1' frontiers

in Neuroanatomy

HYPOTHESIS AND THEORY
published: 18 January 2016
doi: 10.3389/fnana.2016.00003

OPEN ACCESS

Edited by:

Wolfram Schenck,

University of Applied Sciences
Bielefeld, Germany

Reviewed by:

Alino Martinez-Marcos,

Universidad de Castilla, Spain
Alexander Peyser,
Forschungszentrum Jdlich, Germany

*Correspondence:
James Kozloski
kozloski@us.ibm.com

Received: 29 August 2015
Accepted: 02 January 2016
Published: 18 January 2016

Citation:

Kozloski J (2016) Closed-Loop Brain
Model of Neocortical
Information-Based Exchange.

Front. Neuroanat. 10:3.

doi: 10.3389/fnana.2016.00003

®

CrossMark

Closed-Loop Brain Model of
Neocortical Information-Based
Exchange

James Kozloski *

IBM Research Division, Computational Biology Center, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

Here we describe an “information-based exchange” model of brain function that ascribes
to neocortex, basal ganglia, and thalamus distinct network functions. The model allows
us to analyze whole brain system set point measures, such as the rate and heterogeneity
of transitions in striatum and neocortex, in the context of neuromodulation and other
perturbations. Our closed-loop model is grounded in neuroanatomical observations,
proposing a novel “Grand Loop” through neocortex, and invokes different forms of
plasticity at specific tissue interfaces and their principle cell synapses to achieve these
transitions. By implementing a system for maximum information-based exchange of
action potentials between modeled neocortical areas, we observe changes to these
measures in simulation. We hypothesize that similar dynamic set points and modulations
exist in the brain’s resting state activity, and that different modifications to information-
based exchange may shift the risk profile of different component tissues, resulting in
different neurodegenerative diseases. This model is targeted for further development
using IBM’s Neural Tissue Simulator, which allows scalable elaboration of networks,
tissues, and their neural and synaptic components toward ever greater complexity and
biological realism.

Keywords: neocortex, thalamus, basal ganglia, information-based exchange, brain model

1. INTRODUCTION

Synaptic plasticity regulates neuronal responses to patterns of inputs impinging on dendritic
arbors from multiple presynaptic sources. Resulting input selectivity at the single neuron level is
often associated with learning and memory in models of cognition. At the circuit level, synaptic
plasticity can serve more complex functions over arbitrary inputs, from selecting fixed points
in recurrent networks (Hopfield, 1982), to implementing optimizations such as information
maximization in artificial neural networks (Linsker, 1997), to dynamically encoding inputs in
winnerless networks (Rabinovich et al., 2001). A challenge to analyzing the role of any neuron or
circuit that implements these functions for cognition is that of modeling appropriate, naturalistic
neuronal and circuit inputs, which in real brains derive from tens of thousands to millions of other
neurons.

Here we present a closed-loop brain model, including component models of several neural
tissues that we hypothesize implement some of these functions. Synapses and plasticity connecting
components at principle cell interfaces together create a set of closed neuroanatomical loops.
Without extrinsic inputs or stochastic intrinsic drivers, our model avoids the challenges and
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assumptions of modeling naturalistic inputs separately, and
instead derives them exclusively from the dynamics of upstream
neurons and tissues. The challenge then is model validation,
which we won’t address in this report. Instead the aim here is to
delineate hypotheses and a theory of brain resting state function
using the model and its simulations. We propose that models
implemented similarly constitute a class of “brain models,” and
are distinct from component “neural tissue models,” which
instead assume an arbitrary set of inputs or stochastic processes
to drive intrinsic tissue dynamics. By avoiding these assumptions,
a coarse but consistent model of global brain function may be
useful for better constraining the most detailed neural tissue
simulations.

We introduce the term “traversal” to refer to a “synfire chain”
as defined by Abeles (1991), but with additional neuroanatomical
constraints defining a minimum set of neocortical regions
traversed by the event. The cortico-cortical feedback loop
in our model acts as a substrate for combined traversals
of sensory, limbic, and motor areas, which we propose
together drive behavior in the organism. The cortico-thalamo-
cortical feed forward loop acts to maximize the entropy of
these global traversals and to maximize information about
the environment relayed as inputs to the loop. Lastly,
the striato-nigro-striatal loop provides a means to select
subsequent configurations by monitoring changes in ongoing
traversals and signaling them with dopamine to alter routing
within the feed forward entropy maximizing network. We
propose this function as the substrate for reward learning
in the organism. Each of these loops therefore has both
a closed-loop function (global traversal, traversal entropy
maximization, and traversal change monitoring and rerouting)
and an organismal input-output function (behavior generation,
sensory processing, and behavior selection based on reward
learning).

The objective of this report is to describe the closed-
loop model and simulations of it. Perturbations to the closed
loop that alter dynamic set points will also be described. We
hypothesize about dynamic disease mechanisms and progression
based on the model, and describe methods that use neural
tissue simulation (Kozloski and Wagner, 2011) for modeling
treatments that alter brain disease risks. To summarize our
overall approach and long-term research goals, the driving
hypotheses relating our closed-loop model to brain disorder
and disease states are: (1) The primary disease and disorder
risk is a disturbance in plasticity that critically maintains
brain system dynamic set points; (2) Compensatory circuit
dynamics achieves near-normal set points despite genetic or
environmental perturbations, but with increased secondary
risk of neuronal dysfunction, damage, or loss; (3) Secondary
risk correlates with feed forward destruction or dysfunction
of neural tissues because with each neuron function lost,
maintaining system set points requires even greater secondary
risks; and (4) Slowing progression may therefore lie in
mitigating the primary risk’s effect on system set points or
in limiting secondary risks incurred by inherent compensatory
dynamics.

