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The definition of the soma is fuzzy, as there is no clear line demarcating the soma of

the labeled neurons and the origin of the dendrites and axon. Thus, the morphometric

analysis of the neuronal soma is highly subjective. In this paper, we provide a

mathematical definition and an automatic segmentation method to delimit the neuronal

soma. We applied this method to the characterization of pyramidal cells, which are the

most abundant neurons in the cerebral cortex. Since there are no benchmarks with

which to compare the proposed procedure, we validated the goodness of this automatic

segmentation method against manual segmentation by neuroanatomists to set up a

framework for comparison. We concluded that there were no significant differences

between automatically and manually segmented somata, i.e., the proposed procedure

segments the neurons similarly to how a neuroanatomist does. It also provides univocal,

justifiable and objective cutoffs. Thus, this study is a means of characterizing pyramidal

neurons in order to objectively compare the morphometry of the somata of these neurons

in different cortical areas and species.

Keywords: three-dimensional soma reconstruction, repair and segmentation, morphology validation, mesh

comparison, Gaussian mixture model

1. INTRODUCTION

Vertebrate neurons generally show a morphological and functional polarization so that neurons
can be divided into separate regions: a receptive and conductive apparatus (formed by the dendrites
and cell body or soma), an emission apparatus (the axon), and a distribution apparatus (terminal
axonal arborization). Neurons may receive particular inputs from their dendrites (proximal vs.
distal), dendritic structures (dendritic spines vs. dendritic shafts), and cell body. Furthermore, the
axon initial segment of some neurons receives inputs either in its proximal portion or along its
length (e.g., Peters et al., 1991). The cell body of the neuron contains a large, spheroidal nucleus
(with one or more nucleoli) containing a nuclear membrane and a highly differentiated cytoplasm
(perikaryon). The cell body, dendrites and axon have distinct physiological and molecular
characteristics (e.g., Szu-Yu Ho and Rasband, 2011), and these compartments can in general terms
be identified morphologically or neurochemically; for example, IκBα immunostaining recognizes
an unidentified protein associated with the microtubule-based cytoskeleton at the axon initial
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segment (Buffington et al., 2012) and can be used to demarcate
the axon initial segment (e.g., Schultz et al., 2006; Sánchez-Ponce
et al., 2012).

To our knowledge, there is no line demarcating the soma
of the labeled neurons and the origin of the dendrites and
axon. Thus, the morphometric analysis of the neuronal soma is
highly subjective. Differentiating between these compartments
and delimiting the neuron cell body is usually a job for
neuroanatomists, which they do according to their own arbitrary
criteria, as it is not absolutely clear what constitutes the cell
body of the labeled neurons. Since morphological measures
rely directly on the delimitation of the cell body, different
neuroanatomists segmenting the same neuronmight get different
somatic sizes and shapes. Thus, the results of different researchers
are inaccurate and hard to compare. Furthermore, high-
throughput imaging methods have expanded quickly over the
last few years, and the manual tracing of individual cells is a
time-consuming task. Thus, it is necessary to develop automatic
techniques to acquire morphometric data on labeled neurons.
Ideally, the morphometric analysis of the cell bodies should
be performed automatically on complete 3D reconstructions
of cells using specialized algorithms. 3D reconstructions from
image stacks can be quite easily performed using a variety
of techniques, including confocal microscopy to reconstruct,
for example, certain types of neurons from transgenic animals
in which neurons are labeled with green fluorescent protein,
or from brain tissue where neurons have been labeled after
fluorescent dyes. Here we selected cortical pyramidal cells, which
are the most abundant and characteristic neuronal cell type in

FIGURE 1 | Repair and segmentation process workflow. The process was divided into four modules. First, the neuron was repaired by removing holes and

cavities and closing the mesh. Second, dendrites were identified and removed. As a result, the neuronal cell body was defined (third module) and was validated (fourth

module) by means of distance computations and volume comparisons.

the cerebral cortex (DeFelipe and Fariñas, 1992). We used cells
that were intracellularly injected with Lucifer Yellow as part of
an unrelated research (Benavides-Piccione et al., 2013). In the
present study we generated the 3D reconstruction of the soma
of the neuron and proximal dendrites. The 3D generated somata
sometimes showed distortions due to the hole produced by the
micropipette used to inject the dye. Thus, the labeled cell bodies
are not suitable for an automated morphological analysis because
the measurements on a damaged surface are incorrect.

