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Heterogeneous generation of new
cells in the adult echinoderm nervous
system

Vladimir S. Mashanov *, Olga R. Zueva and José E. Garcia-Arraras

Department of Biology, University of Puerto Rico, Rio Piedras, PR, USA

Adult neurogenesis, generation of new functional cells in the mature central nervous
system (CNS), has been documented in a number of diverse organisms, ranging from
humans to invertebrates. However, the origin and evolution of this phenomenon is still
poorly understood for many of the key phylogenetic groups. Echinoderms are one
such phylum, positioned as a sister group to chordates within the monophyletic clade
Deuterostomia. They are well known for the ability of their adult organs, including the
CNS, to completely regenerate after injury. Nothing is known, however, about production
of new cells in the nervous tissue under normal physiological conditions in these animals.
In this study, we show that new cells are continuously generated in the mature radial
nerve cord (RNC) of the sea cucumber Holothuria glaberrima. Importantly, this neurogenic
activity is not evenly distributed, but is significantly more extensive in the lateral regions of
the RNC than along the midline. Some of the new cells generated in the apical region of
the ectoneural neuroepithelium leave their place of origin and migrate basally to populate
the neural parenchyma. Gene expression analysis showed that generation of new cells
in the adult sea cucumber CNS is associated with transcriptional activity of genes known
to be involved in regulation of various aspects of neurogenesis in other animals. Further
analysis of one of those genes, the transcription factor Myc, showed that it is expressed,
in some, but not all radial glial cells, suggesting heterogeneity of this CNS progenitor cell
population in echinoderms.

Keywords: adult neurogenesis, CNS, radial glia, neuroepithelium, Myc, Echinodermata

1. Introduction

In recent decades, the notion of the fixed developmental state of the adult central nervous system
(CNS) has become an outdated dogma. The often life-long ability to produce new cells and
incorporate them into existing circuits has now been demonstrated for a wide variety of organisms,
from mammals (including humans) to invertebrates (Cayre et al., 2002; Adolf et al., 2006; Grandel
et al., 2006; Fernandez-Herndndez et al., 2013; Benton et al., 2014; Urban and Guillemot, 2014;
Beltz et al., 2015; Lin and Tacovitti, 2015), yet the field of adult neurogenesis is still relatively young,
with many gaps in our knowledge remaining to be filled.

For one thing, the origin and evolution of adult neurogenesis in various animal taxa remain
an open question. For example, in some areas of the vertebrate brain, the ability to produce new
neurons is considered a phylogenetically ancient trait, while in others, such as the dentate gyrus
of mammals, it is though to be an evolutionary new adaptation (Kempermann, 2012; Urban and
Guillemot, 2014).
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Another important question is whether the ability of the
mature CNS to generate new cells under physiological conditions
can be harnessed to repair injuries. In mammals, neural injuries
result in increased proliferation in two continuously active
neurogenic zones, the subventricular zone and the hippocampal
dentate gyrus, and also activate quiescent neural progenitors
in other brain regions (Lin and lacovitti, 2015; Sun, 2015).
This response, however, is not sufficient to fully restore the
organization and function of the damaged mammalian CNS. On
the other hand, there are animals who can completely repair
neural injures. Further comparative studies of post-traumatic
and physiological neurogenesis in those models can yield useful
insights into how the limited mammalian CNS regeneration can
be improved.

Echinoderms are a phylum of marine invertebrates that
shares common ancestry with chordates within the monophyletic
group Deuterostomia. They are well known for the unusually
high regenerative capacity of their adult organs, including
the CNS. Therefore, the informative phylogenetic position
and high regenerative potential make echinoderms a very
attractive group of organisms, in which to seek insights into
the evolution of neural plasticity in deuterostomes. Neurogenesis
in adult echinoderms has been studied during post-traumatic
regeneration (Mashanov et al,, 2008; San Miguel-Ruiz et al.,
2009; Mashanov et al., 2012b, 2013, 2015a,b), but little is known
about generation of new CNS cells under normal physiological
condition, besides the mere observation of the presence of
dividing cells in the radial nerve cord (Mashanov et al., 2010,
2013). Further investigation of these endogenous progenitors
present in the intact CNS will allow us to better understand the
processes triggered by the injury and the nature of cell sources
recruited for neural repair.