2. INFORMATION-BASED EXCHANGE
BRAIN MODEL

2.1. Cytoarchitectonics of Bidirectional

Neocortical Projections: The “Grand Loop”
We propose a model that emphasizes a specific cortico-cortical
connectivity across the major sensory, limbic, and motor
categories of Brodmann areas. This emphasis derives from
several observations. First, we note the importance of signals
traversing all three categories of cortical representations in
order to produce a stable basis for perception and behavior by
integrating information about the environment, internal needs,
and behavioral opportunities of the organism. While many loops
have been discovered in studies of the neocortical connectome,
none provide the directed graph (feed forward vs. feedback)
needed to identify a system to support such traversals. Instead,
we note that the cytoarchitectonic granularity of neocortical
areas provides one means to interpret feed forward (i.e., more
granular to less granular) and feedback (i.e., less granular to more
granular) connections between cortical areas (Rempel-Clower
and Barbas, 2000) and therefore a means to identify a backbone
for global brain traversals (Figure 1A).

Granularity refers to the density of punctate Nissl bodies
in stained layer 4 of neocortex. The granularity across all of
neocortex was studied and mapped extensively by von Economo
(1929), and we reproduce his illustrations and some key findings
in Figures 1A,B. Note that granular cortices typically have
smaller diffuse Nissl bodies in layer 5, and agranular cortices have
very large diffuse layer 5 Nissl bodies. Tiling in von Economo’s
map shows that regions of cortex with similar granularity are
adjacent, with key exceptions at the boundaries between primary
motor (M1) and primary somatosensory (S1), hippocampus
(HC) and retrosplenial granular areas (RGA), and subgenual
anterior cingulate (ACC) and prefrontal (PFC) cortices. Each
of these three pairs of Brodmann areas are interconnected, and
in our model represent key boundaries in the backbone for
traversing the sensory-limbic (HC-RGA), limbic-motor (ACC-
PFC), and motor-sensory (M1-S1) cortices (Figure 1B, black
arrows). To complete a “Grand Loop” backbone, we join each
pair of areas by an area in their adjacent dysgranular neocortical
regions: the secondary somatosensory (S2), posterior cingulate
(PCC), and supplemental motor (SMA) areas (Figure 1C).
While others have noted that organizing principles for intrinsic
microcircuits may be derived from combining von Economo’s
observations with those regarding granularity and the direction
of cortico-cortical projections (Beul and Hilgetag, 2015), none to
our knowledge have proposed a Grand Loop that traverses all of
neocortex according to these principles.

2.2. Cortico-Cortical and
Cortico-Thalamo-Cortical Functional
Pathways

Having defined the feed forward neocortical Grand Loop, well
now embellish this structural model with additional components
based on observations regarding feed forward projections and
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FIGURE 1 | (A) Granularity of different neorcortical areas, adapted from von Economo (1929). Colors at bottom correspond to the map in (B). (B) von Economo’s
neocortical tiling based on the granularity of large regions of neocortex spanning multiple Brodmann areas. The location of three Brodmann areas per stage are
waypoints along a feed forward Grand Loop (arrows). (C) These Brodmann areas are connected based on projection data. Evidence that feed forward connections
progress from granular to agranular areas provides directionality. The reciprocal feedback loop is not shown.
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FIGURE 2 | Organization of feed forward and feedback functional connections, adapted from Guillery and Sherman (2011). Infragranular and
supragranular layer pyramidal neurons (gray triangles) form direct feedback and feed forward connections, with the local circuitry receiving first order (FO) and higher
order (HO) thalamic nuclei inputs through granular layer spiny stellate neurons (blue circles). The basal ganglia (BG, pink boxes) receive infragranular inputs, and
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signaling between neocortical areas. Sherman and Guillery
emphasized different roles for direct cortico-cortical feed forward
projections, which join one cortical area to another through
their supragranular layers, and indirect cortico-thalamo-cortical
projections, which join infragranular layers of the same original
area to the granular layer of the same target area (Figure 2;
Guillery and Sherman, 2011). In Sherman and Guillery’s model,
direct cortico-cortical projections are “modulatory,” providing
restricted activation to the target area, and indirect cortico-
thalamo-cortical projections are “driving,” providing activation

across all layers of the target area. Figure 2 represents Sherman
and Guillery’s model (based on a simplification of their
schematic). We will now describe how this model may be
integrated into the Grand Loop.

Recall that each station of the loop in Figure 1 is coupled in
the feed forward direction. These connections, largely through
the supragranular layers, are mirrored in the feedback direction
by connections through infragranular layers (Figure 2; Rempel-
Clower and Barbas, 2000). Thus, the Grand Loop represents two
reciprocal loops, one in the feed forward direction and one in
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the feedback direction. Furthermore, according to Sherman and
Guillery, higher order thalamic nuclei provide at every stage
a redundant relay for driving inputs over each feed forward
connection. The local cortical circuit then receives signals from
these thalamic nuclei and mixes the otherwise independent
direct feed forward modulation loop and feedback traversal loop,
primarily at layer 4’s synaptic connections onto supragranular
layers, and at supranular layers’ onto the infragranular layers’
apical dendrites.

We proposed previously that layers 2/3 of neocortex
implement a network for maximizing mutual information
between thalamic inputs and cortical responses (Kozloski
et al., 2007). Entropy maximization in these layers (equivalent
to information maximization when noise in the inputs is
assumed to be negligible) would require a dense lateral network
(Linsker, 1997), which fits well with the high proportion
(~22%) of total cortical synapses dedicated to intralaminar 2/3
connections (Binzegger et al., 2004). Given this role for the
supragranular layers, we now propose that the role of cortico-
thalamo-cortical driving inputs in Sherman and Guillery’s model
is to provide inputs both from first order thalamic nuclei
about the environment and from feedback traversals through
higher order thalamic nuclei about the behavioral state of
the organism. A global supragranular network then extracts
maximally informative features from combinations of these
inputs. In addition, we propose that these features become
conditional modulators on feedback traversals by boosting or
reducing the gain on proximal inputs to layer 5 neurons by means
of synaptic inputs onto their apical dendrites from layer 2/3
neurons.

2.3. Basal Ganglia Gating of Feed Forward

Functional Pathways

In Sherman and Guillery’s model, thalamic relay neurons in both
first order and second order nuclei are subject to modulation.
Modulation may derive from direct cortico-thalamic feedback
from layer 6, inhibition from the thalamic reticular nucleus, or
from neuromodulatory inputs such as norepinepherine from the
locus coeruleus. Sherman and Guillery’s model derives largely
from their studies of sensory cortices and feed forward pathways
through them, projecting from more granular to less granular
regions. Here we extend the discussion of thalamic relay neuron
modulation to include a role for inhibitory inputs from the basal
ganglia to thalamic nuclei that act as relays in the frontal lobe
between more granular limbic and motor areas to less granular
areas in these regions.

