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INTRODUCTION

The true revolution in the age of digital neuroanatomy is the ability to extensively quantify
anatomical structures and thus investigate structure-function relationships in great detail. Large-
scale projects were recently launched with the aim of providing infrastructure for brain simulations.
These projects will increase the need for a precise understanding of brain structure, e.g., through
statistical analysis and models.

From articles in this Research Topic, we identify three main themes that clearly illustrate
how new quantitative approaches are helping advance our understanding of neural structure
and function. First, new approaches to reconstruct neurons and circuits from empirical data are
aiding neuroanatomical mapping. Second, methods are introduced to improve understanding of
the underlying principles of organization. Third, by combining existing knowledge from lower
levels of organization, models can be used to make testable predictions about a higher-level
organization where knowledge is absent or poor. This latter approach is useful for examining
statistical properties of specific network connectivity when current experimental methods have not
yet been able to fully reconstruct whole circuits of more than a few hundred neurons.

RECONSTRUCTION

The first theme illustrates how novel quantitative anatomical methods are reducing the time and
effort taken to reconstruct neurons and networks even when data are incomplete.

Modeling the electrophysiological computations made by single neurons requires a precise
reconstruction of their morphology. Blackman et al. (2014) assessed the accuracy of neuronal
reconstructions of biocytin-labeled cells against reconstructions from fluorescence-based imaging
using 2-photon microscopy. The authors conclude that biocytin-labeled cells are more accurate at
reproducing diameter values which is in particular crucial for electrophysiology modeling, while
faster fluorescence-imaging reconstruction methods are appropriate for tasks such as cell-type
classification.

Identifying cell types based on accurate tracings is very time-consuming. From such tracings of
microscopic images, it is known that retinal cell types can be identified by their laminar position
in the network (Sümbül et al., 2014a). Taking advantage of this link between macroscopic and
microscopic features, Sümbül et al. (2014b) show how automated volumetric reconstructions can
be performed more rapidly using the fluorescence distribution directly obtained from the image
stacks.
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Integrating structural and functional data has always been
central to reconstructing neural circuits. Here, Ullo et al. (2014)
apply a novel method that uses structural data of in vitro neuronal
networks to constrain estimates of functional connections
underlying spiking data of the same network acquired with
microelectrode arrays. The general idea could also apply to the
more complex structures in vivo.

Our understanding of synaptic connectivity is largely based
on measurements from brain slice preparations. However, some
of the complex 3D geometry of neurons is unavoidably lost
by slicing. This problem affects connectivity measurements,
especially for long-range connections. Two articles address
this problem. First, van Pelt et al. (2014) validate a statistical
approach (implemented in the NETMORPH software) for
inferring complete neuronal reconstructions from incomplete
slice data. From these completed neuronal morphologies, the
authors explain how this information can be used to estimate
connectivity in large-scale networks. Second, Miner and Triesch
(2014) use a computational model to propose how differences in
the experimental procedure such as slice thickness and sampling
area can explain differences observed in experimentally-derived
results.

Abnormalities in subcellular organelle morphology and
distribution characterize a variety of neuropathological
conditions. To aid faster quantification, Perez et al. (2014)
combine image processing methods with a supervised, multi-
resolution machine learning algorithm to automatically segment
specific types of cellular organelles (mitochondria, lysosomes,
nuclei, and nucleoli) from electron microscopy (EM) image
stacks. The authors demonstrate how this approach should
generalize to other organelle types and scale to large 3D datasets
from serial electron microscopy.

DESCRIPTION

The second theme in this Research Topic is that mathematical
techniques are applied to describe the spatial properties of
neurons and networks at a range of scales (Eglen et al., 2008;
Hansson et al., 2013). Firstly, two papers used spatial statistics
to examine spatial patterning within a region of neural tissue.
Anton-Sanchez et al. (2014) studied the spatial distribution of
synapses in layers I to VI of rat cortex in three dimensions.
They found that synapses are distributed randomly, subject only
to not physically overlapping with each other, although density
variations were found between different layers. Moving from
the distribution of synapses to distributions of neurons, Keeley
and Reese (2014) proposed a new metric for evaluating the
spatial regularity in two-dimensional distributions of neuronal
somata. They suggest a normalization term for the widely-used
regularity index measure that compares the average and the
standard deviation of the distance between cells. Using various
genetically inbred strains their new measure is found to be
effective in detecting genes controlling spatial patterning in
various genetically inbred strains using quantitative trait loci
approaches.

The papers by Anton-Sanchez et al. (2014) and Keeley
and Reese (2014) both analyse the distribution of synapses

and neurons by treating these objects as points in space.
Polavaram et al. (2014) by contrast studied the detailed
morphology of individual neurons to search for key features
underlying the variability in axonal and dendritic morphologies.
By comparing around 5000 neuron morphologies curated
from the Neuromorpho.org repository, they discovered six
main morphological classes, with clustering driven mainly by
biological factors, such as cell type, rather than technical factors,
such as recording laboratory.