We have previously established that in both the uninjured
and regenerating echinoderm CNS the majority of new cells
are produced through proliferation of radial glia (Mashanov
et al, 2008, 2010, 2013). At least some of the postmitotic
progeny of radial glia give rise to presumably functional neurons,
which form typical chemical synapses and persist long term in
the nervous tissue (Mashanov et al, 2013). Radial glial cells
of echinoderms share a number of characteristics with their
chordate counterparts, including some immunocytochemical
properties and the typical elongated shape that allows them to
span the entire height of the neuroepithelium between the apical
and basal surfaces (Viehweg et al., 1998; Mashanov et al., 2006,
2009, 2010). It has remained, however, unclear whether the radial
glia progenitors in all regions of the adult echinoderm CNS are
equally capable of producing new cells and whether the newly
born cells remained at the place of their birth or migrated away
to populate other regions of the CNS. In this study, we present
evidence suggesting that, within the main radial nerve cords, the
production of new cells is more extensive in the lateral regions
than in the midline zone and that some of the cells born in the
apical zone of the ectoneural epithelium might leave the place of
their origin to migrate basally and populate the underlying neural
parenchyma. Moreover, many of the genetic factors known to
drive adult neurogenesis in vertebrates are also expressed in zones
of new cell production in the adult sea cucumber CNS.

2. Materials and Methods

2.1. Animal Collection, BrdU Injection, and Tissue
Sampling

Adult individuals of the sea cucumber Holothuria glaberrima
Selenka, 1867 (Echinodermata: Holothuroidea) were collected
from the rocky shore of northeastern Puerto Rico. For the
duration of the experiment, the animals were kept at room
temperature in indoor tanks with aerated natural sea water, which
was changed weekly.

The animals were injected intracoelomically with 5-bromo-2-
deoxyuridine (BrdU, Sigma), at a dose of 50 mg/kg. Injections
were repeated at regular 12 h-intervals for 7 days, so that each
animal received a total of 14 injections. In order to elucidate if the
distribution of newly born cells varied at different time intervals,
the animals were sacrificed at 4 h (0 weeks), 1, 5, and 8 weeks after
the last BrdU injection. Four individuals were used at each of the
time points. Before dissection, the animals were anesthetized by
immersion in a 0.2% chlorobutanol (Sigma) solution for 10-30
min or until they showed no response to touch.

For immunocytochemistry and in situ hybridization, pieces
of the body wall containing the radial nerve cord were
quickly dissected out and fixed overnight at 4°C in buffered
4% paraformaldehyde prepared in 0.01 M PBS, pH 7.4. For
consistency, the midbody regions of the midventral radial nerve
cord were used in all experiments. The tissue samples were then
washed in the same buffer, cryoprotected in buffered sucrose and
embedded in the Tissue-Tek medium (Sakura Finetek).

2.2. BrdU Immunohistochemistry

Serial cryosections (10-um thick) were collected on gelatin-
covered slides and postfixed in formalin vapors for 15 min
to prevent section detachment during the subsequent staining
procedure. The slides were then washed in PBS, pretreated
with 0.5% Triton X-100 and incubated in 2N HCI for 30 min
at 37°C to expose the BrdU epitopes in the nuclear DNA.
After neutralization in 0.1M borate buffer, autofluorescence was
quenched by incubation in 0.1M glycine in PBS for 1 h. The
sections were then blocked in 2% goat serum. The primary anti-
BrdU antibody (1:400, GenWay, 20-783-71418) were applied
overnight at 4°C. After 10 washes (10 min each) with PBS at
room temperature, the sections were incubated in the secondary
FITC-conjugated Goat Anti-Rat antibody (1:50, GenWay, 25-
787-278232) for 1 h at room temperature. Following the final
washes (4 x 10 min, room temperature), the sections were
mounted in a medium containing 2.5% DABCO (Sigma-Aldrich)
and 10% Mowiol 4-88 (Calbiochem) dissolved in 25% glycerol
buffered with 0.2M Tris-HCI (pH 8.5).

2.3. Cell counting

Immunostained cryosections were photographed with a Nikon
Eclipse 600 microscope equipped with a SPOT RT3 camera
(Diagnostic Instruments, Inc.) using a 40x objective. The
acquired images were assembled into panoramic multichannel
composite micrographs using the stitching plugin (Preibisch
et al, 2009) in Fiji image analysis software (Schindelin et al.,
2012). The cross section area of the ectoneural part of the RNC
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was divided into ten sampling areas as follows. The width of
the RNC was divided into five areas of equal width from left to
right. Each of these five areas was further subdivided into the
apical zone containing dense accumulation of cell bodies and the
basal zone, which included the neural parenchyma (Figures 1,
2). All clearly BrdU-labeled cells (strongly and moderately
stained) were counted on every third cross-section, five sections
per animal, using the Cell Counter plugin in Fiji. The total

number of BrdU%-cells was divided by the total area of the
corresponding sampling region to calculate the of BrdU™-cell
density (Additional File 1).