The basal ganglia (including ventral limbic and dorsal motor)
are in a privileged position to influence traversals by means of
their inhibitory inputs onto thalamic relay neurons within the
Grand Loop. These inputs derive from nucleus inominata in
the ventral limbic subpallium and from the globus pallidus in
the dorsal motor subpallium. Neurons in the ventral pallidus
(nucleus inominata) receive inhibition from medium spiny
neurons (MSNs) in the nucleus accumbens (ventral striatum)
and those in the dorsal globus pallidus from those in the dorsal
striatum. These neurons then either directly disinhibit thalamic
relay neurons or indirectly inhibit thalamic relay neurons

through an additional stage of inhibitory neurons (in globus
pallidus, this is organized as direct and indirect projections
through the external and internal segments). Spiking models of
inhibitory pallidothalamic gating have focused on the bird song
system (Goldberg et al., 2012), where gating inputs to thalamic
relay neurons serve the role of transitioning syllables of the
organism’s vocalizations. Here we propose a more generic role
for this gating in selecting and deselecting different pathways for
internal traversals of the pallium.

Inputs to these direct and indirect pathways through basal
ganglia derive from neocortical layer 5 neurons projections
onto MSNs, and their corticostriatal synapses undergo spike-
timing dependendent plasticity (STDP) which is modulated
differentially by dopamine depending on the selective expression
of either D1 dopamine receptors in the direct or D2 dopamine
receptors in the indirect pathways (Pawlak and Kerr, 2008;
Figure 3). Each layer 5 neuron’s collaterals then include a branch
descending to the brainstem or spinal cord, a branch descending
to thalamus (Guillery and Sherman, 2011), and additionally a
branch descending to striatum (Lévesque et al., 1996). A recent
review of additional types of layer 5 projection neurons and the
role of corticostriatal connectivity in disease provides a thorough
examination and schematic of these pathways (Shepherd, 2013),
and our model of thalamic gating, for now and for simplicity,
includes only the “Pyramidal Tract” layer 5 neurons and their
projections to basal ganglia and thalamus for the function of
thalamic gating.

In summary, our model extends Sherman and Guillery’s
model of cortico-thalamo-cortical gating of driving, feed forward
inputs to include modulation from striatal and pallidal neurons
in both the direct and indirect pathways (Figure 3). MSNs in
our model receive convergent layer 5 collaterals from all layer 5
neurons that send convergent collaterals onto a specific thalamic
relay neuron. This relay neuron is then gated by the same MSNs,
indirectly through globus pallidus (the gate opens for the direct
pathway, and closes for the indirect pathway). Such a scheme
does not preclude so called “closed loops” that originate and
terminate in the same cortical area (Kelly and Strick, 2004), but
downplays their significance as only partial regulators of feed
forward thalamic gating (Figure 4A).

The basal ganglia in our model is then a “forward driver gate”
for all feed forward driving signals relayed through the frontal
lobe’s cortico-thalamo-cortical functional pathways. Because
these pathways relay layer 5 traversals through thalamus to the
granular and supragranular layers of cortex, they can indirectly
control the routing of feedback signals and the selection of
certain traversals over others through the Grand Loop, as we
describe in the next section. Additional area to area cortico-
thalamo-cortical pathways not on the main loop backbone (such
as the visual system) are then available for additional modulation
and traversals of the global layer 5 behavioral network, possibly
including loops requiring reafference from the environment.

2.4. Information Based Gating of Feedback

Traversals
Our model provides two distinct functional signaling pathways
through the Grand Loop: feed forward for driving the
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PFC

FIGURE 3 | The Forward Driver Gate. Cortical action potentials (red raster marks) traverse the Grand Loop (red circle, representing a periodic time line), when
neurons in specific areas (red boxes) spike. These cause spikes in striatum, represented by STDP functions placed on a periodic time line for both the indirect
(lavender circle) and direct (black circle) pathway medium spiny neurons (D2-MSN and D1-MSN). The D1-MSN is inhibiting the D2-MSN providing additional
GABA-ergic modulation of STDP. Spikes cause direct disinhibition of the external segment of Globus Pallidus (GPe), allowing a cortical spike to be relayed through the
thalamic gate (red arrows, SMA to M1), or indirect additional inhibition through the internal segment (GP;), blocking spikes.

GABA,,

D2-MSN

D1-MSN

supragranular entropy maximizing network, and feedback for
traversal of the infragranular behavior generation network. The
latter, in our implementation of the model, propagates synfire
events through a loop, as described by Zheng and Triesch in
their model of “synfire ring” formation and propagation (Zheng
and Triesch, 2014). Restricting synfire activity to the feedback
direction is a key aspect of our model. Unlike other models
of feedback, which ascribe to it solely a sensory processing
“top down” function, we model the propagation of feedback
activity as potentially independent of feed forward activity
(for example when a coupling parameter between these two
networks is zero). Specifically, the emergence of activations in
the supragranular layers are rate coded, while activations in
the infragranular layers are spike timing based in order to
support synfire events. (We won’t speculate here on how these
distinct coding schemes are implemented and maintained by
the neocortical microcicuit, but it would seem there are ample
mechanisms available.)

Conditional coupling between features, extracted by
information maximization in the supragranular layers, and
spike propagation in the infragranular layers, is then under
the control of a parameter that models cholinergic modulation
in neocortex. Acetylcholine enhances the influence of sensory
inputs on pyramidal cell firing relative to their processing of
intrinsic signals within neocortical circuits (Hasselmo and

Giocomo, 2006). We model this modulatory parameter as
changing the slope and dynamic range of a gain function.
The function sets the gain on feedback integration within the
synfire ring based on the level of activity in the corresponding
functional units (e.g., orientation columns) in layer 2/3. Thus,
feature encoding acts as a gate for synfire propagation, and we
hypothesize this gain function may be implemented by layer 2/3
inputs to layer 5 neurons’ apical dendrites. Varying cholinergic
modulation of these inputs in cortex then controls the slope and
dynamic range of the mapping from layer 2/3 activity to layer
5 feedback integration gain. The result is that propagation of
synfire activity through a column of cortex is informed by the
categorization of thalamic inputs to that same area. Information
maximization among responses in the supragranular areas
over environmental inputs becomes entropy maximization
of synfire propagation pathways through the infragranular
layers, provided that coupling between these is strong (i.e.,
cholinergic modulation is high). It is because of this coupling
that we have named our model an information-based exchange
network.