The study by Polavaram et al. (2014) highlights the difficulties
in performing quantitative analysis of data recorded across many
laboratories. Instead of reanalysing raw data, Beul and Hilgetag
(2014) performed a detailed literature review of rodent cortex
anatomy to evaluate the evidence for a universal “canonical
microcircuit” (Douglas and Martin, 2004). Beul and Hilgetag
suggest such a canonical microcircuit, proposed based on data
from cat striate cortex, is unlikely to apply into other regions
of the cortex where the granular layer (layer 4) is reduced or
absent—the “agranular areas” of cortex. Instead, they propose a
revised wiring diagram, with reduced inhibition between upper
and deep layers in these agranular regions.

GENERATIVE MODELING

The third and final theme that emerged from this collection of
articles concerns the usage of generative methods to bridge the
gap between single neurons and the overall network structure
(Budd and Kisvárday, 2012). Computational models sometimes
based on simple self-organizing principles exist that reproduce
biology at a high level of detail both at the microscopic and
macroscopic scales (Schneider et al., 2014). Complementing
these approaches, large databases have emerged that embed the
biological details captured at the microscopic scale into the
context of larger scale structures (Chiang et al., 2011). The
resulting generative approaches allow for a better intuition of
the underlying principles for higher-level organization and for
making predictions in cases where data are currently sparse or
missing.

Egger and colleagues provide a software package NeuroNet
that generates a statistical connectome model of the barrel
cortex while taking into account statistical measures of synapse
and soma distributions as well as a small subset of complete
realistic cellular morphologies for all cell types (Egger et al.,
2014). The resulting statistical connectome is in line at all
scales with experimental anatomical and electrophysiological
measurements in barrel cortex and indicates that cortical
connections are probabilistic as a function of dendrite and axon
overlap.

In the study by Egger et al. registering the reconstructed
morphologies and synaptic positions to the barrel outlines is
essential to generate their statistical connectome. In a similar
line, the context in the circuit is the defining feature of the
study by Torben-Nielsen and de Schutter that provides a software
tool in Python called NeuroMaC to generate synthetic dendritic
morphologies within the constraints provided by a given piece
of tissue (Torben-Nielsen and De Schutter, 2014). The synthetic
neuronal morphologies are grown both considering the context
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of large-scale circuit features and the interactions with other
growing dendritic trees in the vicinity.

Aćimović and colleagues study the relationship between
dendritic shape and network measures using statistical models at
both micro- and macroscopic scales albeit in a simplified setting
that allows analytical solutions to be obtained (Acimovic et al.,
2015). For analytical tractability, the small scale dendritic and
axonal shapes are described by density fields that predict network
motif distributions and can be compared with experimental data
(Song et al., 2005; Rieubland et al., 2014).

Brain disorders are often accompanied by alterations in the
higher level context in which neurons are embedded. Using a
model of structural plasticity, Butz et al. (2014) analyse how such
global structural changes can affect network connectivity. It is
argued that local homeostatic structural plasticity mechanisms
can cause changes in network topology.

With the parametric anatomical modeling (PAM) technique
by Pyka et al. (2014) the precise shape of macroscale anatomical
structures is incorporated into neural network models. Using
empirically-based mapping rules and connectivity kernels to
generate realistic pathway trajectories, spatial connectivity
matrices, and axonal conduction distances, Pyka and colleagues
make testable predictions for interlaminar connectivity
parameter distributions.

Finally, long-range connections require fast and reliable
axonal signal propagation and Neishabouri and Faisal (2014)
have studied a recently observed structural formation of
proteins and lipids known as lipid rafts (Pristerà et al.,
2012) in thin, unmyelinated axons in the peripheral nervous

system. Using realistic stochastic modeling of individual ion
channels, Neishabouri and Faisal show that while action potential
conduction in such systems was reliable, it did not offer any
obvious gain in either conduction velocity or metabolic cost over
a uniform ion channel density.

CONCLUSION

With these articles we hope the reader will appreciate that
understanding neural structure quantitatively and its functional
relations is more than a handle turning exercise of known
algorithms but a creative interdisciplinary endeavor of a variety
of approaches across different species, brain regions, and spatial
scales. Here, authors have managed to coax information out of
noisy data obtained at the extremes of methodological resolution;
they have discovered new ways of describing anatomical
organization; and arrived at novel ideas that when implemented
in a generative way provide an anatomical framework for
large-scale network models of the brain. To maximize this
creativity from limited funding, there is an obvious need to
provide an environment in which individual exploration, data
access, collaboration, and reproducibility is made much easier
through an open and shared informatics framework (Green et al.,
2015).
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