2.4. Statistical Analysis

The data were found to be non-normally distributed (right
skewed). Therefore, to analyze them, we used a generalized
linear modeling approach with a quasipoisson error distribution
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FIGURE 1 | Organization of the radial nerve cord (RNC) in the sea cucumber H. glaberrima. (A) Low magnification overview of a cross section of the body wall
showing the position of the radial nerve cord (rmc) relative to other anatomical structures, such as the longitudinal muscle band (Imb), radial canal of the water-vascular
system (wvc), and the connective tissue layer of the body wall (ctl). (B) Higher magnification view of the radial nerve cord. Note two parallel bands of nervous tissue, a
thicker ectoneural neuroepithelium (en) and a thinner hyponeural epithelium (hn) separated by a thin connective tissue partition. The apical surface of the ectoneural

and the hyponeural canals form the bottom of the epineural (ec) and hyponeural (hc) canals, respectively. Paraffin sections; hematoxylin and eosin staining.

0 weeks

8 weeks

BrdU/ /DIC

FIGURE 2 | Representative micrographs showing distribution of BrdU-positive cells in the ectoneural epithelium of the RNC sampled immediately
after the last BrdU injection (A,A’) and after 8 weeks (B,B’). (A,B) show labeling with the anti-BrdU antibody in a single channel. (A’,B’) are corresponding
multichannel composite micrographs, which, besides BrdU labeling, also include nuclei labeled with propidium iodide (Pl) and differential interference contrast (DIC)
image of the RNC. Sampling areas for cell counting are marked with dashed lines. Along the left-right axis, the RNC was divided into five columns of equal width. Each
column was then subdivided into the apical (A) and basal (B) parts corresponding the the zones of dense cell body accumulation and neural parenchyma, respectively.
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instead of classic parametric tests. All computations were
performed in R (v3.1.2) (R Core Team, 2015). The statistical
significance of the main effects and interactions between them
were determined by F-test in analysis of deviance. Multiple
pairwise comparisons between individual means were performed
with the post-hoc Tukey test using the gl ht function of the
mul ti conp package. The input file containing the raw data
and the sample R code that can be used to reproduce the
calculations can be found in Additional Files 1, 2, respectively.
The full output of the statistical analysis is available in
Additional File 3.

2.5. Gene Sequences and Phylogenetic Analysis
Sea cucumber orthologs of genes known to be involved
in neurogenesis in other animals (Table1) were identified
by TBLASTN search against the H. glaberrima reference
transcriptome database (http://dx.doi.org/10.6070/H4PN93]1)
(Mashanov et al, 2014). Sequences of H. glaberrima Myc,
KlIf1/2/4, Oct1/2/11, and SoxBl were retrieved from the
GenBank (accession numbers KM281936-KM281939), as they
have been previously characterized elsewhere (Mashanov et al.,
2015a).

The identity of the sea cucumber sequences was confirmed
by the analysis of the conserved domain composition through

the Pfam (http://pfam.xfam.org/) database search and by analysis
of phylogenetic relationships with similar proteins from other
organisms (Additional File 4). These reference sequences were
retrieved by BLAST search from the UniProt, EchinoBase
(http://www.echinobase.org), and NCBI’s nr databases. Multiple
sequence alignments of DNA coding regions were performed
with ClustalW or MUSCLE and used as input to generate
phylogenetic trees with MEGA (v 6.0) (Tamura et al., 2013) using
the neighbor-joining method and the bootstrap test with 2000
replicates.

2.6. In situ Hybridization

Antisense DIG-labeled riboprobes were transcribed from PCR-
generated DNA templates using Roche DIG-labeling mix (see
Additional File 5, for PCR primer sequences). Two rounds
of PCR were performed to generate the templates. In the
first PCR reaction, pre-templates were generated from cDNA
using gene-specific primers. In the second step, these pre-
templates were amplified with primers containing promoter
sequences, so that the resulting amplicons (templates) had the
T7 and Sp6 promoters at the opposite ends. Tissue samples
were fixed and processed for cryosectioning as described above.
Frozen sections were collected onto coverslips pretreated with
3-aminopropyltriethoxysilane (APES, Sigma). Chromogenic

TABLE 1 | Homologs of neurogenesis-related genes in H. glaberrima.