In this article, we propose a procedure for repairing the
three-dimensional virtualized cell bodies. We also introduce a
mathematical method combining probabilistic clustering and 3D
mesh processing algorithms to provide a univocal, justifiable,
and objective characterization of how a soma can be defined.
This method should help researchers to establish and maintain
effective communication and data sharing (Figure 1).

2. METHODS AND RESULTS

Neurons were intracellularly injected with Lucifer Yellow (LY)
in layer III of the human cingulate (25 somas), temporal
(16 somas), and frontal (18 somas) cortex from a 40-year-
old human male obtained at autopsy (2–3 h post-mortem).
Further information regarding tissue preparation, injection
methodology, and immunohistochemistry processing is given
in Benavides-Piccione et al. (2013). Stacks of images (63x)
including pyramidal cell somata and their proximal dendrites
were acquired using a Leica TCS 4D confocal scanning laser
attached to a Leitz DMIRB fluorescence microscope. Somata
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FIGURE 2 | Repair and segmentation process. (A) Initial state of four representative pyramidal cells. (B) Neuron exposure to ambient lightning. (C) Neuron after

vertices forming holes and cavities or positioned inside the mesh have been discarded. (D) Neuron after mesh closing. (E) Vertices of the mesh colored according to

shape diameter function to segment soma and dendrites. (F) Neuron after the basal dendrites have been removed. (G) Final result.
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were reconstructed in 3D using Imaris software 7.6.4 yielding,
by thresholding, a solid surface that matched the contour of
the neuron. The generated surface, called triangular mesh, was
composed of two basic elements, vertices which defined three-
dimensional Cartesian points and faces that denoted the edges
between vertices. Each face was a set of three edges connecting
vertices forming a triangle of the triangular mesh.

2.1. Repairing the Soma
Soma surfaces frequently showed faults like holes or cavities
produced by the intracellular injection procedure (Figure 2A).
MeshLab software (CNR, 2008) was used for the purposes of
both repair and segmentation by means of automatic scripts of
MeshLab.

The faults on the surface were regarded as noise which should
be removed. An approximation of the original shape of the soma
was then computed to achieve a single closedmesh.We called this
process “repairing the soma” (Figures 2B–D). The first step in the
repair process consisted of distinguishing between the vertices
on the surface and the vertices forming holes, cavities or placed
inside the neuron.

Assuming that a neuron could be isolated in a fictitious
lighting space, the vertices of the neuron on the mesh surface
would be exposed to light, whereas the vertices that formed a hole
or were placed inside the mesh would be darkened. Thus, light
exposure information has the potential to distinguish between
the vertices forming the original surface of the neuron and the
vertices introduced by the injection.

This motivated the application of ambient occlusion (Zhukov
et al., 1998) of MeshLab, which is a technique that provides a
way to estimate the amount of light projected onto a vertex of
a mesh through ray tracing. The ambient occlusion factor A is a
measurement of the light rays blocked by the objects around the
evaluated vertex. For each vertex, a hemisphere with an infinite
radius oriented according to its own normal vector was generated
(Figure 3). Then, N points of the hemisphere were sampled
uniformly. Next, rays were traced from the evaluated vertex to
each sampled point. Counting the number of rays that intersected
the mesh surface (Ni), obviously disregarding the starting point,

FIGURE 3 | Example of 2D ambient occlusion. The surface of the mesh is

the thick black line. The brown line denotes the normal vector of the evaluated

vertex i. A hemisphere is placed around the normal vector. The green lines

represent the sampled N points of the hemisphere. The red dots are the

intersection between the rays and the mesh surface. In this case, occlusion

factor = 3
8 .

and comparing it with the total number of traced rays (N), the
ambient occlusion for a vertex i was computed as Ai =

Ni
N (see

Figure 3).
The result of the scalar value Ai was in the range [0, 1],

where 0 denoted that no ray intersected the surface of the mesh
and 1 meant that all the traced rays intersected the mesh and
consequently that the vertex was inside the mesh. The points
whose ambient occlusion factor Ai was close to 0 were exposed
to light and colored white and the points close to 1 were colored
black (see Figure 2B).