2.5. The Forward Driver Gate: Bursting,
Modulation, and Plasticity

Having proposed a central cortico-thalamo-cortical routing
function for striatal MSNs by means of their directly disinhibiting
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or indirectly inhibiting thalamic relay neurons, we will now
propose on what basis a striatal MSN adapts to perform
this function in the context of system set points. We call
this the forward driver gate’s “routing function.” Our model
of MSN firing includes constraints from a weak, assymetric
lateral inhibitory network giving rise to “winnerless competition”
(Rabinovich et al., 2001), and closely matching the periods of
striatal bursting lasting hundreds of milliseconds observed in
vivo (Miller et al., 2008). Ponzi and Wickens have similarly
used this network to model spiking properties of striatum
(Ponzi and Wickens, 2010), and have shown that at transition
points in the lateral network configuration (from low, ~10%, to
high, ~20%, rates of connectivity), an optimal balance is achieved
that facilitates winnerless encoding of variations in driving inputs
from neocortex (Ponzi and Wickens, 2013). To achieve this
balance, our model instead varies the strength of cortical inputs
dynamically by a dual source of modulation of STDP at the
corticostriatal synapse.

The first dynamic modulator of STDP at the corticostriatal
synapse in our model is GABA inhibition from the lateral
network, itself responsible for “turn-taking” among MSNs and
their bursts, characteristic of the winnerless network. We assume
that both direct and indirect pathways show STPD reversal under

GABA inhibition (Fino et al., 2010; Paille et al., 2013), and we
model winnerless competition between striatal neurons as the
source for this inhibition (Figure 4B).

The second dynamic modulator of STDP at the corticostriatal
synapse is dopamine. Given the routing function’s potential
as a critical determiner of the emergence of behavior, affect,
and cognition in the organism via its direct control over
traversals of the layer 5 network, reward-based learning of
this function is ultimately required. For now, we simulate our
brain model of information-based exchange with dopamine-
based learning serving only a closed-loop function, separate
from the environment and therefore independent of reward
encoding. This closed-loop function is sensitive to system set
points and monitors traversals. It is equivalent to so-called “tonic
firing” in dopamine neurons, which can also include bursts.
We propose that the intrinsic dynamics of dopamine neuron
membrane currents implements this closed-loop function by
measuring time and the abruptness of changes to system states,
with bursts generated under specific conditions summarized
below. Dopamine provides a potent modulation of STDP at
the corticostriatal synapse (Pawlak and Kerr, 2008), and further
modulates it differentially at the inputs to DI-MSNs and D2-
MSNs. In our model this differential modulation, combined
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with GABA modulation, produces the complex routing function
summarized in Figure 4C.

Dopamine neurons have been shown to fire bursts of
action potentials to signal basal reward inputs to the organism
encoded as strong excitatory inputs to medial tegmentum and
substantia nigra pars compacta (SNc) neurons. Because of these
responses, the dopamine system has been extensively modeled as
recapitulating reinforcement learning and operant conditioning
in the organism. We propose here for the first time an additional
closed-loop role for dopamine neurons in learning routing
functions and selecting traversals. Specifically, we propose that
dopamine neurons signal changes to traversals, and thereby
influence the subsequent emergence of new traversals. The basis
for this proposal derives from recent connectomics studies,
which demonstrate that 70% of dopamine neuron inputs are
inhibitory, and that most of this inhibition arises from striatum
(Watabe-Uchida et al., 2012). Our closed-loop role for dopamine
modulation depends on this inhibition, and this proportion and
source suggests that closed-loop responses to inhibitory inputs,
not open loop responses to basal excitation and reward, may be
the predominant operating mode of the dopaminergic system.

Dopamine neurons exhibit heterogeneous combinations of
intrinsic I, and I4 currents (Amendola et al., 2012), as well as
T-type calcium currents, which together generate post inhibitory
rebound bursting in slice preparations. These currents’ role in
vivo has not yet been demonstrated, but our model assumes
that the dynamical criteria for dopamine neuron bursting (and
subsequent learning of routing at corticostriatal synapses) are
implemented at least in part by rebound bursting. Other models
have explored rebound bursting in dopamine neurons (Lobb
et al,, 2011), but not in the context of a closed-loop regulatory
function. In our model, if the duration and abruptness of removal
of striatal inhibition to dopamine neurons is appropriate, a
rebound burst occurs. This aspect of the model indirectly imposes
the additional criterion that inputs from layer 5 to striatum
that transition the MSN winnerless network should be similarly
matched to the duration and abruptness of change required for
rebound spiking in dopamine neurons. In this way the striato-
nigro-striatal loop monitors changes in traversals and alters
routing within the feed forward entropy maximizing network
by modulating corticostriatal STDP. We therefore propose that
MSNs learn this routing based in part on their ability to recognize
patterns of spiking in layer 5 that remain stable for a minimum
duration of time then fade rapidly, a property expected during
traversals of the Grand Loop.

3. SIMULATION METHODS

We simulated the model to explore its dynamics, characterize
preliminary set points for measurement and analysis, and study
traversal behavior and its regulation under different modulatory
conditions. The five major components of the model to be
simulated included cortical layers 2/3, 5, thalamus, striatum,
and dopamine neurons. Meeting this challenge at the detailed
level of neural tissue simulation is beyond the scope of this
report, and without a good understanding of target model set
points, likely impossible. We therefore aimed to draw upon

four simplified abstractions of the key behaviors we ascribe to
principle cells in these structures (Linsker, 1997; Rabinovich
et al., 2001; Mihalas and Niebur, 2009; Zheng and Triesch,
2014). With four base component models replicated from other
studies, we then coupled them across novel interfaces, realizing
the closed, functioning Grand Loop, complete with its subcortical
regulators.