H. glaberrima Orthologs in other organisms Known function(s) References

Gene Name Accession Organism

Churchill Churchill AF238863 Chicken Neuroectoderm specification. Control of neural differentiation. Sheng et al., 2003; Kerner et al.,

2009

DCLK DCLK1 NM_004734 Human Regulation of neuronal migration. Stabilization of radial glial Vreugdenhil et al., 2007
processes

ELAV HuD D31953 Mouse Early marker of neuronal commitment. Neuronal differentiation Pascale et al., 2008; Colombrita
and diversification etal, 2013

FoxJ1 FoxJ1 BC082543 Mouse Required for differentiation of ependymal cells and some Jacquet et al., 2009; Genin et al.,
astrocytes. Controls biogenesis of motile cilia. 2014

Hes SpHes SPU_006814 Sea urchin Neural stem cell maintenance. Promotes glial cell fate and Kageyama et al., 2007
represses neuronal differentiation

Kif1/2/4 Kif4 AF022184 Human Maintenance of pluripotency. Promotes gliogenesis, and Qin and Zhang, 2012
inhibits neuronal migration and differentiation

Lhx1/5 Lhx5 L42547 Zebrafish Development/maintenance of various neuronal cell types, e.g. Pillai et al., 2007; Miquelajauregui
Cajal-Retzius cells, GABAergic interneurons, neural retina etal., 2010

Msit/2 Msit NM_002442 Human Maintenance of stem/progenitor cells in the CNS through Horisawa and Yanagawa, 2012
stimulation of the Notch pathway.

Myc Myc 37056 Sea urchin Self-renewal of stem/progenitor cells. May also promote Zinin et al., 2014; Mashanov
neurogenic differentiation. In sea cucumbers, required for etal., 2015b
radial glia dedifferentiation and apoptosis in response to injury.

NeuroD NeuroD1 ub0822 Human Terminal neuronal differentiation Boutin et al., 2010

NFI NFI XM_003727226 Sea urchin Glial fate specification Kang et al., 2012

Oct1/2/11 Oct1 AY113189 Human Radial glia formation; stem cell maintenance Kiyota et al., 2008

Prox Prox1 JQI56375 Sea urchin Transition from self-renewal to neuronal differentiation Kaltezioti et al., 2010

Piwi Piwi1 AF104260 Human Stem cell maintenance, transposon silencing, regulation of Ross et al., 2014
synaptic plasticity

Runt SpRunt-1 NM_214614 Sea urchin Regulation of cell division, cell death, neuronal differentiation Coffman, 2009; Kobayashi et al.,

2012
SoxB1 Sox2 NM_011443 Mouse Stem cell maintenance, inhibition of differentiation Liuetal., 2014
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hybridization reactions were performed in 24-well tissue culture
plates as described previously (Mashanov et al., 2012a). Briefly,
the sections were pretreated with proteinase K and then
acetylated. Riboprobes were diluted to a final concentration
of about 400 ng/ml in a hybridization buffer containing 50%
formamide, 5x SSC (standard saline citrate), 0.1% Tween-20,
and 40 pug/ml denatured salmon sperm DNA. Hybridization was
performed overnight at 45°C. Following extensive stringency
washes, the sections were blocked in Blocking Solution (Roche)
and then incubated overnight at 4°C in alkaline-phosphatase-
conjugated anti-DIG antibodies (1:2000, Roche). After washing
off the excess antibody, the color was developed in NBT/BCIP
solution in the dark. After that, the sections were briefly
postfixed in 4% paraformaldehyde and mounted in buffered
gelatin/glycerol.

Control DIG-labeled riboprobes were synthesized from the
pSPT18-Neo (DIG RNA Labeling kit, Roche) and GFP (green
fluorescent protein) DNA templates. These control probes did
not yield any detectable signal under the same hybridization
conditions as above.

For double fluorescent labeling with the Myc riboprobe and
the ERG1 antibody, in situ hybridization was performed first. It
was carried out as above, except that the NBT/BCIP mixture was
replaced with Vector Red alkaline phosphatase substrate (Vector
Labs). The ERG1 monoclonal antibody, which specifically labels
radial glial cells in the echinoderm nervous system (Mashanov
et al., 2010), was applied overnight at 4°C. After washing off
the unbound primary antibody, the sections were incubated in
the Cy3-conjugated goat anti-mouse secondary antibody (1:2000,
Jackson ImmunoResearch Laboratories, Inc.) for 1 h at room
temperature.

3. Results

3.1. Organization of the Radial Nerve Cords in
Echinoderms

The most prominent components of the nervous system in
adult echinoderms are five radial nerve cords, which are joined
by a circumpharyngeal nerve ring at the oral side of the
body to form an anatomically continuous CNS (Hyman, 1955).
In sea cucumbers, each of the radial nerve cords (RNCs) is
composed of two closely apposed layers of neural tissue called
the ectoneural and hyponeural bands (Figurel) (Mashanov
et al., 2006; Hoekstra et al., 2012). Both components of the
RNC have a neuroepithelial organization. The framework of the
neuroepitelium is made up of radial glial cells, whose apical
cell bodies are joined together by intercellular junctions, while
long basal processes span the height of the underlying neural
parenchyma and attach to the basal lamina (Mashanov et al,
2006, 2010). Neuronal perikarya are scattered throughout the
height of the neuroepithelium. Some of them are interspersed
between the apical cell bodies of radial glia, while others are
immersed into the underlying parenchyma being surrounded by
zones of neuropil. The two neuroepithelia form a bottom of an
epineural and hyponeural canal, respectively (Figure 1B). The
roof of the canals is a simple epithelium composed of flattened

glial cells. The ectoneural neuroepithelium is the predominant
component of the radial nerve cord in sea cucumbers. It is
much taller than the hyponeural neuroepithelium, contains
more cells, and will be the primary focus of the present
study.