Because some vertices were artifacts introduced by the filling
process they had to be discarded. A simple approach could
be to impose an arbitrary threshold such that vertices whose
ambient occlusion factor was greater than the threshold would be
discarded. However, the threshold should preferably be estimated
automatically.

At this point, we considered that a clustering algorithm, whose
goal is to group instances of similar data in the same group,
fitted the problem specifications exactly. Probabilistic clustering
based on a Gaussian mixture (McLachlan and Basford, 1988)
was applied to cluster vertices into two groups: (i) the vertices
on the surface of the neuron; (ii) the vertices forming holes and
cavities or inside the neuron. Probabilistic clustering returned
the probability of each vertex being a member of either cluster.
The decision boundary between both clusters, i.e., the ambient
occlusion factor for which both groups were equiprobable, was
the threshold. Vertices i whose Ai factor was greater than the
threshold were removed, as were their associated faces. As a
consequence, the mesh was opened as shown in Figure 2C. An
approximation of the original surface of the soma was computed
to achieve a single closed mesh (Figure 2D) as explained below.

A simple way to define the closed surface of an object is by
means of an indicator function that denotes the space inside and
outside the object as 1 and 0, respectively (Figure 4A). Thus, as
a result of computing the gradient of this function, space would
be zero almost everywhere except near the surface of the object
(Figure 4B).

However, the indicator function was unknown and only
the vertices and the inward-facing normals of the mesh were
provided by Imaris and MeshLab software (Figure 4C). A
relationship between an integral of the surface normal field
and the gradient of the indicator function was derived in
Kazhdan et al. (2006). Unfortunately, this relationship could
not be exploited since the surface geometry was unknown so
the integral of the surface normal field could not be computed.
In Kazhdan et al. (2006) this problem was solved by means
of an approximation of the integral with a discrete summation
over the vertices and the inward-facing normals of the mesh
(Figure 4D). Applying this method, known as Poisson surface
reconstruction, the holes in the surface introduced in the
previous step disappeared and the surface of the soma was also
slightly smoothed.

2.2. Automatic Soma Segmentation
Finally, segmentation can be understood as a clustering problem
where each vertex belongs to one cluster, either soma or dendrite.
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FIGURE 4 | Mesh reconstruction. (A) The indicator function. (B) Inward-facing normals and their vertices. (C) Gradient of the indicator function. Since the indicator

function is constant outside (0s) and inside (1s) the mesh, the gradient of the space there is 0. Only points on the frontier are not 0. (D) Surface of the mesh. Adapted

from Kazhdan et al. (2006).

FIGURE 5 | Example of shape diameter function. A cone (brown) is

centered on the inward-normal of each vertex (pink arrow). Several rays (green)

are sampled inside the cone such that the sum of the length of the rays from

the vertex to their intersection with the mesh surface on the opposite side of

the mesh approximates vicinity volume. The rays sampled inside the soma are

longer than the rays sampled inside the dendrites and the volume of the

vertices in the vicinity of the soma is therefore greater.

Shapira et al. (2008) presented a scalar function, called
shape diameter function (SDF), based on exploiting differences
between the volume in the neighborhood of the vertices of the
mesh. This property is suitable for segmentation since dendrites
are thinner than the soma and the volume in the vicinity of
the vertices of the soma is therefore greater. An illustration
of SDF computation for some mesh vertices is shown in
Figure 5.

The gray-shaded neurons illustrated in Figure 2E were
obtained from the SDF outcome. The vertices of the
mesh were colored according to the value of the scalar

function SDF such that the darker the vertex, the smaller
the vicinity volume. Consequently, the vertices of the
somata were gray, and the vertices of the dendrites were
black.