3.1. Component Models

Four component models from the literature were targeted
here to capture the functions of cortical layers 2/3 and 5,
striatum, and dopamine neurons in the brain model. These
four met sufficient requirements to implement information-
based exchange (Algorithm 1), with very few changes to
published parameters. We list the models below and describe
the requirements they satisfy. Parameters defined in the original
references for each component model are found in Table 1.
Because thalamic relay neurons were implemented as a simple set
of sums over inputs, they are described as an interface between
component models in the subsequent section.

e Neocortex, layer 2/3: The model applies the “Infomax”
algorithm of Bell and Sejnowski (1995) to thalamic relay
neuron inputs. A neural network implementation of the same
optimization (Linsker, 1997), based entirely on a local learning
rule, establishes the biological plausibility of this function for
this tissue (Kozloski et al, 2007). The three stage network
modifies a weight matrix C that couples thalamic relay neurons
to cortical units (e.g., at layer 4) based on microcircuit feedback
from layer 2/3. Stage one receives the rate vector X; from an
ensemble of time averaged thalamic spike trains and computes
the zero mean input vector x; = X; — xo, where xg ~ (X1) is
learned at the learning rate fy,. Stage two computes the sum
of weighted inputs to stage three, u = Cxy. In addition, each
stage two unit computes an element of the output vector y,
yi = o (u;), where o (-) denotes a nonlinear squashing function,
here the logistic transfer function, y = 1/1 + e~+"0), where
wo is an adaptive output bias vector learned by Awy = B, [1—
2y]. The output vector y maximizes the mutual information
over the input ensemble and provides regulatory microcircuit
feedback to the model of layer 5 described below.

Stage three then computes an entropy maximizing learning
vector, which is fed back to stage two and applied by Hebbian
learning to modify C at the learning rate fc,. Derived by
Linsker (1997), this learning vector when applied in this way
precisely yields the Infomax anti-redundancy term of Bell and
Sejnowski (1995), (C')~! (ie., the inverse of the transpose of
the input weight matrix) which for simplicity may also be
computed directly. In this model of layer 2/3, the entropy
maximizing learning vector emerges from a fully connected
lateral network, whose weight matrix a undergoes Hebbian
learning according to Aa = Boluw' — @], such that 6 ~Q=
(u'). For a given input presentation, these lateral connections
evolve an auxiliary vector v according to v, = v;—1 + u —
a@vt_l. Regardless of initial v, and assuming the scalar o
is chosen so that v converges, the Infomax anti-redundancy
term can be approximated by iterating the lateral network
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TABLE 1 | Component models and parameters.

Component References Parameter Parameter
name value
Neocortex, layers 4 Bell and Sejnowski, 1995; /SXO 0.00002
and 2/3
Bwg 0.0007
Linsker, 1997;
Bc 0.0007
Kozloski et al., 2007
Baq 0.0007
Neocortex, layer 5 Zheng and Triesch, 2014 np 0.01
TE max 1.0
T max 0.5
wp 01
OHIP 0
Minhib 0.001
of 0.01
NSTDP 0.004
TSTOP 1.0
Striatum Rabinovich et al., 2001 Imax 0.25
Imin 0
a 0.7
b 0.8
7 0.08
1) 4.1
v —-1.5
X0 —-1.2
Yo —1.62
zg 0
Dopamine neurons Mihalas and Niebur, 2009 b 1.0
G/C 50
Kq 200
ko 20
Oinf —0.05
R4 0
Ro 1.0
E; -0.07
VR -0.07
Or —0.06
a 1.0
Aq 5.0
Ao -0.3

and applying its output by Hebbian learning, since (C')~! =

Q!C{x;x/"), and by substitution, (C') ™! = a(veoxs’) (Linsker,
1997).

e Neocortex, layer 5: The model evolves from a self-organizing

recurrent network (SORN) of binary spiking units through
application of homeostatic plasticity, weight normalization,
and STDP learning rules, together with synaptic pruning and
synaptogenesis (Zheng and Triesch, 2014). This biologically
consistent set of synaptic modifications creates distributions

of synaptic densities and weights that evolve over time to
closely match data from developing neocortex. The weight
matrix W also develops robust feed forward motifs and synfire
activity similar to the model of Kozloski and Cecchi (2010),
but with the remarkable topological feature of a closed, global
loop of distinct propagation layers (Figure 5), which together
engender “synfire rings.” We evolved this network for 200, 000
time steps (At = 1 ms) to create four areas of cortex,
which were then embedded into the larger model as two
frontal lobe (M1, Mgyp) and two sensory lobe (Si, Ssec) areas.
Weights close to zero were held at zero for the remainder
of all simulations. Propagating activity is maintained in the
excitatory network, satisfying the requirement for layer 5
traversals. An inhibitory network that undergoes biologically
plausible inhibitory STDP at its synapses onto excitatory
neurons, together with homeostatic plasticity in the excitatory
network, maintains spiking activity, s(t), in the synfire ring
at a nominal firing rate of 100 spikes/s. The inhibitory
network imposes global, persistent competition across the
network of excitatory layers. We propose this inhibition as an
approximate functional model of inhibition from the thalamic
reticular nucleus, which also integrates activity from across the
thalamocortical system.

