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Multivariate analysis (MVA) is a class of statistical and pattern recognition techniques that

involve the processing of data that contains multiple measurements per sample. MVA can

be used to address a wide variety of neurological medical imaging related challenges

including the evaluation of healthy brain development, the automated analysis of brain

tissues and structures through image segmentation, evaluating the effects of genetic and

environmental factors on brain development, evaluating sensory stimulation’s relationship

with functional brain activity and much more. Compared to adult imaging, pediatric,

neonatal and fetal imaging have attracted less attention from MVA researchers, however,

recent years have seen remarkable MVA research growth in pre-adult populations. This

paper presents the results of a systematic review of the literature focusing onMVA applied

to healthy subjects in fetal, neonatal and pediatric magnetic resonance imaging (MRI) of

the brain. While the results of this review demonstrate considerable interest from the

scientific community in applications of MVA technologies in brain MRI, the field is still

young and significant research growth will continue into the future.
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INTRODUCTION

The developing brain undergoes rapid structural and functional changes via a variety of
processes including neuronal migration, axonal elongation, pruning, maturation of circuits and the
emergence of convolution which support efficient signal processing regionally and among distant
brain regions. Basic and higher-cognitive functions both require the coordination and cooperation
of neurons located in multiple brain regions all of which are in a state of rapid development with
a variety of different growth rates. Differences in brain activity between children and adults (Casey
et al., 1997; Thomas et al., 2001; Bunge et al., 2002), the structural changes in many developing
regions (Reiss et al., 1996; Gogtay et al., 2004; Fair et al., 2009; Supekar et al., 2009) which is linked
to gradual changes in tissue contrast (Ketonen et al., 2004) and the recruitment of large cohorts
of age matched subjects are major challenges facing researchers in fetal, neonatal, and pediatric
imaging. Higher-order brain functions are supported by distributed patterns of brain activity and
structure (Mesulam, 1981; Vaadia et al., 1995; McIntosh et al., 1996; Fox et al., 2005) and assessing
and identifying these distributed patterns is particularly challenging in a pediatric/neonatal/fetal
population due to small brain sizes, a rapidly changing physiology, a high degree of brain plasticity,
patient motion, increased metabolism and an incomplete understanding of brain development.
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Multivariate analysis (MVA) techniques (i.e., multivariate
regression, multivariate analysis of variance, machine
learning etc.) are advanced statistical, computational and
pattern recognition technologies that evaluate multiple
variables/measurements simultaneously. MVA technologies
provide a theoretical improvement over univariate techniques
which examine each acquired measurement individually.
MVA has particularly large potential in studies of magnetic
resonance imaging (MRI)-based brain development as many
physiological and structural parameters can be measured, new
measurements are constantly under development and distributed
measurements across the entire brain are acquired. The ideal way
to combine a distributed set of a variety of different physiological
measurements for any particular application/investigation is not
known a priori, making MVA research applied to the developing
brain a challenging field of ongoing investigation. MVA
techniques can be employed to discover what brain regions and
what physiological biomarkers are most correlated with a variety
of subject measurements such as sleep cycles in newborns,
cognitive/psychological measures including the intelligence
quotient (IQ) and language functions and lifestyle habits in older
children. It is also possible to retrospectively correlate cognitive
abilities (e.g., academic activities), lifestyle choices (e.g., smoking
habits), or even pathogenesis of brain diseases exhibited later
in life to developmental imaging examinations acquired during
early brain development.

MRI provides a wide variety of different physiological
measurements distributed across the brain, thus providing a
wealth of information that may assist in an array of research
problems in both clinical applications and basic research.
The most common MRI modality produces basic structural
information related to the concentration of hydrogen protons.
Water is the most abundant molecule in the human body
with two hydrogen protons found in each molecule. Since
the body regulates many tissues and organs by controlling
the concentration of water molecules across membranes,
structural MRI provides excellent tissue contrast. Perfusion MRI
measures blood perfusion by tagging fast moving hydrogen
protons in the blood stream and monitoring the tissues to
which they travel. Functional MRI (fMRI) measures a blood
oxygen level-dependent signal which is associated with brain
activity, an important method for monitoring brain function
during an assigned task. fMRI can also be used to monitor
normal blood oxygen levels in the brain while the subject
is at rest. Diffusion weighted imaging (DWI) is focused on
acquiring measurements of water diffusion which can be
a useful physiological measurement in many applications.
Diffusion tensor imaging (DTI) is a directional extension of
DWI, measuring water diffusion in six or more different
spatial directions while assuming a principal direction of water
diffusivity at each pixel/voxel location in the brain. DTI allows
the tracking of coherent tissue structures that are often associated
with axonal and even glial fiber pathways (Takahashi et al.,
2012; Xu et al., 2014) which has enormous potential for
monitoring brain maturation in early developmental stages.
MRI can acquire considerably more types of images as well
that have not had a major impact in studies focused on

imaging-based MVA of pediatric, neonatal, and fetal populations
such as chemical exchange saturation transfer imaging (which
includes pH sensitive amide proton transfer imaging) and MR
spectroscopy (which is often not spatially resolved but a single
measurement that is acquired across the entire brain or at a
localized region-of-interest—ROI).

Recent years have exhibited remarkable growth in the use
of MVA techniques in pediatric, neonatal and fetal imaging.
An excellent review article on the use of MVA classification
technologies in developmental brain imaging was previously
published in 2009 (Bray et al., 2009), however, at the time
of publication the number of research studies using MVA in
a pediatric, neonatal and fetal population was limited. In the
years since 2009, pre-adult brain MRI studies employing MVA
technologies have exhibited remarkable growth, warranting a
thorough systematic review. This article reviewsMVA techniques
applied to brain MRI of pediatric, neonatal and fetal populations
and focuses on the imaging of healthy subjects.