As with ambient occlusion, some vertices were discarded. In
this case, the vertices of the soma were kept whilst vertices of
the dendrites were removed. Thus, a threshold based on the
SDF outcome was imposed. Again probabilistic clustering based
on a Gaussian mixture was applied to build a mathematical
model for vertex clustering. The one-dimensional distribution
of the SDF outcome appeared to fit a two-component Gaussian
mixture (see Figure 6A), the soma and the dendrites. However,
since the apical dendrite is typically thicker than the basal
dendrites, sometimes the clustering algorithm regarded the apical
dendrite as part of the soma. So, we tried clustering into three
groups: apical dendrite, basal dendrites, and soma. We did not
succeed, since in those cases where the apical and basal dendrites
were quite similar, both dendrites were grouped in the same
(first) cluster. The vertices of the soma were assigned 50–50
into two (second and third) clusters, cutting the soma by half.
The observed problems in identifying the neuron regions were
due to the fact that there were far fewer vertices representing
the apical dendrite than there were for the soma or the basal
dendrites. Because the volume of the apical dendrite was between
that of the soma and basal dendrites, it did not show up
in the histograms, and only two Gaussians were noticeable
in Figure 6A, one for the soma and the other for the basal
dendrites.

In order to overcome this problem, we defined a two-step
process. In the first step, we separated out basal dendrites
from apical dendrite and somata by means of two Gaussian
clustering according to the SDF distribution (Figure 6A). Thus,
the vertices and the faces of the mesh which belonged to
the basal dendrites were automatically identified and discarded
(Figure 2F). In the second step, two Gaussian clustering was
applied to distinguish between the soma and the apical dendrite
(Figure 6B). The vertices and faces of the apical dendrite
were identified and discarded by segmenting the soma. The
apical dendrite was sometimes removed in the first step;
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FIGURE 6 | (A) Histogram and first clustering. The charts represent the volume distribution of the soma and the apical dendrite (red) and the basal dendrites (green) of

the neurons shown in Figure 2. There are clearly two Gaussians. (B) Histogram and second clustering. The charts show the volume distributions in the vicinity of the

soma (red) and the apical dendrite (green) of the outcome of the first clustering. The graphs columnwise represent the same cell along the process. There are also two

Gaussians in these new graphs, demonstrating that the apical dendrite was hidden. This clustering removes the vertices of the apical dendrite in some cases, as in

the second chart, and improves the accuracy of the cutoffs in other cases, as in the fourth chart.

FIGURE 7 | Examples of final soma result. The reconstructed neuron is colored white with low opacity and its automatically extracted soma is denoted in red. The

surface of the extracted soma placed inside the dendrite is shaded light red.

the second clustering step improved cutoff accuracy in such
cases.

The resulting soma was an open mesh and was then closed
using the Kazhdan et al. (2006) method (Figure 2G). Other
example of resulting somata, where the repaired and extracted
soma is displayed and placed over the original neurons, are
shown in Figure 7.

2.3. Mesh Comparison
The distance between the surfaces of two triangular meshes
quantifies the distortion added by a mesh processing technique.
In our case, the distance was computed to validate the goodness
of the proposed method.

The distance between two meshes is defined as the minimum
distance from each point on the surface S1 of a mesh to the
surface S2 of a second mesh. As the boundaries of a mesh are
defined by its vertices, we studied the distance from vertices only.
The distance ǫ between a vertex p ∈ S1 and the surface S2 was
computed according to Cignoni et al. (1998) as

ǫ(p, S2) = min
p′∈S2

d(p, p′),

where d is the Euclidean distance between p and p′ in R
3. Then

the root mean square error (RMSE) was computed as follows:

RMSE(S1, S2) =

√

∑

p∈S1
ǫ(p, S2)2

|S1|
,

where |S1| is the number of vertices of the surface of the
mesh. RMSE is an asymmetric measure as RMSE(S1, S2) 6=

RMSE(S2, S1). A symmetric form of the RMSE was obtained as

RMSES(S1, S2) = max{RMSE(S1, S2),RMSE(S2, S1)}.

