ to considerably vary with age, we cannot
exclude age-related changes in PPARγ expression levels. In
particular, animals used for our ISH mapping were younger than
that those included in our qPCR study. This is was due to the
necessity to expose our animals to dietary challenges (14 weeks
on high-fat diet). Hence, we believe that additional ISH studies
are warranted to examine PPARγ expression in the brain of older
mice. Despite this caveat, the data obtained from qPCR of laser-
captured hypothalamic sites strongly mirrored our ISH results

both in terms of distribution and expression levels. Therefore,
we are confident of the specificity and sensitivity our anatomical
findings.

In contrast, we were not able to prove the specificity of PPARγ

protein detection in the CNS using antibody-based techniques
(data not shown). In particular, we tested without success two
antibodies against PPARγ [Santa Cruz-7196 (H100) (Sarruf
et al., 2009); Cell Signaling-2435S (C26H12) (Lu et al., 2011)].
Unfortunately, those antibodies detected several proteins other
than PPARγ by western blot and, thus, might not be suitable
for the detection of brain PPARγ by immunohistochemistry or
western blot. Another antibody (Abcam ab191407) did not detect
PPARγ by immunohistochemistry. In our opinion, our failure
to identify a specific antibody against PPARγ is attributable to
the fact that antibodies, and this particularly true of antibodies
against receptors and signaling molecules, commonly produce
unreliable staining (Saper and Sawchenko, 2003; Ivell et al., 2014).
For example, it has been repeatedly shown that even antibodies
that are widely used in the literature produce false positive results
(Sim et al., 2004; Herkenham et al., 2011). This lack of selectivity
might explain the discrepancies in the results of previously
published immunohistochemical studies and our own data.

Distribution and Regulation of PPARγ in
the Hypothalamus

We observed moderate PPARγ expression in the SCh and, to our
surprise, very little expression in feeding-related hypothalamic
nuclei. These findings contrast with those of recent studies that
linked hypothalamic PPARγ signaling to the regulation of energy
metabolism using mouse genetics (Lu et al., 2011; Long et al.,
2014). However, it must be stressed that the mouse lines that
have previously been utilized to delete PPARγ from the CNS were
not selective for the hypothalamus and consequently might have
resulted in reduced PPARγ signaling in other brain regions. This
situation applies to the synaptophysin-Cremouse, which displays
widespread Cre activity in both the hypothalamus and extra-
hypothalamic sites in addition to peripheral sites such as the
mesenchyme and alimentary, urinary and reproductive systems
(see the recombinase activity at http://www.informatics.jax.org/
allele/MGI:2176055). The same shortcoming applies to POMC-
Cre mice, which have been demonstrated to display Cre activity
during development in over 62 brain sites including many
PPARγ-containing sites (e.g., the cortex, SCh, hippocampus)
(Padilla et al., 2012). Two pharmacological studies also showed
that the central administration of PPARγ agonists stimulated
food intake (Ryan et al., 2011; Garretson et al., 2015). However,
the brain site(s) responsible for these effects has not been
elucidated and accumulating evidence suggests that PPARγ

agonists may act on brain cells via other receptor(s) than
PPARγ (Woster and Combs, 2007; Thal et al., 2011). More
convincingly, the overexpression of PPARγ selectively in the
adult rat hypothalamus using a viral approach resulted in altered
feeding behavior and body weight (Ryan et al., 2011). The
exact hypothalamic site(s) involved in these effects has not been
characterized. Two prior studies suggested that ARC neurons
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FIGURE 7 | Double fluorescent ISH for PPARγ and Rbfox3 in the mouse brain. (A) DAPI counterstaining (gray) and hybridization signals for PPARγ (green) and

Rbfox3 (red) in the neocortex. The white arrow indicates a representative cell with coexpression of both transcripts. The orthogonal view (Imaris) further illustrates the

proximity of PPARγ and Rbfox3 mRNAs in the cell labeled with a white arrow. The above data indicate that PPARγ mRNA is primarily localized in neurons. (B,C) DAPI

counterstaining (gray) and hybridization signals for PPARγ (green) and Rbfox3 (red) in the VOLT. PPARγ expression is apparent in the capillary plexus (cp), dorsal cap (dc),

lateral zone (lz) and ependyma (ep). PPARγ and Rbfox3 were not coexpressed. (D) Details of the hybridization signals for PPARγ (green) in the VOLT ependyma.

Adjustments in contrast, brightness, and vibrance were made uniformly. Abbreviations: AVPe, anterior ventral periventricular nucleus. Scale bar in (A) is 5µm. Scale bar

in (B) is 20µm and applies to (C). Scale bar in (D) is 12µm.

may be important in the feeding effects of PPARγ (Long et al.,
2014; Garretson et al., 2015). While it cannot be entirely ruled
out that PPARγ signaling in the ARC may regulate feeding
behavior, its expression level in this region was extremely low.

Alternatively, based on our observations, it is tempting to
hypothesize that the SCh and/or tanicytes might play a role in
the neural control of metabolism via PPARγ. Although these sites
are not traditionally considered to be critical to the regulation of
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energy balance, there is emerging evidence of their implications
in the control of energy expenditure and locomotor activity
(Bookout et al., 2013; Balland et al., 2014).

Notably, the presence of PPARγ in the SCh also implies that it
is involved in the circadian control.While PPARγ has been linked
to the regulation of circadian rhythms in peripheral tissues (Chen
and Yang, 2014), to the best of our knowledge, the role of PPARγ

in the SCh molecular clock machinery has not been well studied.
It is particularly interesting that SCh PPARγ expression was
upregulated by fasting, presumably due to increased circulating
levels of fatty acids. Combined with the observation that food
availability exerts a robust influence on clock genes expression
in the SCh (Horikawa et al., 2005), our data suggest that PPARγ

signaling in the SCh may serve as a link between metabolic
cues and circadian rhythms. Overall, our observations call for a
reappraisal of the role of hypothalamic PPARγ.

Possible Role(s) of Circumventricular
PPARγ in Metabolism

Interestingly, high levels of PPARγ were identified in two
circumventricular organs that have been implicated in the
regulation of hydromineral homeostasis and drinking behaviors
(Fitzsimons, 1998; Oka et al., 2015). This novel observation
is important considering that PPARγ agonists that are used
in diabetes treatment exert unwanted adverse effect on body
fluid homeostasis that include an elevated rate of edema (Rizos
et al., 2009). In addition to their actions on the kidney
and cardiovascular system, our data support the idea that
the circumventricular organs might be involved in PPARγ

agonist-induced fluid retention. It should also be noted that
the SFO is increasingly being recognized to regulate metabolic
functions in addition to hydromineral homeostasis (Ferguson,
2014). Furthermore, an intact VOLT is required for the
maintenance of a normal body temperature (Romanovsky
et al., 2003). It is possible that the mouse lines that have
previously been utilized to delete PPARγ from the CNS
also targeted these areas and hence resulted in a metabolic
phenotype. Considering that chylomicrons and very-low-density
lipoproteins do not cross the blood-brain barrier, it is logical
that PPARγ activity might peak in these two sites devoid of
a blood-brain barrier. Hypothetically, the fatty acids released
from the VOLT and SFO diffuse to the cerebrospinal fluid
contained in the 3rd ventricle to be transported across the
brain. If our hypothesis is correct, then PPARγ signaling in
the SFO and VOLT might be a primary determinant of fatty
acid uptake into the CNS. PPARγ signaling in the choroid
plexus might also play a role in lipids metabolism in the
brain.
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