MATERIALS AND METHODS

Multivariate Analysis Techniques
MVA techniques can be divided into several classes. Multivariate
statistical techniques are quite varied in their potential
applications, with a prominent example being techniques
focused on the identification of measurements correlated
with an important patient characteristic. With a large set of
measurements available, MVA techniques such as multivariable
linear regression (Rencher and Christensen, 2012) can be
used to identify a subset of variables associated with a patient
characteristic of interest. MVA techniques such as multivariate
analysis of variance (MANOVA) (Warne, 2014) can help assess
the effect of changes in one variable on dependent variables and
can generally help elucidate the existing relationships between
dependent and independent variables. Multivariate analysis of
covariance (MANCOVA) (Smith, 1958) is a technique similar
to MANOVA but can factor out noise or error introduced by a
covariant variable. This review will discuss many applications
of multivariate statistics in pediatric, neonatal and fetal
populations without neurological/psychiatric disorders which
will help illustrate the wide variety of potential uses of these
techniques in a medical research context. Multivariate regression
based techniques can also create new measurements that
are a combination of existing measures creating customized
factors/components associated with underlying physiological
conditions. Principal Components Analysis (PCA) (Dunteman,
1989) is a representative example that computes orthogonal
components that maximize the variance captured from the
underlying measurements provided. Manifold learning performs
dimensionality reduction non-linearly (Goldberg et al., 2008).
Independent Components Analysis (ICA) (Hyvarinen et al.,
2004) is a powerful technique based on discovering non-
Gaussian distributions in datasets exhibiting mixed signals.
These data reduction methods bridge the gap between statistical
analysis techniques and related computational technologies that
are used automatically and semi-automatically.

Frontiers in Neuroanatomy | www.frontiersin.org 2 January 2016 | Volume 9 | Article 163

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Levman and Takahashi Healthy Pre-Adult Neurodevelopment: Multivariate MRI

Machine learning (Carbonell et al., 1983) is a related class
of analysis technique that exhibits considerable overlap with
multivariate statistical approaches in that many also involve
the selection of measurements and employ data reduction.
However, machine learning is often considered a technology
rather than a statistical analysis technique. Machine learning is
divided into two main approaches: supervised and unsupervised
learning. Supervised learning is a class of technologies that use
training data which is a collection of measurements associated
with multiple groups such as two different types of tissues of
interest. The training data is used to inform future predictions,
allowing the computer algorithm to assign new unknown
samples to one of the groups for which it was provided example
measurements. Some supervised learning algorithms include
feature selection as part of the overall technology (the process
of selecting measurements to rely upon for prediction), however,
many do not and feature selection is often addressed as a
separate topic in the scientific literature. Bayesian classification
bases prediction on posterior probabilities computed from the
distribution of training data provided (Devroye et al., 1996).
The support vector machine (Vapnik, 1995) is a popular
and high performing statistical machine learning technique
that attempts to minimize the error on unseen samples and
maximizes the margin that separates a decision function from
the neighboring training samples provided. The relevance vector
machine (Tipping, 2001) is an adaptation of the support vector
machine that incorporates probabilistic Bayesian learning. The
artificial neural network (Yegnanarayana, 2009) models the
behavior of many neurons connected together in a wide variety
of topologies to simulate the natural learning process exhibited
in the brain. Linear discriminant analysis (McLachlan, 2004)
computes a linear combination of measurements in order
to characterize or separate two or more groups of samples.
The decision tree is a simple methodology for embedding a
series of decisions in a hierarchical structure and boosting
trees (Friedman et al., 1998) is an adaptation that involves
generating weights for imbalanced prediction or voting. The
random forest (Breiman, 2001) is an additional extension
of the decision tree in which a large collection of decision
trees (dubbed a forest) are created with different predictive
behavior allowing the algorithm classify a sample based on
the most common predictions among those decision trees in
the forest. The k nearest neighbor algorithm classifies a new
sample based on the local data density of the provided training
samples (Altman, 1992). Finally, the generalized linear model
(Nelder and Wedderburn, 1972) is a flexible generalization of
linear regression that allows for response variables with error
distribution models other than the standard normal distribution.
The generalized linear model is sometimes referred to as
a multivariate statistical analysis technique, highlighting the
considerable overlap between machine learning technologies and
traditional statistical MVA techniques.

Unsupervised learning differs from supervised learning in that
these MVA technologies are not provided with a set of example
training data on which to base predictions. Instead, unsupervised
learning technologies are tasked with performing a basic level of
pattern recognition on a medical imaging examination based on

the data in the examination itself. This typically involves dividing
a medical examination into multiple regions-of-interest which
can facilitate a variety of in depth analyses (this is also known
as image segmentation). These technologies can be applied to
isolating a particular tissue or structure in the brain and can
be used to monitor changes due to healthy brain development.
Unsupervised learning technology can support the extraction of
regional physiological statistics and in turn can play a critical
role in computer-aided diagnosis systems, supporting high-
level patient-wide diagnoses. Example unsupervised learning
technologies include the ISODATA algorithm (Ball and Hall,
1965) and cluster analysis (Manton et al., 2014). Cluster
analysis is a family of techniques that includes hierarchical
clustering in which data is structured across a hierarchical
tree and also includes the k-means algorithm which finds k
groups in a high dimensional dataset after random initialization.
Graph cuts are formalized as an energy minimization problem
(Greig et al., 1989). The Watershed method is inspired from
geography and the image is modeled as a topographic map. The
image is segmented based on ridge lines separating watershed
catchment basins which represent regions-of-interest on the
image (Beucher and Meyer, 1993). Also of interest is fuzzy set
theory, which is used in situations where available information is
incomplete or imprecise and functions by modeling uncertainty
(Zadeh, 1965). Finally, the expectation maximization algorithm
is a parametric approach that involves iterative refinement of
parameter estimates (Dempster et al., 1977).

Several of the research papers included in this review made
use of unsupervised learning algorithms and reported evaluative
metrics for assessing the quality of the regions-of-interest
produced by the learning technique. These metrics are reported
in the results section of this paper and each of the relied upon
evaluative metrics are introduced here. The Dice coefficient
measures the amount of overlap between the computed region-
of-interest (ROI) and ground truth data, defining that overlap as
2 times the magnitude of the intersect of the two ROIs divided by
the sum of the magnitude of each individual ROI (Dice, 1945).
The Jaccard index is closely related to the Dice coefficient though
it assesses overlap as the magnitude of the intersection of the
two ROIs divided by the magnitude of the union of the two
ROIs (Jaccard, 1901). The Kappa statisticmeasures the agreement
between raters by adjusting the relative observed agreement with
the hypothetical probability of chance agreement (Cohen, 1960).
For all three parameters, higher values indicate greater agreement
between the gold standard ROI and the ROI computed by
the learning procedure. Finally, Pearson’s correlation coefficient
(PCC) assesses the linear correlation between two variables.
Highly correlated variables approach a PCC of 1, uncorrelated
variables yield a PCC of 0 and highly negatively correlated
variables approach a PCC of -1.