Thus, RMSES(S1, S2) = 0 ⇐⇒ S1 = S2.
Also, it is useful to compare different mesh processing

techniques. For two techniques, one approach was based on
processing M meshes with each processing method. Then the
volume of each processed mesh was calculated according to
Zhang and Chen (2001). Mesh processing techniques were
compared by the mean absolute quotient between volumes
(MAQ). Its outcome was an estimation of the proportional
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difference in volume when a method is applied in place of the
other:

MAQ1,2 =

∑M
i=1

∣

∣

∣

T1i
T2i

− 1
∣

∣

∣

M
,

where T1i is the volume of mesh i produced by the first technique,
T2i is the volume of mesh i produced by the other technique and
M is the total number of meshes processed by both methods.
MAQ is also an asymmetric measure as MAQ1,2 6= MAQ2,1. A
symmetric form of theMAQ was obtained as

MAQS = max{MAQ1,2,MAQ2,1}.

Thus,MAQS = 0 ⇐⇒ MAQ1,2 = MAQ2,1.

2.4. Validation of Automatic Segmentation
In order to validate the goodness of the automatic segmentation
method, two neuroanatomists manually segmented nine three-
dimensional neurons to set up a framework for comparison.
Neuroanatomists used Imaris software. This software provides
a three-dimensional representation of the neuron that can be
rotated. It also allows to segment the soma cutting dendrites with
geometrical planes. For all nine neurons, we compared the RMSE
for the somata segmented manually by the neuroanatomists and
the somata output by the automatic method whose surface had
been repaired. The differences between both neuroanatomists’
cutoffs, i.e., the inter-neuroanatomist variability, were also
quantified (see Figure 8A).

The Wilcoxon signed-rank test was applied to corroborate the
discrepancies in the plots observed in Figure 8A. It was assumed
as a null hypothesis H0 that the RMSE between automatically

and manually segmented somata was not significantly different
from the inter-neuroanatomist RMSE. As a result, taking as
reference the standard significant level of 0.05, H0 was rejected
for the first neuroanatomist (p≈ 0.02). Hence, there were found
to be significant differences between the morphology of the first
neuroanatomist’s somata and the morphology of the somata
yielded by the proposed procedure. Nevertheless, H0 could not
be rejected for the second neuroanatomist (p≈ 0.055).

In the light of the findings of the Wilcoxon test, the
neuroanatomists’ somata were repaired to test whether the
discrepancies with the automatically extracted somata were due
to the method of repair or the segmentation process. Then
three-dimensional representations of the somata were rendered
(Figure 9). The resulting three segmentations for each neuron
unveiled similar geometries, except for some fine distinctions in
the cutoffs surfaced around the boundaries between the soma
and apical dendrite. Hence, the significant differences previously
observed between somata could be due to the repair process.

To find out this, the manually segmented somas were repaired
by the automatic repair process and RMSE was recomputed.
Figure 8B shows RMSE between the automatically and manually
extracted somata. In this case, H0 was not rejected for either
the first (p ≈ 0.73) or the second neuroanatomist (p ≈ 0.43).
Hence, it was the repair process that caused the significant
differences between the automatically and manually extracted
somata.

We then calculated the MAQ between the volumes of the
automatically and manually segmented somata. Thus, we found
that there is a 4.33% and a 5.06% of difference in the volume
of the somata segmented by the proposed process and the
manually segmented somata by the first [MAQS(Proc,Exp1)]
and second neuroanatomist [MAQS(Proc,Exp2)], respectively.

FIGURE 8 | RMSE before and after repairing the neuroanatomists’ somata. (A) For all neurons (each one denoted by N followed by a number) except Neuron

6, RMSE was less between neuroanatomists than between the somata output by our procedure and by either of the neuroanatomists. For several neurons, the

difference was actually more than double. (B) The differences between automatically and manually segmented somata were not so remarkable after the repair of the

neuroanatomists’ somata. Note that for some neurons RMSE was less between our procedure and the first neuroanatomist than between both neuroanatomists, i.e.,

the proposed procedure can produce similar cutoffs to a neuroanatomist.
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Consequently, the difference in the volume of the somata
between the procedure and the neuroanatomists was on
average around a 4.7%. As regards somata segmented by
neuroanatomists, the inter-neuroanatomist difference in volume
[MAQS(Exp1,Exp2)] was around 3.08%. This result shows that
the measurements of properties in the characterization of a
manually segmented neuron vary from one neuroanatomist to
another and a little bit more from a neuroanatomist to the

automatic procedure. This could be due to the neuroanatomist
making similar mistakes. Since the proposed method is
deterministic and mathematically founded, its application is
useful for achieving reproducible and objective results.