3.2. Newly Born Cells Accumulate at Different
Rates in Different Regions of the Adult Sea
Cucumber Radial Nerve Cord

Newly born cells within the adult echinoderm CNS were
identified as cells retaining bromodeoxyuridine (BrdU)
immunoreactivity. Our preliminary experiments (not shown)
demonstrated that a single BrdU injection followed by a 4
h-long chase period labels only very rare cells (0.45 £ 0.10%,
mean =+ standard error) in the RNC, suggesting that only a
limited number of cells undergoes pre-mitotic DNA synthesis
at any given moment. In order to increase the number of
labeled cells (to 2.60 £ 0.55%, mean =+ standard error), we
performed saturating BrdU injections twice a day for 7 days
and then monitored the distribution of labeled cells within the
RNC at various time points after the last injection. Figure 2
shows representative micrographs of immunostained sections
of the RNC sampled immediately after the last BrdU injection
and 8 weeks post-injection. For the purpose of cell counting,
the cross-sectional area of the ectoneural part of the RNC
was divided into five sampling zones of equal width along the
left-right axis (see Section 2). Within each of those five regions,
the neuroepithelium was further subdivided along the natural
landmark separating a narrower apical zone, which contained
densely packed cell bodies forming a discrete layer, and a wider
basal zone, which contained the neuropil area with more loosely
arranged cell bodies.

Our statistical analysis (Additional File 3) involving
generalized linear modeling approach with time, apical-
basal position, and left-right position as factors, showed
that the density of BrdU™-cells varied significantly (F-test,
P = 1.6 x 107!!) along the left-right axis of the ectoneural
layer of the radial nerve cord, with the lateral areas (area 1 and
area 5) containing significantly more labeled cells per zm? of
cross-sectioned area than the midline area (area 3) (Figure 3A).
For example, 8 weeks after the last BrdU injection, the mean
density of BrdU-labeled cells in the lateral regions is about
2.4-3 times greater than in the midline region. There was no
interaction between the mediolateral position and the other two
factors, suggesting that the observed pattern of distribution of
BrdU-labeled cells along the left-right axis does not change with
time or with position along the apical-basal axis.

However, there was a significant (P = 1.8 x 107°) interaction
between the post-injection time span and the apical-basal
position. We, therefore, studied the simple main effect of length
of time after the last BrdU injection on the density of labeled
cells separately in the apical and basal region of the RNC.
There were no significant changes in the density of labeled
cells in the apical region of the ectoneural neuroepithelium (F-
test, P = 0.24; Figure 3B) sampled at different post-injection
time points. Surprisingly, however, the basal region showed
significant accumulation of BrdU™ -cells with time (F-test, P =
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5.86 x 107 Figure 3B'). For example, the mean density of
labeled cells in the neural parenchyma is ~6.3 times greater
after 8 weeks post-injection than immediately after the last
injection.

Comparison of the apical and basal zones of the ectoneural
epithelium shows a significantly higher (~4.7-fold, P = 2.9 x 10°
density of the labeled cells in the apical zone immediately after
the last BrdU injection (Figure 3C), but this difference between
the two regions decreases with time and becomes negligible
(P = 0.18) after 8 weeks (Figure 3C').

Taken together, the cell counting data suggest that the
production of new cells is more extensive in the lateral regions