Review Parameters
The search engine MEDLINE/PubMed was used for this
review on May 4th, 2015. The search terms employed were
<Multivariate pediatric brain MRI> or <machine learning
pediatric brain MRI> or <Multivariate neonatal brain MRI>
or <machine learning neonatal brain MRI> or <Multivariate
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fetal brain MRI> or <machine learning fetal brain MRI>. This
yielded 166 articles whose titles and abstracts were reviewed for
their appropriateness for inclusion in this paper. Articles were
excluded if brain MRI was not performed in a fetal, neonatal
or pediatric population. Articles were excluded if they did not
involve an MVA that included brain MRI data acquired as an
important component of the analysis. Articles were excluded if
not authored in English. Articles were excluded if they were not
focused on healthy brains or normal neurological development.
Articles from this search process that were not excluded were
analyzed for this systematic review and noteworthy citations
within these articles were considered for inclusion (subject to the
same exclusion criteria).

RESULTS

At present we have an incomplete understanding of healthy
human brain development and the results of this review
demonstrate that MVA techniques combined with MR imaging
can play a substantive role in helping elucidate our knowledge
pertaining to developmental brain imaging. In addition to
enhancing our fundamental knowledge, theoretically, a more
complete understanding of healthy human brain development
may lead to the accurate identification of deviations from
expected neurodevelopment. This in turn may assist in
the detection, characterization, diagnosis and progression
monitoring of a wide variety of medical disorders as aberrations

from healthy brain development. MVA technologies can be
used to assist in understanding, characterizing, and monitoring
healthy brain development. MVA technologies based on MRI
can be used to create tools to assist in the analysis of the
images we acquire such as assessing gray and white matter
volumes, detecting structural changes during development,
identifying anatomical substructures associated with a phase of
brain development and predicting a subject’s age or gender.
MVA provides considerable potential over traditional univariate
analyses with a wide variety of flexible applications of MVA
available. MVA can be used to generate a custom index
that combines multiple measurements (as in Figures 1, 2).
Additionally, MVA can be used to visualize the extent of tissue
connectivity (as in Figure 3). MVA can also be used to create
images that allow for visual comparison of regional differences
in group-wise analyses (see Figures 1, 4).

Patterns of Brain Development
MVA technologies can be applied to brain MR imaging data to
help identify patterns associated with a wide variety of aspects of
healthy brain development. Studying human brain development
is first possible with fetal imaging, which allows the assessment
of a subject’s neurodevelopment in utero. Schopf et al. (2012)
investigated a fetal population with resting state fMRI of the
brain using ICA and demonstrated that resting state functional
networks in the fetal brain are detectable in utero. Their
study looked at a population observed across gestational weeks

FIGURE 1 | The spatial relative cerebral blood flow discrepancy map comparing groups of subjects 7 and 13 months old. Red values indicate greater

blood flow in the 13 month group, blue values indicate greater blood flow in the 7 month group. Results were computed with a support vector machine. Figure is

reproduced with permission (Wang et al., 2008).
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FIGURE 2 | A functional brain maturation curve comparing the

functional connectivity maturation index as computed with

multivariate techniques with subject age (Dosenbach et al., 2010).

Figure is reproduced with permission.

(GW) 20–36 and found three important network components
associated with this developmental stage: a bilateral frontal, a
bilateral occipital and a unilateral temporal component located
in the left hemisphere. Thomason et al. (2013) studied a healthy
fetal population with resting state fMRI also making use of ICA
for analysing functional networks of activation in the brain.
ICA identified eight bilateral networks. ICA was also able to
isolate five components associated with noise, emphasizing the
technique’s ability to not only identify regions of the brain
with similar activation patterns, but also to separate noise from
imaging datasets which can assist in improving the signal-
to-noise ratio (SNR) of the MR examinations. Jakab et al.
(2014) investigated the use of fMRI for in utero imaging of the
fetal brain. Their work used PCA-based feature measurement
reduction as a means of removing noise from the imaging data
to support more reliable analyses. Results demonstrated that
the overall connectivity network in the brain as well as short
range and interhemispheric connections exhibited a sigmoid
expansion curve which peaked at 26–29 GW. By contrast, long
range connections exhibited a linear increase with no periods of
peaking development. Their results demonstrate heterogeneous
development of functional networks in the fetal brain. Ferrazzi
et al. (2014) presented a framework for improving fetal MRI
studies that make use of ICA by correcting for imaging artifacts
induced by motion, bias field and spin history. Their results were
found to be consistent with identified resting state functional
networks reported in previous fetal imaging studies.

Children born healthy but prematurely or with very low
birth weight represent an interesting research group which
does not necessarily have neurodevelopmental disorders. This

group provides unique opportunities for study as they represent
an intermediary between fetal and standard neonatal imaging.
Tich et al. (2011) applied multivariable regression to data from
very preterm infants and demonstrated that larger birth weight,
shorter duration of assisted ventilation and older postmenstrual
age (gestational age at birth + postnatal period) at MRI
were predictive of larger brain metrics. Furthermore, biparietal
diameter was found to be the variable most associated with the
Mental Development Index and the Psychomotor Development
Index. Nosarti et al. (2004) investigated the size of the corpus
callosum among very preterm birth children and its relationship
to neuropsychological outcome. Their analysis included MRI
and MANCOVA. Their results indicated that in preterm boys
only, verbal IQ and verbal fluency scores were positively
associated with total mid-sagittal corpus callosum size and mid-
posterior surface area. Adams et al. (2010) investigated the use
of diffusion tractography in premature newborns and applied
multivariate regression which indicated that gestational age at
birth was not significantly associated with DTI measures of
corticospinal tract development. Fearon et al. (2004) investigated
the long-term effect on the brains of very low birth weight
newborns by imaging them with MRI during adulthood and
analysing the results with the general linear model (GLM).
The GLM demonstrated that ventricular volume was larger
and posterior corpus callosum volume was smaller in very
preterm individuals compared with controls. Delpolyi et al.
(2005) investigated the microstructural and macrostructural
development of the cerebral cortex in premature newborns using
DTI and traditional statistical multivariate techniques. Cortical
gyration was measured as the ratio of gyral height to width
on volumetric MRI bilaterally in the superior frontal, superior
occipital, precentral, and postcentral gyri. Although, cortical
gyration scores, fractional anisotropy and radial diffusivity were
all significantly correlated with the estimated gestational age,
MVA found no statistically significant relationship between
DTI parameters and cortical gyration beyond their common
association with estimated gestational age.