Striatum: The model creates activation paths within the state
space of a weakly connected, asymmetric inhibitory network to
give rise to “winnerless competition” (Rabinovich et al., 2001),
and alternating bouts of activity (i.e., “turn-taking”) among
the different neurons in the network (Figure 6). These bouts
have been used by others to model the intrinsic dynamics
of the striatum (Ponzi and Wickens, 2010), and together
represent global attractor states that encode the modulatory
and reorganizing influence of excitatory inputs to the network
from cortical layer 5. Using a FitzHugh-Nagumo model, MSNs
are represented by three dynamic variables. First, x/(¢) in
the model represents the “burst potential” of the neuron,
with a positive transient in this potential representing a
~350 ms burst. Computed using the same time step as the
binary spiking layer 5 model, this coarse resolution model
of the neuron’s membrane potential is appropriate given
the dominant bursting mode of firing in MSNs, and the
observation that activity is often observed as alternating series
of bursts of bursts (Miller et al., 2008). The remaining variables
yf(t) represent a recovery from inhibition and zf(t) the
inhibitory synaptic current received by the neuron, summed
over the inhibitory inputs from other neurons through a
Heaviside step function and the inhibitory weights Wgy,.
Dopamine Neurons: The model is that of a leaky integrate
and fire (IAF) neuron. Four state variables are computed:
a membrane potential V(t), a variable threshold ©(t), and
two intrinsic currents I;(¢) and I;(t), each integrated over the
same time step as the previous two models. Because spikes
in this model are represented by instantaneous resets of each
variable at V(t) > O(t), the time step (At = 1 ms) is
sufficient to integrate the neuron’s spiking dynamics. Based on
the published model, we derived an instance of a “rebound
burst” model, and satisfied the requirements of dopamine
neurons in the closed striato-nigro-striatal loop. Specifically,
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FIGURE 5 | (A) Correlation matrix computed over the final 10, 000 iterations of a simulation of the Layer 5 model based on Zheng and Triesch (2014). The four
self-organized layers of this cortico-cortical topology are correlated in firing. (B) The cortico-cortical feedback weight matrix, showing clear dominance of the feed
forward area to area connections over all others. This self-organized topology supports synfire ring activity, which in the current model is referred to as traversal activity.
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the voltage-dependence of ®(t) permits the model to generate
rebound spiking under conditions when the neuron has been
hyperpolarized deeply, or for a prolonged period (Figure 7).
Due to the independent spike-induced current R,, each
rebound event generates a burst of four action potentials.
This simplification’s phenomenology also approximates that
generated by other more complex models of rebound firing in
dopamine neurons (Lobb et al., 2011).

3.2. Component Model Interfaces

The interfaces between component models that implement
the integrated brain model of information-based exchange
summarized in Algorithm 1, are now listed and described.

e Feedback Cortico-cortical: Layer 5 feedback inputs to a
cortical area layer 5 are modeled as in the self-organizing
recurrent network of Zheng and Triesch (2014) and
implement the traversal network. Inputs are also categorized
by the layer 2/3 model as an input vector of sums of binary
spike trains over a time window tx. This vector Xpp(t)
comprises the elements Xpp,(f) <« Zi_rx se;(T), where
spg;(T) € {0,1} is the spike train from one unit in the
upstream layer 5 area. Because of the full rank requirement
of the information maximizing algorithm, the model of layer
2/3 includes a fixed first stage random mixing matrix Mgg,
drawn from a lognormal distribution with unit mean and unit
standard deviation, and linearly combining the elements of Xpp
to create the feedback input vector xpp < Mpp - XFB.

e Feed Forward Cortico-thalamo-cortical: Inputs to a thalamic
relay neuron j projecting to a cortical area are modeled as a
vector of sums over a time window tx of binary spike trains
from layer 5 units in the cortical area projecting in the feed
forward direction to the same area. This vector Xgp(t) then
comprises elements Xp, () < ZLTX ser, (T), and is similarly
transformed by a mixing matrix such that the thalamic relay
neuron’s activity O <— Mgg - Xpr. Each element Ory; is then
subjected to the forward driver gating function G(-) over the

gating vector G, such that elements of the feed forward input
vector are Xpf; < 6]- . QFFJ.

Layer 4 Thalamic and Feedback Inputs : Feed forward
thalamic inputs to layer 4 are combined with feedback inputs,
such that the input vector to information maximization in
layer 2/3,%; < xpp + xpr. It is at this stage also that sensory
inputs from a simulated environment may be added to the
model.

Layer 2/3 to Layer 5: The Layer 2/3 output vector y provides
an input to a gain function for layer 5’s integration of binary
spikes from feedback traversals of the Grand Loop. This gain
function is a model of the layer 5 neuron’s apical dendrite, and
is parameterized by the term Ach € [0, 1], a proxy for the level
of cholinergic modulation in neocortex. The gain on inputs to
layer 5 unit j is then U; = [1 — Ach(1 — y;)]/[1 — Ach/2],
which at Ach = 0, preserves unitary gain regardless of y,
and at Ach = 1 provides a gain U € (0,2) for y € (0, 1).
In this way, assuming information maximization divides the
population into different halves of active and inactive units,
the total synaptic input to the network will remain constant,
since the U; will always have a mean of 1, and is applied
multiplicatively to the excitatory synaptic integration function
of each layer 5 neuron as in Zheng and Triesch (2014).
Globus Pallidus to Thalamus: The forward driver gating
function G applied to thalamic relay neurons in the feed
forward cortico-thalamo-cortical pathway models the final
output of basal ganglia, a transient increase (via the indirect
pathway) or decrease (via the direct pathway) in inhibition.
G is computed using a modified pallido-thalamic adjacency
matrix D, comprising 1 for all direct pathway pallido-thalamic
inputs, —1 for all indirect pathway pallido-thalamic inputs,
and 0 for all unconnected pallidal to thalamic relay neurons.
The bursting outputs of MSN’s are represented by the half wave
rectification function P, of the burst potential variable x¢(#),
and the gating vector is then G= ‘H[D - P(xf(t))], where H is
the Heaviside function.
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FIGURE 6 | (A) Striatal burst potential time series derived from FitzHugh-Nagumo models of four MSNs (columns) plotted at the beginning (blue) and the end (red) of
a simulation. Each burst potential represents a series of MSN spikes fired in a burst. (B) The time aligned burst output traces represent the half wave rectified version
of the potentials in (A). (C) IPSCs received by each MSN (outward currents plotted as a positive deflection). Currents are maximal when the neurons bursting ceases,
and are low when it is bursting, reflecting the operation of winnerless competition in the lateral inhibitory network.