of the RNC than in the midline zone. Of note, after the last
BrdU injection the density of newly produced cells remains
constant in the apical region of the neuroepithelium, while
steadily increasing in the basal region. We suggest that some of
the BrdU-labeled cells in the apical zone undergo further cell
divisions during the chase period, thus producing daughter cells
that still contain enough BrdU to be identified as BrdU-positive.
Some of these apical cells eventually leave the site of their origin
and migrate into the basal neural parenchyma, thus keeping the
abundance of the apical BrdU" -cells at the constant level while
leading to accumulation of labeled cells in the basal region in the
absence of BrdU.
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FIGURE 3 | Quantification of newly born cells in the ectoneural epithelium fo the RNC. (A) Lateral regions of the RNC have significantly higher density of
BrdU cells than the mid-line regions. Notched box and whisker plots. Boxes show the interquartile range (the values between the 25 and 75% percentiles), the line
within the box is the median of the data, and the whiskers represent adjacent values within the 1.5 x interquartile range outside the box. (B,B’) Box and whisker plot
showing density of BrdU+ cells in the apical (B) and basal(B’) regions of the ectoneural neuroepithelium of the RNC as a function of the length of time after the last
BrdU injection. (C,C’) Box and whisker plots showing comparison of density of BrdU-labeled cells between the apical and basal regions of the RNC immediately after
the last BrdU injection (C) and after 8 weeks (C’).*P < 0.05; **P < 0.01; ***P < 0.001.
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3.3. Generation of New Cells in the Adult Radial
Nerve Cord is Associated with Expression of
known Neurogenic Markers

The molecular mechanisms controlling cell dynamics in the
adult echinoderm CNS remain completely unknown. In order
to establish whether or not the production of new cells in the
adult echinoderm CNS is associated with expression of known
neurogenic genes, we searched the sea cucumber transcriptome
database (Mashanov et al., 2014) with TBLASTN for homologs
of proteins with documented roles in neural development
and/or adult neurogenesis. In total, 16 genes were retrieved
(Table 1), whose orthologs are involved in various aspects of
neurogenesis, including maintenance of neural stem/progenitor
cells (e.g., Hes, Kif1/2/4, Msil/2, Myc, Octl/2/11, Piwi, and
SoxBI), neural differentiation (e.g., Churchill, ELAV, Lhx1/5, Myc,
NeuroD, Prox, and Runt), and glial fate specification (FoxJI,
KIf1/2/4, and NFI). With the exception of the previously studied
(Mashanov et al., 2015a) four genes, Kif1/2/4, Myc, Octl/2/11,
and SoxBI, the H. glaberrima database sequences returned by
the BLAST search are contigs derived from automated de novo
assembly of next generation sequencing reads. We, therefore,
validated them by re-sequencing with Sanger technology and
deposited the verified sequences in GenBank under accession
numbers KT183348-KT183359. The orthology between these
newly characterized sea cucumber genes and the corresponding
genes in other organisms was confirmed by phylogenetic analysis
(Additional File 6-8).

We then employed in situ hybridization in order to investigate
spatial expression of the above genes at the tissue level in
the adult sea cucumber RNC (Figures 4-6). All 16 genes are
strongly and extensively expressed in the apical region of the
ectoneural neuroepithelium. However, this expression domain
is discontinuous, as a narrow band of midline cells shows
no positive staining with any of the riboprobes used in this
study. In addition to being expressed in the apical region of
the neuroepithelium, ten of the above genes, including Hes,
KIf1/2/4, Myc, SoxB1, Piwi, NFI, DCLK, Prox, Runt, and Lhx1/5
are also expressed in scattered cells in the neural parenchyma.
The labeled parenchymal cells are most abundant in the lateral
regions of the RNC and are rare in the midline region (see e.g.,
Figures 4C,D,G,G”, 6A,A”,EF").

Among the genes that show robust expression in the apical
zone, but little or no expression the neural parenchyma,
are ELAV (Figures 6B-B”) and NeuroD (Figures 6C-C"), two
factors involved in neuronal differentiation (Pascale et al,
2008; Boutin et al, 2010), suggesting that some processes
involved in neuronal maturation can take place only at the
apical surface of the neuroepithelium, but not in the deeper
parenchyma.

Another transcription factor with exclusive expression in
the apical zone of the ectoneural neuroepithelium is Fox/I
(Figures 5A-A"). This expression pattern correlates well with
the known role of this gene in ciliogenesis (Jacquet et al,
2009; Genin et al., 2014). The apical cell bodies of echinoderm
radial gial cells have been previously shown to bear a cilium
protruding into the lumen of the epineural canal (Mashanov
et al., 2006).

3.4. Echinoderm Radial Glial Cells are
Heterogeneous

Our earlier studies (Mashanov et al., 2010, 2013) identified radial
glial cells as a major progenitor cell population in the adult
echinoderm CNS, as they were shown to account for the majority
of cell divisions in the nervous tissue both under physiological
conditions and after injury. Most importantly, at least some of the
progeny of these proliferating cells can differentiate into neurons.

Cells bodies of most of the radial glial cells lie in the
apical region of the neuroepithelium (Mashanov et al., 2006,
2010), i.e., within the domain of most robust expression of
all sixteen neurogenesis-related genes described in the previous
section. However, it has never been directly demonstrated
that the radial glial cells of adult echinoderms express any
of these neurogenesis-related genes at the single cell level
under physiological conditions. Moreover, it is not known
whether or not the echinoderm radial glial cells, which are
all morphologically alike, are homogeneous in terms of their
expression profile.