Imaging of neonatal brain development is a challenging task
as the brain is relatively immature and exhibits a reduction
in organized neuronal activity as compared to adults. The
newborn brain is also maturing rapidly both structurally and
metabolically. Aljabar et al. (2010, 2011) demonstrated that
MVA based manifold learning technology can be applied to the
developing neonatal brain and has potential toward identifying
patterns in the trajectories of brain development. Their results
demonstrated a strong correlation between clinical data such as
gestational age, weight and head circumference with multivariate
MRI-based measurements. Furthermore, their approach was
shown to produce improved correlations with subject age over
measurements extracted from MR examinations. Wang et al.
(2008) demonstrated that blood perfusion MRI can be used
in combination with the multivariate technique known as the
support vector machine to analyse cerebral blood flow increases
in the hippocampi, anterior cingulate, amygdalae, occipital lobes,
and auditory cortex demonstrating increased cerebral blood flow
in 13 month old infants relative to a 7 month old group. Their
results also demonstrated decreased blood perfusion in the right
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FIGURE 3 | A map of functional connectivity in the brain computed with the support vector machine. Connections positively correlated with age are shown

in orange. Negative correlations with age are shown in light green (Dosenbach et al., 2010). Figure is reproduced with permission.

temporal lobe, right prefrontal region and the left putamen.
Figure 1 is provided to demonstrate relative cerebral blood
flow discrepencies between the 13 and 7 month old groups as
computed by a support vector machine. Matsuzawa et al. (2001)
studied age-related volumetric changes in both gray and white
matter in healthy infants and children. Their analysis included
the use of a Bayesian algorithm to assist in characterizing
gray matter, white matter and cerebrospinal fluid from MRI
examinations. Their study also included a MANOVA statistical
analysis. Their results helped quantify natural growth spurts
occurring during the first 2 years after birth, a period during
which the frontal lobes grew more rapidly than the temporal
lobes. Right-left hemispheric asymmetry was more noticeable in
the temporal lobes than in the frontal lobes.White matter volume
was shown to increase at a higher rate than gray matter volume

throughout childhood. Koshiba et al. used principal component
analysis to examine factors associated with the neurological and
behavioral development of “Head Control” and “Roll Over” in a
neonatal population (Koshiba et al., 2015). They determined that
hematological and brain anatomical factors were correlated with
these basic neonatal movement patterns.

Imaging of children that have grown beyond the neonatal
phase is another important aspect of neurodevelopmental brain
imaging. These pediatric populations are less challenging to
image than fetal and neonatal populations due to a variety of
factors including a larger nervous system and some degree of
cooperation from the subjects regarding remaining still during
imaging (movement can corrupt the examination with motion
artifacts). Giedd et al. (1999) presented a landmark longitudinal
study which helps to introduce this topic. Their analysis included

Frontiers in Neuroanatomy | www.frontiersin.org 6 January 2016 | Volume 9 | Article 163

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Levman and Takahashi Healthy Pre-Adult Neurodevelopment: Multivariate MRI

FIGURE 4 | A three-dimensional rendering of the brain with overlaid color maps illustrating the relative contribution to variability of different

neurological locations based on genetic and environmental factors (Schmitt et al., 2007). Figure is reproduced with permission.

145 healthy subjects between 4 and 20 years old. Their study
incorporated an artificial neural network for tissue classification.
Their results demonstrated linear increases in white matter
and nonlinear changes in cortical gray matter that varied by
brain region. Shaw et al. (2008) presented a large-scale cortical
thickness study investigating 764MRI examinations acquired
longitudinally from 375 typically developing children and young
adults. They used regression analysis to determine if each cortical
measurement was best modeled by a cubic, quadratic, or linear
function as they vary with age. They determined that most of the
lateral frontal, lateral temporal, parietal, and occipital isocortex
developed with a cubic trajectory exhibiting a period of initial
childhood increase followed by adolescent decline and then
stabilization. The quadratic model exhibiting a period of initial
childhood increase followed by a decrease of cortical thickness
without a period of stabilization was identified in the insula
and the anterior cingulate cortex. A linear growth trajectory was
observed in the posterior orbitofrontal and frontal operculum,
portions of the piriform cortex, the medial temporal cortex,
subgenual cingulate areas, and medial occipitotemporal cortex.
Chen et al. (2014) investigated a combination of neonates and
children up to 4 years old helping to bridge the gap between
neonatal and pediatric imaging analysis of brain development.
Their study used multivariate adaptive regression splines to
derive data-driven growth trajectories for the three eigenvalues
(measures along three principal directions of water diffusivity)
associated with DTI and demonstrated that insights into
brain maturation can be gained through analysing eigenvalues.
Specifically, their work revealed limitations in relying upon the
average of the secondary and tertiary eigenvalues for radial
diffusivity because they exhibited significantly different growth
velocities compared to that of the first eigenvalue. Based on the

three primary eigenvalues, their results also demonstrate growth
trajectory differences between the central and peripheral white
matter, between the anterior and posterior limbs of the internal
capsule and between the inferior and superior longitudinal
fasciculus. Schmithorst et al. (2007) investigated the development
of effective connectivity pertaining to narrative comprehension
in children aged 5–18 using fMRI, independent components
analysis and the general linear model. Feedback networks were
identified during a narrative processing task involving effective
connectivity from Broca’s area and the medial aspect of the
superior frontal gyrus to the posterior aspects of the superior
temporal gyrus bilaterally. They also demonstrated that the
effective connectivity from Broca’s area to the superior temporal
gyrus in the left hemisphere increases with age. The results
demonstrate that it is feasible to investigate effective connectivity
using MVA applied to multiple subjects in the absence of an a
priori model. In their analysis functional activation maps in the
brain were computed with the general linear model.