2.5. Intra-neuroanatomist Variability
The cutoffs on neurons are subject to variation due to human
inaccuracy and the limitations of the hardware and software

FIGURE 9 | Illustration of the goodness of the soma segmentation method on four cells. The somata segmented manually by the first neuroanatomist are

shaded green, the somata segmented by the second neuroanatomist are shaded blue and the somata segmented according to the proposed procedure are shaded

red. (A) Segmentation of neuron 5. (B) Segmentation of neuron 9. (C) Segmentation of neuron 7. (D) Segmentation of neuron 6.

FIGURE 10 | RMSE between the somata extracted from six neurons by both neuroanatomists on three different days. We denote each neuron by N

followed by a number. (A) For the first neuroanatomist, intra-neuroanatomist variability was high for Neurons 4, 5, and 6, whereas Neurons 2 and 3 were quite

accurately segmented. (B) For the second neuroanatomist Neurons 4 and 5 stand out from the others because of their higher variation. Again Neurons 2 and 3 were

the most accurately segmented.
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used for 3D reconstructions of the cells. For example, the
segmentation of three-dimensional meshes on a computer screen
changes the morphology of the resulting soma depending
on the perspective of the neuron when it is cut. Hence, a
neuroanatomist segmenting the same neuron never obtains
the same soma. This intra-neuroanatomist variability can be
avoided by the proposed procedure, which yields deterministic
results.

To test this, the two neuroanatomists segmented six repaired
neurons three times, each on a different day. The intra-
neuroanatomist variability was estimated from these somata.
The results are shown in Figure 10. As the bar plot shows, the
same neuroanatomist never gets the same result for the same
neuron. Additionally, neuroanatomists found some neurons
harder to segment. See, for example, Neuron 5 for the first
neuroanatomist or Neuron 4 for the second neuroanatomist.
However, the intra-neuroanatomist variability is close to the
inter-neuroanatomist variability observed in Figure 8. In fact,
the mean inter-neuroanatomist RMSE was 0.458, whereas the
mean intra-neuroanatomist variability was 0.4254 for the first
neuroanatomist and 0.4236 for the second neuroanatomist.
Therefore, applying the proposed procedure removed the
main factor that induced the intra-neuroanatomist variability
originating from the same neuron.

We studied the soma locations at which some neurons were
harder to segment than others using the distances between
meshes. The R package Morpho (Schlager, 2014) provides a
functionality to color a mesh according to its distance to the
compared mesh (Figure 11). As a result, easily identifiable
cutoffs were shaded green, like the surface of the soma.
However, troublesome cutoffs were shaded red when the dendrite
was longer than that of the other mesh and blue otherwise.
Thus, by exposing the morphology around the soma and
combining it with the colors of the cutoffs, the hot spots were
highlighted and the causes of differences between cutoffs were
analyzed.

Figures 11A,B are the best examples of the differences
between the neuroanatomist segmentations. They show that

intra-neuroanatomist discrepancies occur in the thickest primary
dendrites, especially the apical dendrite. This denotes the
intrinsic complexity of segmenting the apical dendrite properly.
By contrast, the neurons shown in Figures 11C,D have thinner
primary dendrites and are easier to segment, which makes it
simpler to get accurate cutoffs.