In order to provide at least a partial answer, we simultaneously
labeled the radial nerve cord with a specific glial marker, the
ERG1 monoclonal antibody (Mashanov et al., 2010), and with
a Myc in situ hybridization riboprobe. The choice of Myc was
determined by phylogenetically conserved role of Myc proteins
in activation of neural progenitors, which was demonstrated
in animals as diverse as rat and Drosophila (Hasegawa et al.,
2005; Ferndndez-Hernandez et al, 2013). In the regenerating
echinoderm radial nerve cord, Myc was also recently shown to
be required for glial activation in response to injury (Mashanov
etal., 2015b). In this study, the double labeling showed that many
of the radial glial cells indeed expressed Myc, but these positively
labeled cells were interspersed with glial cells, which showed
no Myc expression (Figure 7). These results suggest that the
echinoderm radial glial cells, despite being all morphologically
alike, differ in expression of at least some of the key transcription
factors. It remains to be determined whether or not this
heterogeneity in gene expression results in heterogeneity in
potency and the ability to proliferate.

4. Discussion

The ability to generate new cells in the adult CNS is widespread
in the animal kingdom and has been documented in both
vertebrates and invertebrates. In mammals, adult neurogenesis is
mostly restricted to two distinct brain regions, the subventricular
zone of the anterior ventricles and the subgranular zone of the
hippocampal dentate gyrus (Urban and Guillemot, 2014; Lin
and Tacovitti, 2015). In the CNS of non-mammalian vertebrates,
such as fish, proliferation sites are more abundant, but are still
confined to certain discrete loci (Adolf et al., 2006; Grandel et al.,
2006). To our knowledge, nothing has been known so far about
the pattern of new cell generation in the adult CNS of more
basal deuterosomes. The data presented in this paper suggest
that the RNCs of echinoderms are heterogeneous too in their
ability to produce new cells, mostly clearly along the mediolateral
axis. The regions where newly generated cells are most abundant
are organized into longitudinal domains along the lateral sides

Frontiers in Neuroanatomy | www.frontiersin.org

September 2015 | Volume 9 | Article 123


http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive

Mashanov et al. Adult neurogenesis in an echinoderm

3
N
=
—
=
X

FIGURE 4 | Expression of homologs of neural stem/progenitor cell maintenance genes in the adult radial nerve cord (RNC) of H. glaberrima. The left
column (A-G) shows reference low magnification micrographs of the entire cross section profile of the RNC. The middle column (A’=G’) is a detailed view of the midline
region of the ectoneural neuroepithelium. Micrographs in the right column (A”’-G”’) are higher magnification of the lateral region of the ectoneural neuroepithelium.
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of the nerve cords. The physiological significance of restricting
production of new cells to these lateral regions remains to be
elucidated.

Another interesting parallel with neurogenesis in vertebrates
is that at least some of the new cells generated in the sea cucumber
RNC migrate away from the place of their birth. Along the apical-
basal axis of the ectoneural neuroepithelium, one can distinguish
the apical domain, where the density of BrdU-positive cells
remains constant throughout long chase periods, and the basal
domain with the steadily increasing abundance of BrdU-positive
cells. The most parsimonious explanation of the observed data
is that the labeled cells may keep dividing in both zones, but
some of the cells born in the apical region of the neuroepithelium
migrate into the underlying basal zone, thus keeping the labeled
cell number constant in the former and leading to its rise in the
latter.

Although many of the transcription factors known to control
neurogenesis in other animals have been identified in the
sea urchin genome and were studied in association with the
developing larval nervous system (Burke et al., 2006; Poustka
et al., 2007), little is known about genetic mechanism controlling
adult neurogenesis in echinoderms. In this study, we show that
production of new cells in the sea cucumber CNS is associated
with expression of sixteen genes, whose homologs are known
to control various aspects of vertebrate neurogenesis, including
neurogenic stem cell maintenance, neuronal specification and
glial differentiation. Strong steady expression of a combination
of pluripotency factor homologs, including SoxB1, Oct1/2/11,
KIf1/2/4, and Myc, as well as of other stem cell-associated genes,
such as Piwi, in the apical zone of the ectoneural epithelium
suggests that this region of the adult sea cucumber CNS contains
cells that constantly retain progenitor properties.