Predicting Brain Age/Maturity
Predicting brain age/maturity from MRI examinations has
the potential to play an important role in both improving our
understanding of healthy brain development and studying
the nature by which developmental disorders deviate from
expectation. Brown et al. (2012) studied healthy brain
development with structural MRI and multivariate regression
and demonstrated that their model of human brain maturation
accounted for over 92% of the individual variability in brain
development as defined by subject age. Mwangi et al. (2013) used
the relevance vector machine combined with diffusion tensor
imaging demonstrating that they could produce an index closely
related to subject age (with Pearson correlation coefficients
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ranging from 0.870 to 0.899 depending on the DTI measurement
relied upon). Brain maturity assessment was demonstrated to
be feasible based on combining resting state fMRI with support
vector machine technology in subjects aged 7–30 years old
(Dosenbach et al., 2010). The greatest contribution to predicting
brain maturity was based on the weakening of short-range
functional connectivity between the brain’s major functional
networks, consistent with the work by Jakab et al. (2014).
However, it should be noted that the work by Power et al. (2012)
calls into question fMRI findings of a shift from short to long
range connectivity in the presence of patient motion artifacts
which can bias fMRI based short and long range connectivity
analyses. Figure 2 provides a functional maturation index
computed with the aid of multivariate techniques relative to age
demonstrating how MVA can be used to help better understand
and characterize brain development (Dosenbach et al., 2010).
The resultant functional maturation curve accounted for
55% of the sample variance following a nonlinear asymptotic
growth curve shape. Figure 3 provides a connectivity map
demonstrating functional connections as computed with the
support vector machine (Dosenbach et al., 2010). Greene et al.
(2014) utilized the support vector machine to reliably classify
individuals as children or adults based on basal ganglia cortical
system functional connectivity yielding an accuracy of 83.3%.
Smyser and Neil (2015) demonstrated that they could use
the MVA technique known as the support vector machine
to demonstrate differences between term and very preterm
infants based on resting state functional MRI examinations.
Franke et al. (2012) demonstrated that the relevance vector
machine combined with MRI could accurately predict the age
of the brain being analyzed. Furthermore, they demonstrated
that preterm-born adolescents exhibited a significantly lower
estimated brain age than their chronological age. Correlations
between subject age and that estimated by their approach ranged
from 0.9 to 0.95 and represents a statistically significant finding.
Serag et al. (2012) employed unsupervised learning technologies
and reported that their approach can produce a good biomarker
of brain development. Toews et al. (2012) presented a model
that can be used to identify age-related anatomical structure
using Bayesian techniques to predict the age of subjects with
an average error of only 72 days. Khundrakpam et al. (2015)
presented an approach to assessing brain maturity based on
cortical gray matter thickness and a linear regression model
and found that the leading predictors were highly localized
sensorimotor and association areas. An approach to estimating
brain age based on DTI was presented by Han et al. (2014) at
conference. Dittrich et al. (2014) used a random forest classifier
to construct an atlas of fetal brain development which was
used to estimate a brain structure’s age morphologically. Erus
et al. (2015) demonstrated that multivariate regression can be
used to model healthy structural brain maturation and showed
that deviations from expectation are correlated with cognitive
performance for both developmentally delayed individuals as
well as those with cognitive precocity. Results demonstrated that
the brain development index that they present is correlated with
subject age with a correlation coefficient of 0.89.

Identifying Brain and Tissue Structures
MVA technologies can be used to perform pattern recognition
on a pediatric patient’s brain MRI examination in order to
divide the image into regions-of-interest (ROIs) separating
tissues and structures for further analysis, a process referred
to in the literature as image segmentation. Such techniques
establish a set of ROIs in the examination which can facilitate
studies investigating changes in white and gray matter volumes,
structural changes, and tissue outcome prediction studies.
These techniques can be used as an important component in
a computer-aided detection system which can assist in the
characterization and identification of a variety of complex
regional variations of brain development. This subsection of the
results first presents MVA studies applied to a fetal population
followed by neonatal and then pediatric populations.

The germinal matrix is a transient deep brain region of
developing cells adjacent to ventricles that is present in the fetal
brain between 8 and 28 weeks gestational age. Habas et al. (2008)
presented an approach to the segmentation of the germinal
matrix from in utero clinical MRI examinations of the fetal brain
at conference. Their approach was based on a constructed tissue
atlas formed by a combination of subjectMR examinations which
yielded average shape and intensity images. Keraudren et al.
(2013) developed a technique using MRI to detect the location
of the fetal brain from the mother’s abdomen and applied it
to a database of 59 fetal examinations and also applied their
segmentation approach to motion correction (Keraudren et al.,
2014). Their work was based on fetal T2 weighted structural MRI.

Altaye et al. (2008) developed infant brain probability
templates for MRI segmentation and normalization. Their
approach was based on creating tissue probability maps from
76 infants ranging in age from 9 to 15 months. They
demonstrate the utility of their approach by segmenting imaging
examinations into gray matter, white matter and cerebrospinal
fluid. Commowick and Warfield (2010) used an expectation
maximization approach to support the segmentation of neonatal
brain MRI examinations using T1 and T2 structural imaging.
Shi et al. (2010) created an approach to neonatal brain image
segmentation based on probabilistic atlases. The authors reported
Dice coefficients (range 0.85–0.87) that demonstrated that their
approach has similar agreement to the results of two experts.
He and Parikh (2013) developed a brain segmentation technique
based on T2 relaxometry and demonstrated their work on very
preterm infants yielding a Dice coefficient of 0.95.

Weisenfeld and Warfield (2009) presented an approach to
the probabilistic segmentation of each pixel/voxel from spatially
aligned T1 and T2-weighted neonatal MRI examinations of the
brain into cortical and subcortical gray matter, unmyelinated
white matter, myelin, cerebrospinal fluid, and background
(non-brain). Their approach shares similarities with Bayesian
techniques and was reported to have achieved an accuracy
comparable to that obtained by semi-automatic methods that
require manual interaction from the user (with average Dice
coefficients ranging from 0.72 to 0.92 depending on tissue type).

Song et al. (2006) developed an approach to the segmentation
of T2 MRI examinations of neonates based on graph cuts
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technology incorporating a new method for information
integration. Tissue priors and local boundary information
are integrated with standard image intensity values into the
edge weight metrics used by graph cuts. Their approach also
incorporated inhomogeneity correction. They demonstrated that
their method outperformed a commonly used optimization
method applied to segmentation.