e Layer 5 to Striatum: The inputs from the Layer 5 model to

an MSN in the Striatum model are drawn from all layer 5
neurons in the cortical area for which the MSN gates inputs
at the thalamus, and from those in the areas connected to
it in either the feed forward or feedback directions. These
Layer 5 inputs may also be directed to motor outputs of
the model to a simulated environment (as in the Pyramidal
tract). Corticostriatal synapses are subjected to STDP that
differentially adjusts weights, Wcsi,, based on correlation
between cortical spiking and the derivative of the burst outputs
of MSNs, P/ (x¢(t)). Pre-post pairing is defined as when a
cortical spike occurs and this derivative is positive, and post-
pre pairing when a cortical spike occurs and it is negative.
Each kind of pairing is computed separately and subjected
to the modulatory conditions at the synapse, as illustrated in
Figure 4. Briefly, depending on 1. the identity of the MSN (D1-

or D2-type), 2. whether dopamine is or is not present at the
synapse, and 3. whether the inhibitory synaptic current z(f) at
the MSN exceeds a threshold (z¢(t) > 0.00707), each pairing
value may be either 1 or 0, and the adjustment to the weight a
multiple of this value and a learning rate of 0.002. As in Zheng
and Triesch (2014), weights are normalized such that the sum
of all inputs to an MSN cannot exceed 0.1. When weights reach
zero they are pruned, and a single new connection may then be
formed during a time step with probability 0.2.

Striatum to Dopamine Neurons: The input to each dopamine
neuron in the model, I, (Mihalas and Niebur, 2009), is
computed by summing all burst outputs from those MSNs
projecting to the dopamine neuron, multiplied by a constant
weight of —2.25.

Dopamine Release to Corticostriatal Synapses: Unlike all
other projections in the model’s interfaces, the dopamine
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neuron projection is to a synapse, not a neuron. Specifically,
dopamine spiking results in a persistent dopamine modulation
of STDP at a specific set of corticostriatal synapses. Dopamine
neurons are assigned randomly without replacement to
corticostriatal synapses onto each MSN. The duration of
dopamine modulation following a Dopamine Neuron model
spike persists at the synapse for a time Tpa.

3.3. Simulation Materials and Experiments
We simulated the model to explore the rate and heterogeneity
of transitions in traversals and in subcortical modulators of
these traversals. The configuration (Table2) allowed for a
rapid prototyping in Matlab because of the simulation’s small
size. Following initialization of the cortico-cortical Grand Loop
network of four areas, we simulated the full model for an
additional 500, 000 iterations using an Intel Xeon E5-2640 v3
Processor (20 MB Cache, 2.60 GHz), requiring 2.5 hours of
compute time. The first 50, 000 iterations were used to adjust the
biases of the layer 2/3 model, during which time Ach modulation
of layer 5 was drawn from the positive half of a zero mean normal
distribution with standard deviation of 1. All plots, except where
noted, show the final iterations of the 500, 000 total. Reported are
experiments wherein the parameter tpa was set at either 25 or
100 ms, and Ach at 0.25, 0.5, or 0.75. All plots except Figure 12
show results for 1pp = 100 ms.

4. SIMULATION RESULTS

4.1. Coordinated Behavior Among

Component Models
Behavior of the model may be analyzed first based on inspection
of various raster plots from different components of the model.

Algorithm 1: Information-Based Spike Exchange

1 while Simulation Running do

2 for (M1, Mgup, Ssec, S1) do

3 xpp(t) < Mrp - Zf—rx sea(T);

4 Opp(t) < Mgk - Zf—rx spp(T);

5 if (M1, Mgyp) then

6 | xpp(t) < G(OrE(1));

7 else

8 | xpp(t) < Opp(1);

9 end

10 X1 < XEB + XFF;

1 y < 0 (Cxp);

12 AC «<Infomax(xr, C,y,...);

13 U < [1 = Ach(1 — y)]/[1 — Ach/2];

14 s(t): =SORN(spg(t — 1), W, U, ...);

15 xf(t): =Winnerless(s(t), Wcstr, P(xf(t —
1))7 Wstr, . ')§

16 V(t): =IAF(P(xs (1), Ot — 1), Ii(t — 1), (¢ —
1),...);

17 AWcsyy <—STDP(s(t), P(x7(t)), Pxp(t —
D), Wsie, 2y V(T), . 2)s

18 if (1\//[3, Mgyp) then

19 ‘ G < H[D - P(xs(t))]

20 end

21 end

22 end

In this way coordination between the different components
is apparent. We first observed that cortico-cortical traversals
through the feedback layer 5 network occur without subcortical
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TABLE 2 | Configuration parameters specific to model simulation.

Parameter  Description Parameter value

name

Na Number of cortical areas 4

Ng Number of thalamocortical units (layer 5, 400
2/3 pyramidal, thalamic relay neurons)

5% Layer 2/3 integration window for spiking 100
to rate code transformation (ms)

N, Number of thalamic reticular inhibitory 80
neurons

NFrontal Number of frontal cortical areas under 2
striatal gating

Ngtr Number of striatal MSNs 100

Nex. str Number of cortical neurons projecting to a 20
striatal neuron

WOCx,Str Initial corticostriatal weight 0.005, (0.1/Ngy str)

Nstr.Th Number of striatal neurons projecting to a 11
thalamic relay neuron

Npa Number of dopamine neurons 20

Nstr, DA Number of striatal neurons projecting to a 20
dopamine neuron

DA Dopamine modulation window (ms) 25,100

regulation, and were similar to the synfire events reported by
Zheng and Triesch (2014). There are two main regulators of these
traversals in our model: (1) an information based gain on layer 5
feedback inputs provided from layer 2/3, and (2) basal ganglia
gating of cortico-thalamo-cortical feed forward inputs to layer
2/3 information maximization by the forward driver gate.

Upon introducing these regulators, we noted that traversals
became structured into long bouts of smoothly alternating and
repeating patterns of activity across the different cortical layers’
raster plots. Each pattern persisted for ~400 ms (Figure 8A),
and sequences of patterns, while similar over each cycle, were
not identical. The Ach parameter provides a means to adjust the
influence of categories learned by layer 2/3 on traversals. For this
initial experiment, Ach = 0.25 provided a gain U € (0.86, 1.14)
fory € (0, 1).

Information maximization creates maximal entropy in the
ensemble of output vectors over an input ensemble, and because
of the logistic function, activity in each layer 2/3 neuron was
typically close to zero or one. We interpret these values as cortical
up and down states, which have both an extrinsic and intrinsic
origin in the local cortical microcircuit.