The above genes, however, are not necessarily homogeneously
expressed in all cells throughout the apical region of the
neuroepithelium, not even in cells belonging to the same cell
type. We have previously demonstrated that radial glial cells,
the only major glial cell type in echinoderms, accounts for
almost all cell divisions in both the normal and regenerating
adult CNS (Mashanov et al., 2010, 2013) and thus acts as
the key progenitor cell population. Morphologically, all radial
glial cells in echinoderms have the same organization. They
are all tall slender cells stretched between the apical and basal
surfaces of the neuroepithelium. Most of the radial glial cells
are unipolar, with an apically positioned nucleus and a long
basal process (Mashanov et al., 2006, 2010). Nevertheless, in this
study we showed that in spite of morphological homogeneity, the
echinoderm radial glial cells are distinctly heterogeneous in their
expression of the pluripotency factor Myc. Heterogeneity of CNS
stem/progenitor cells in terms of their gene expression profile,
activation/quiescence status, commitment to the generation
of specific progenitors, etc. is a common property of adult
neurogenesis in various vertebrate species (Urban and Guillemot,
2014; Lin and Tacovitti, 2015; Than-Trong and Bally-Cuif, 2015).
It remains, however, to be elucidated if the heterogeneity in
expression of Myc, and possibly other transcription factors, in the
sea cucumber radial glia results in differences in the capacity to
generate new cells in the adult CNS.

Among other genes, whose expression is associated with
generation of new cells in the adult sea cucumber CNS, are also
regulators and effectors of the Notch signaling pathway. Notch
is expressed in radial glia and neuronal progenitors in zebrafish,
and in neural stem cells in mammals. Acting through Hes genes,
Notch signaling regulates maintenance of neural progenitors
and represses their premature differentiation (Kageyama et al.,

magnification views of the lateral region of the ectoneural neuroepithelium.

FIGURE 5 | Expression of proglial genes, FoxJ1 (A-A”) and NFI) (B,B’), in the radial nerve cord (RNC) of H. glaberrima. (A,B) show low magnification
overview micrographs of the entire cross section profile of the RNC. (A’) is a detailed view of the midline region of the ectoneural neuroepithelium. (A”,B’) show higher
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FIGURE 6 | Expression of proneural genes in the adult radial nerve cord (RNC) of H. glaberrima. The left column (A-G) shows reference low magnification
micrographs of the entire cross section profile of the RNC. The middle column (A’-G’) shows a detailed view of the midline region of the ectoneural neuroepithelium.
Micrographs in the right column (A”-G”’) are higher magnification of the lateral region of the ectoneural neuroepithelium.
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2007; Urban and Guillemot, 2014; Than-Trong and Bally-
Cuif, 2015). In the adult sea cucumber H. glaberrima, Notch
transcripts are present in both the uninjured and regenerating
RNC (Mashanov et al., 2014). Here, we show that Hes, a
direct target of Notch signaling, is prominently expressed in
the apical zone of the ectoneural epithelium and in some
scattered cells in the neural parenchyma, suggesting involvement
of active Notch signaling in sea cucumber neurogenesis. Msi and
Elav, the positive and negative modulators of Notch signaling,
respectively (Glazer et al., 2008; Horisawa and Yanagawa, 2012),
share the same expression domain with Hes, suggesting a
precise control of the balance between cell proliferation and
differentiation.

In conclusion, our study demonstrates the following:
e New cells are being constantly produced in the adult

echinoderm radial nerve cord.

Newborn cells are significantly more abundant in the
lateral region of the radial nerve cord, than along the
midline.

Some of the cells produced in the apical region of the
ectoneural neuroepithelium leave their place of birth to
migrate into the underlying neural parenchyma.

Generation of new cells in the adult sea cucumber CNS
is associated with expression of genes whose orthologs are
implicated in control of various aspects of neurogenesis in
other animals.

In spite of stereotypical morphology, at the single cell level
the radial glial cells, the major progenitor cell population
in the echinoderm CNS, are heterogenous in terms of gene
expression. We show that radial glial cells expressing the
transcription factor Myc are interspersed with glial cells that
do not express this gene.

ERG1 Myc

ERG1/Myc

FIGURE 7 | Double fluorescent labeling with the ERG1 antibody, a maker of echinoderm radial glial cells (Mashanov et al., 2010) (green, left column),
and an in situ hybridization probe for Myc (red, middle column). The right column shows overlay composite images with both markers. (A-A"")
Low-magnification of a cross section through the radial nerve cord. (B-B”) Detailed view of the lateral region of the ectoneural neuroepithelium. (C-C’”) Detailed view
of the midline region of the ectoneural neuroepithelium. (D-D"") High-magnification view of the apical region of the ectoneural epithelium showing colocalization of the
Myc in situ signal with ERG1 labeling in cell bodies of some of the radial glial cells (white arrows), whereas other dlial cells do not express Myc at all (open arrows).
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