Xue et al. (2007a) developed an automatic approach to
cortical segmentation in the developing brain that uses a priori
knowledge of the inverted contrast exhibited between gray and
white matter when myelination is incomplete. Their approach
was tested on T2 imaging examinations from 25 neonates
and compared with the results of manual segmentations.
In an additional study, Xue et al. (2007b) focused on the
segmentation and reconstruction of the neonatal cortex from
T2 MRI examinations using an expectation maximization
Markov Random Field approach. Their results indicated that
cortical surface area and curvature increase with age. They
determined that whole brain surface area scales to cerebral
volume according to a power law while cortical gray matter
thickness is not related to age or brain growth. They report
Dice coefficients of 0.76 for gray matter and 0.79 for white
matter. Isgum et al. (2015) presented the results of the
NeoBrainS12 challenge which involved eight participating
research teams attempting to segment preterm neonatal T1 and
T2 MRI brain examinations into cortical gray matter, non-
myelinated white matter, brainstem, basal ganglia and thalami,
cerebellum, and cerebrospinal fluid in the ventricles and in the
extracerebral space. Teams involved in the competition took
a variety of multivariate approaches including one based on
watershed segmentation, three techniques based on the k nearest
neighbor algorithm and four techniques based on expectation
maximization. An implementation of k nearest neighbor yielded
the highest Dice coefficients (0.56–0.95 depending on tissue
type) on axial images. Analysis of the results of the competition
indicated that the automatic segmentation of brain tissues from
neonatal MRI examinations is feasible, however, the automatic
segmentation of myelinated white matter in these images is not
feasible (with a Dice coefficient of 0.56 corresponding to the
segmentation of myelinated white matter).

Zhang et al. (2015) developed a neonatal brain segmentation
system using artificial neural networks based on multiple MRI
modalities achieving Dice coefficients of 0.83–0.86 depending
on tissue type. Wang et al. (2015) presented an approach
to neonatal brain segmentation based on the random forest
supervised learning algorithm yielding Dice coefficients ranging
from 0.83 to 0.92 depending on tissue type. Song et al. (2007)
presented an approach to neonatal brain segmentation based
on Bayesian analysis and the support vector machine and
published their work at conference. A level-set based brain
extraction technique was developed by Shi et al. (2012) and
applied to both neonatal and pediatric examinations yielding
Jaccard indices of 0.95–0.96 depending on subject age. Devi et al.
(2014) presented an approach to automatic brain segmentation
of neonates employing atlas based probabilities and Gousias et al.
(2012) also employed probability based atlases but their approach
was applied to a pediatric population yielding Dice coefficients

ranging from 0.9 to 0.92 depending on the brain’s substructure
being evaluated.

The segmentation of the pediatric brain has been the
subject of numerous studies. Glass et al. (2003) developed an
approach to the prediction of total cerebral tissue volumes
based on multimodal MRI examinations (T1, T2, proton density,
FLAIR). Their approach employed a hybrid artificial neural
network segmentation and classification algorithm used to
identify normal parenchyma. They reported an average error of
estimation of total cerebral tissue volumes of 6% in 27min of
computational processing time or alternatively an average error
of less than 2% based on 2 h and 4min of processing time. Shan
et al. (2006) developed a brain atlas based on the structural
T1 volumetric MRI examination of a 9-year-old girl, involving
the construction of a three-dimensional triangular mesh model
and indicated that their results could be used to plan treatment,
conduct model-driven segmentation and to analyze the shapes
of brain structures in pediatric patients. They reported kappa
statistics of 0.97 for cortical regions and 0.91 for subcortical
regions indicating substantial similarities between their mesh
model and the original volumes.

The segmentation of the caudate nucleus from pediatric
(aged 2–4 years) MRI examinations was the subject of a
component of a grand challenge as part of a workshop
associated with the Medical Image Computing and Computer
Assisted Intervention Conference (van Ginneken et al., 2007).
The competition entrants included Arzhaeva et al. (2007) who
presented a method based on the k-nearest neighbor classifier.
Wels et al. presented a method (Wels et al., 2007) based on
probabilistic boosting trees. A multiple atlas based approach was
presented by van Rikxoort et al. (2007) and a probabilistic atlas
approach was presented by Gouttard et al. (2007). Levy et al.
(2007) presented an approach based on Bayesian optimization.
Babalola et al. (2007) presented an approach based on active
appearance models. Tu et al. (2007) presented an approach based
on hybrid generative/discriminative models. Schonmeyer and
Schmidt (2007) presented an approach combining pixel-based
and object-based measurements derived from cognition network
technology. Finally, Liu et al. (2007) presented an approach
based on active contour models. There were reporting differences
between the studies that entered the competition, making direct
comparisons of their performance on the pediatric population
challenging. However, of those studies that reported a Pearson
correlation coefficient specific to the pediatric population
included in the competition, Babalola et al.’s results (Babalola
et al., 2007) were the most accurate (Pearson coefficient: 0.8320).

Shape Analysis
Shape analysis typically involves a statistical approach to taking
measurements from images indicative of a brain structure’s
morphological properties such as how spherical, irregular or
elliptical a region presents on MRI. Shape measurements
are typically extracted from ROIs established through image
segmentation (see previous subsection). Shape information can
be useful for assessing healthy growth patterns and theoretically
can assist in creating measurements that may be able to
identify aberrations from healthy growth trajectories. In terms
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of healthy brain development, Batchelor et al. (2002) proposed
an MVA approach to studying the shape of the cerebral cortex
using a set of measurements useful to assist in quantifying
folding in the brain from fetal MRI examinations. Their study
focused on the imaging of ex vivo brain specimens which
included a wide variety of pathological findings. Their subjects
included a sample that was the result of spontaneous miscarriage
without pathological findings. Rodriguez-Carranza et al. (2006)
developed a system for measuring regional surface folding in
neonatal brain MRI examinations, allowing evaluation of surface
curvature within subregions of the cortex. Their method was
applied to seven premature infants born at 28–37 gestational
weeks and gray matter and gray-white matter interface surfaces
were extracted. Their research can theoretically support the
study of structural development in the neonatal brain within
specific subregions. Serag et al. (2012) created a system capable
of performing unsupervised learning of shape complexity and
reported that their approach can produce a good biomarker of
brain development.