3. DISCUSSION

This paper provides a mathematical definition of the neuronal
soma and an automatic segmentation method to delimit the
neuronal soma of pyramidal cells, the most abundant neurons in
the cerebral cortex (DeFelipe and Fariñas, 1992). Since there are
no benchmarks with which to compare the proposed procedure,
we validated the goodness of this automatic segmentation
method against the manual segmentation performed by
neuroanatomists in order to set up a framework for comparison.
The results have demonstrated the importance of the repair
process. Significant differences were found between the
morphology of the cell bodies with and without a reconstructed
surface. However, after repairing the surface of the somata,
there were no significant differences between automatically
and manually segmented somata, i.e., the proposed procedure
segments the neurons similarly to how a neuroanatomist would.
It also provides univocal, justifiable, and objective cutoffs.
The cutoffs on neurons are subject to variation due to human
inaccuracy and the limitations of the software used for 3D
reconstructions of the cells. Furthermore, manual tracing
of individual cells is a time-consuming task. It is, therefore,
important to develop automated methods for the morphological
analysis of large numbers of neurons to enable high-throughput
research. We think that the mathematical definition of the
soma of pyramidal cells is an important step not only toward
establishing and maintaining effective communication and
data sharing between different laboratories, but also for better
characterizing these cells. For example, it is well known that these
cells are heterogeneous with regard to soma size and shape and
different subpopulations of pyramidal cells have different size

FIGURE 11 | Somata with their primary dendrites after manual segmentation. The somata surface is green. The cutoffs are denoted by a color on a scale

between red and blue in such a way that the longest distances are denoted by the end colors and the shortest distances by an equal combination of both. The

opacity of the primary dendrites was decreased in order to show up the colors of the cutoffs. (A,B) illustrate the somata with the greatest differences according to

Figure 10, i.e., (A) is Neuron 5 segmented by the first neuroanatomist and (B) is Neuron 4 segmented by the second neuroanatomist. (C,D) show the somata with

the smallest differences, i.e., (C) is Neuron 2 segmented by the first neuroanatomist (D) is Neuron 3 segmented by the second neuroanatomist.
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(e.g., Hendry and Jones, 1983). However, there are no accurate
morphometric data, and the data variations between different
laboratories may simply reflect the discrepancy regarding the
delimitation of the cell body. We submit that an undertaking
by different laboratories to use the same methodology to define
the soma would have a great impact. The reason is that this
information is relevant not only for better characterizing the
morphology of these cells in different cortical areas and species
but also for annotating and exchanging relevant information for
modeling the activity of these cells. For example, the method
that we propose will help to generate detailed functional models
which may require knowledge of the number and density of
axo-somatic synapses, or when quantitative data about relevant
molecules playing a key role in the physiology of these cells
are critical. For example, to provide the density values along
the whole neuronal somatic membrane surface of identified
pyramidal cells using specific markers for different voltage-gated
ion channels and receptors. Furthermore, microanatomical
studies have shown that there are considerable variations in the
structure of pyramidal cells across different cortical layers, areas
and species, including variations in spine density and spatial
distribution, as well as the branching pattern of the dentritic
arbors (e.g., Jacobs et al., 2001; Elston, 2002). Previous studies
have reported variations in the size of pyramidal neurons,
but these studies are based on arbitrary soma measurements,
impeding comparisons between different laboratories or the
performance of other correlational studies, such as the possible
relationship between the size of the soma and number of
branches, nodes, etc., of the dendritic tree. Thus, this study is an
excellent means for further characterizing pyramidal neurons in
order to objectively compare the morphometry of the somata
of these neurons in different cortical areas and species and
try to find possible rules governing the geometric design of
pyramidal cells. In particular, this method could be especially

useful for the high-throughput characterization of the somata
of particular pyramidal cells in transgenic mice expressing
multiple spectral variants of green fluorescent protein that
label different subpopulations of pyramidal cells (Feng et al.,
2000). Furthermore, the proposed method could be applied
to any cell (e.g., interneurons and glial cells) labeled with
fluorescent dyes or expressing different fluorescent proteins.
Future applications of the method would also include the
segmentation and analysis of images from conventional 3D
light microscopy. Finally, the software of the proposed method
and a user’s guide are available at CIG web1, in the software
section, for use by those potential users interested in applying
the present algorithm. It should be noted that the original
generated triangular meshes necessary for the development of
the present method, were created to obtain a single coarse
solid surface of a particular threshold, which included both the
soma and proximal dendrites of labeled neurons. Thus, they
are available only for reproducibility purposes of the present
algorithm.
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