Studying Gender in the Brain
Comparing gender differences based on MRI examinations is
a common technique used to help elucidate developmental
variability between the sexes. There have been a few studies
focused on the analysis of gender differences in healthy subjects
using MVA techniques. Casanova et al. (2012) used the random
forest algorithm to investigate gender differences based on resting
state functional imaging yielding a classification accuracy of
65%. They concluded that gender differences may be related to
regional connectivity differences between critical nodes. Awate
et al. (2010) developed a multivariate modeling approach to the
analysis of cerebral cortical folding and demonstrated its utility
in studying cerebral cortical folding differences between genders.
Skiold et al. (2014) studied boys and girls born extremely preterm
withMRI using the generalized linear model and determined that
cognitive and language outcomes at 30 months were poorer in
boys.

Relating Genetics to Brain MRI
Genetics provides a wealth of information about subjects studied.
Given that there is still limited knowledge on the functional
role and organization of the human genome, it is expected that
genetic analyses will continue to grow in importance. There
have been several studies to date focused on combining genetic
data with MR brain imaging and also making use of MVA
techniques. Giedd et al. (2007) investigated the relative impact
of genetic and environmental factors on human brain anatomy
during childhood and adolescent development by applying
multivariate analysis techniques used in genetic analyses to a
large sample of monozygotic and dizygotic pediatric twin’s MRI
examinations. Their results indicated that cross twin correlations
were substantially higher in the monozygotic group relative to
the dizygotic group, indicative of a strong genetic impact on
brain volume variations. Although, their results indicated that
environmental factors provided a much smaller contribution
to brain volume variations (both whole brain and in specific

subregions), environmental factors did influence a substantial
portion of the variance in the dataset.

Schmitt et al. (2010) demonstrated that in a large pediatric
population most of the variance in the brain’s substructures
is associated with highly correlated lobar latent factors with
differences in genetic covariance and heritability driven by
a common genetic factor that influences white and gray
matter differently. In another study Schmitt et al. (2009)
developed a novel method that combines classical quantitative
genetic methodologies for variance decomposition with semi-
multivariate algorithms for high resolution measurement
of phenotypic covariance assessed with structural T1 MRI
examinations. Their results indicated that mean cortical gray
matter thickness was most strongly correlated with genetic
factors in association cortices. Their study suggests that genetics
plays a large role in global brain patterning of cortical gray
matter thickness. In an additional contribution, Schmitt et al.
(2008) employed principal components analysis of the genetic
correlation matrix and structural MRI examinations of pediatric
twins and siblings. Their results identified genetically mediated
fronto-parietal and occipital networks. Figure 4 provides a
three-dimensional rendering of the brain with overlaid color
maps which illustrate the relative contribution to the variability
seen in different neurological locations based on genetic and
environmental factors as computed with the aid of multivariate
techniques. In yet another contribution, Schmitt et al. (2007)
analyzedMRI examinations and genetic factors with multivariate
techniques from genetic analyses to investigate whether different
anatomical subdivisions share common genetic factors. Based
on the analysis of a large pediatric population, their work
suggests that the great majority of variability in cerebrum,
thalamus, cerebellum and basal ganglia is determined by a single
genetic factor. Most of the variability in the corpus callosum
was explained by additive genetic effects that were largely
independent of other structures. Their work also observed small
but significant environmental effects common to the thalamus,
basal ganglia and lateral ventricles.

Optimizing MRI Brain Imaging and Analysis
MVA techniques can play a role in assessing imaging
performance and optimizing image acquisition and its analysis.
White et al. (2014) employed fuzzy set theory in a pediatric
resting state fMRI study and determined that 5.5min of resting
state acquisition time was required to produce a stabilized set of
brain network measurements. Zhou et al. (2011) demonstrated
that deriving a Granger causality model from multivariate
autoregressive models can yield greater accuracy in detecting
network connectivity in fMRI examinations. Shehzad et al.
(2014) developed a multivariate distance-based regression to
assist in connectome-wide association studies and demonstrated
it on healthy development data. Pontabry et al. (2013) developed
a probabilistic approach to Q-ball imaging (an extension of
DTI) tractography and demonstrated the technique on in utero
fetal brain imaging examinations. They also demonstrated
that their technique can outperform existing fiber tracking
algorithms based on the Fiber Cup phantom challenge data
(Pontabry et al., 2013). Goodlett et al. (2008) presented a
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framework for hypothesis testing of differences between DTI
tractography pathways identified as bilateral cortico-spinal
tracts and tracts running through the genu and splenium of the
corpus callosum. Their approach incorporates PCA for signal
smoothing. Multivariate discriminant analysis is performed
on the PCA smoothed data and normalization is performed
across a population with DTI atlas building procedures.
Their methodology was evaluated on a pediatric study of 22
one-year-old and 30 two-year-old children.

The Effect of the Senses on the Brain
Sense organs (eyes, ears, etc.) contain concentrations of sensory
neurons which can be stimulated by external physical effects
(light, sound, etc.). These sensory neurons then stimulate
additional neural activity in the brain. Considerable research
has looked at the relationship between functional MR brain
imaging and controlled sensory stimulation and a few of these
studies have also incorporated MVA. Schopf et al. (2014) used
fMRI technology to study fetal eye movements in utero. Their
approach included the use of the random forest machine learning
algorithm (Breiman, 2001) to classify whether individual pixels
were part of the fetal eye. Their results indicate that the
relationship between eye movement and vision develops before
birth. Their work also incorporated ICA to identify networks
showing the highest correlation with fetal eye movement. This
included association related areas such as the angular gyrus,
inferior parietal gyrus, the superior frontal gyrus and the medial
occipital gyrus.

Jardri et al. (2008) investigated fetal cortical activation due
to sound stimulus at 33 GW using fMRI examinations. Their
approach included the use of ICA for processing fMRI data to
assist in the identification of brain regions exhibiting similar
activation patterns. This study involved a direct auditory stimulus
applied to six pregnant women’s abdomens. Standard univariate
voxel-wise analysis demonstrated that two of the six subjects
exhibited significant activation in the left temporal lobe. MVA
using ICA demonstrated that three out of six subjects exhibited
significant activation in the left temporal lobe, implying that
MVA techniques have the potential to identify patterns of
brain activation missed by traditional univariate analyses. In an
additional study, Jardri et al. (2012) studied fetal response to
auditory stimulation induced bymaternal speech using fMRI and
ICA. This analysis was performed in utero on subjects at 33 and
34 GW. Their results demonstrated left temporal lobe activation
in each of three fetuses imaged without motion artifacts. The
authors reported their results as representing the first in vivo
evidence for the development of maternal voice recognition
in utero.

DISCUSSION

The results of this systematic review demonstrate a wide variety
of applications of multivariate analysis (MVA) techniques applied
to brain MRI examinations of healthy pediatric, neonatal and
fetal populations. Since the ideal combination of MVA technique
and medical imaging derived clinical information is unknown
a priori, an enormous amount of research is required to fully

optimize MVA’s potential in this domain. Recent years have
exhibited ample growth in the application of MVA techniques
with ongoing growth expected. However, substantial challenges
will accompany future research in this domain.

There are substantial strengths and weaknesses of the wide
variety of multivariate analysis techniques available. Feature
reduction techniques (such as PCA and ICA) can be useful in
finding latent factors that can represent underlying physiological
conditions that can only be assessed by acquiring a multitude of
measurements. These techniques have considerable overlap with
the functionality of machine learning algorithms. In supervised
learning, the support vector machine (SVM) has shown itself
to be a high performing robust learning algorithm which is
particularly resilient to situations where it is provided with
small numbers of training samples. The related relevance vector
machine has been shown to produce learning solutions that rely
on fewer training samples than the SVM allowing prediction to
be computed more efficiently. Linear discriminant analysis is a
classical learning technique which can reliably perform pattern
recognition but often underperforms techniques like the SVM.
The artificial neural network’s strength lies in modeling the
learning abilities of the human brain which is unmatched by
current machine learning technology. However, artificial neural
networks typically attempt to model a learning problem with
far fewer neurons than the task would likely need in order to
be accomplished in the human brain. The random forest is
a high performing algorithm that explores a wide variety of
possible decisions that could lead to accurate predictions and
is particularly capable of exploiting feature measurements with
limited separation information embedded therein. Finally, it
should be noted that machine learning technology is too often
treated as a black box whose internal behavior is unknown to
the researcher. The technologies available provide the ability
to analyse their behavior, a task that all pattern recognition
researchers should engage in, not only to understand the nature
of the technology they’ve developed, but also to understand the
physiological significance of the patterns that the technology
exploits in order to make its predictions.

One major obstacle in this application domain is caused by
patient motion which is particularly challenging in pediatrics
because children tend to have a harder time remaining still during
imaging. Children asked to remain still in the scanner may forget
over the course of the examination. Image registration is a class
of technology used to compensate for patient motion but this is a
challenging problem for which there is no accepted gold standard
solution. Registration to standard templates (or brain atlases) is
typically based on adult brains (Talairach and Tournoux, 1988)
and it has been shown that normalization procedures used can
cause distortions in the brain examinations of children 6 years old
and under (Muzik et al., 2000). Distortional effects may adversely
affect MVA results and so care should be taken to avoid providing
data exhibiting distortional artifacts to MVA technology.

While feature selection can be addressed as a class of
technology independent of supervised learning, some supervised
learning techniques incorporate feature selection while others
do not. Feature selection is particularly important in the
characterization of neurodevelopment in a fetal, neonatal
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and pediatric population because we acquire a multitude of
measurements distributed across the brain and we don’t know
a priori all the brain regions that should be included in a given
analysis. The same is also true for identifying brain regions
whose structure or function at a particular time point is critical
in a future phase of healthy brain development, thus feature
selection technologies have considerable potential in improving
our understanding of healthy brain development. Feature
selection research could lead to new technologies to assist in the
characterization, detection and diagnosis of a variety of medical
conditions as aberrations from expected healthy growth patterns.

DTI and tractography are critical tools to assess maturation
of brain development, especially emerging or regressing tissue
coherency. However, limited MVA research has been conducted
incorporating diffusion imaging examinations as compared with
T1- or T2-weighted MRI. This may be because of a variety of
factors including the complexity of interpretation and analysis
of DTI data with multiple directions of tissue coherency,
higher sensitivity to motion, higher dependencies on SNR,
reliability of tractography reconstruction and DTI’s much more
limited routine clinical use. However, considerableMVA research
incorporating DTI is under development and exciting advances
in this field are expected in the next few years that combine
advanced MVA technologies with the enormous amounts of data
acquired in DTI examinations.

The scientific literature has seen enormous growth in studies
focused on developmental imaging of pre-adult populations that
make use of MVA technologies. However, much of this work has
been focused in pediatric imaging with considerably less focus
on neonatal and fetal populations. Neonatal imaging is more
challenging as brain size is considerably smaller than in pediatrics
and it is more challenging for imaging technicians to get a
neonate to remain motionless during their imaging examination.
Patient movement induces multiple types of imaging artifacts
which can negatively affect MVA. Fetal imaging is the largest
challenge of the three as the brain sizes are the smallest and
movement remains a major issue. Furthermore, MRI technology
is reliant on the spatial proximity of a coil/antenna to the

tissue/organ being imaged. Normal brain imaging benefits from
a specialized head coil that is mounted immediately adjacent
to the subject’s cranium, however, in fetal imaging this is not
possible and so coils are located outside the mother’s abdomen,
inherently reducing image quality. Additional challenges exist in
fetal imaging due to in utero variations in tissue contrast relative
to that observed at later developmental stages. Regardless of the
many challenges inherent in the use of MVA in the imaging of
fetal, neonatal and pediatric populations, there is considerably
large potential for ongoing growth in this research field.

CONCLUSION

Multivariate analysis (MVA) technologies can play a useful
role in helping to answer questions about structural and
functional organization in the developing brain. Furthermore,
MVA techniques have the potential to better characterize subject
anatomy and physiology than a univariate technique could
produce alone. MVA technologies have tremendous potential
in the creation of the next generation of clinical diagnostic
tests informed by the large amount of information acquired
by MRI. MVA technologies have exhibited enormous growth
in developmental brain MRI in pre-adult populations with an
emphasis on pediatric imaging. The technologies are very flexible
and a wide range of potential applications have already been
investigated, however, so many variations on MVA technologies
are available in the scientific literature that ample research will
need to be performed in order to properly evaluate the trade-
offs imposed by the selection of a given MVA technique for any
particular analysis task. Future work will look at improving MVA
techniques and adapting them to better characterize healthy
neurological development in pre-adult populations.
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