Maximizing entropy of the ensemble of gain functions,
applied to layer 5 inputs in the feedback traversal network, had
the interesting effect of creating more irregularity in the patterns
of activity across all of cortex as Ach increased. At Ach = 0.5, U €
(0.67, 1.33), (Figure 8B), pattern combinations became varied,
even though average global firing rates imposed by homeostatic
plasticity in the network were consistently maintained (100
spiked/s). Finally, at Ach 0.75, U € (0.4, 1.6), traversal
transition rates increase significantly, and patterns were highly
varied (Figure 8C).

Inspecting the information-bearing up and down states in
layer 2/3 directly in state rasters from all four cortical areas

also reveals coordination between areas and with transitions
in traversals. In Figure 9A, under Ach 0.25, the rate of
state changes among layer 2/3 units appeared coordinated,
especially in the secondary sensory area. This coordination is
less regularly transitioned than in the traversals, and occurs
at a higher rate. At higher Ach 0.5 (Figure 9B) up
and down state coordination with traversals increases, while
coordination across layer 2/3 is weakened. At Ach 0.75
(Figure 9C) states become synchronized in the secondary
sensory area and more coordinated with traversals overall,
even though traversals themselves become more heterogeneous.
Note that the heterogeneity in traversals due to increased
control by the information maximizing network is not due
to a lack of convergence in the weights of the networks.
Weights among both the layer 2/3 Infomax input weights
C and layer 5 feedback weights W converged during these
simulations.

MSN bursts generated by the model were ongoing, as in
the winnerless network and the model of Ponzi and Wickens
(2010). These bursts appeared in fast sequences, which were
of longer duration in D1-type MSNs than D2-type (Figure 10).
Variability in burst rate between MSNs was also observed, with
some not firing at all, likely because of inhibition from the
active network. Increasing Ach had only a small effect on the
raster appearance, and so we began our quantitative analysis by
examining coordination between the Striatum model and the
Layer 5 model.

4.2. Measurements of Information-Based

Exchange

To quantify coordination between striatum bursting and cortical
layer 5 spiking, we computed pairwise linear correlation
coeflicients between each cortical spike train and striatal burst
train. We plotted each using a color scale (red, more correlated;
blue, less correlated) in a matrix showing how different areas
of cortex fired in relation to D1- and D2-type MSN bursts
(Figure 11, left column). Only significant correlations were
plotted, and all others were represented by zero. We also
show that the mean of each distribution of correlation values
(Figure 11, right column) for both D1- (blue) and D2-type (red)
MSNs differed. Most coefficient distributions of D1 vs. D2 burst
correlation with cortical spiking were significantly different(p <
0.05), based on pairwise student t-tests. More striking is the
difference in sign for each mean coefficient of correlation to each
cortical area as Ach increases. Positive correlation coefficients
dominated at low Ach and negative at high. At the intermediate
level, M1 in particular showed a divergence in sign between
mean correlation coefficients for D1-type (positive) and D2-type
(negative) MSNs.

Finally, to quantify information-based exchange directly,
we measured the entropy of cortical spiking and dopamine
neuron spiking, and the mutual information between
cortical and dopamine neuron spiking (Strong et al., 1998).
Instead of measuring entropy and information among spike
trains of individual neurons however, which quantifies the
distribution of patterns of spikes over time, we measured
entropy and information in population spiking, which
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FIGURE 8 | Raster plots of the cortical Layer 5 model outputs. 400 spike trains from the final 2 s of simulated time. Cortical areas noted on right. (A) Under low
Ach (0.25) patterns of traversals are long lasting (~400 ms) and smooth. (B) Under moderate Ach (0.5) patterns of traversals become briefer and choppy, with example
of a single traversal of the Grand Loop expanded on right (red boxes). (C) Under high Ach (0.75) patterns of traversals are brief (100-200 ms) and heterogeneous.

quantifies the distribution of patterns of spikes over the based on increased modulation from layer 2/3. Synfire
population for single time steps. The method was aimed at events are encoded by the sets of units that participate at
asking if traversals themselves show entropy maximization every stage of the chain or ring propagation. Therefore,

Frontiers in Neuroanatomy | www.frontiersin.org 13 January 2016 | Volume 10 | Article 3


http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive

Kozloski Brain Model of Information-Based Exchange

L2/3 Unit

L2/3 Unit

LW T T W s

L2/3 Unit

o I I I I Y O ) I e

S4

L N 1 N
1 RN A [ | DY
T T T LT WL [ T1 -

200 400 600 800 1000 1200 1400 1600 1800 2000
Time (msec)

FIGURE 9 | Up state (black) raster plots of Layer 2/3 model outputs (upper panels) and example time series of gain U on traversal inputs to each area
(lower panels). (A) Under low Ach (0.25), states transition more quickly than traversals from Figure 8. (B) Under moderate Ach (0.5), states transition more slowly in
sensory areas. (C) Under high Ach (0.75), up and down states become synchronized in the secondary sensory area.

if the entropy of synfire population spiking increases, it We found that entropy in cortical layer 5 population spiking
can be concluded that the synfire chain entropy itself has increased as Ach increased (Figure 12A). We also show that
increased. as the window of dopamine integration tpa increased, the
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FIGURE 12 | Entropy and mutual information computed for cortical and
dopamine neuron population spiking. (A) Entropy (H) of cortical population
spiking for final 100 (dashed) and 200 (solid line) seconds of simulated time
under increasing Ach. Circles plot simulations with tp equal to 25 ms and
squares 100 ms. In all conditions H increases with Ach and tpa. (B) Same as
(A) but showing entropy of dopamine neuron population spiking. (C) With
increasing cortical population spiking entropy (A), the mutual information

between cortical and dopamine neuron population spiking decreased.

entropy of layer 5 population spiking increased slightly as well.
Surprisingly, the entropy of dopamine neuron population spiking
(Figure 12B) remained constant while both parameters in the
model were altered. Finally, to measure how increasing traversal

entropy depends on dopamine population spiking, we measured
the mutual information between these two populations, and
found it to decrease as Ach increased (Figure 12C).

5. DISCUSSION

We discuss the brain model of information-based exchange in
three contexts: brain evolution and development, brain resting
state networks, and new approaches to the study of brain
disorders such as neurodegenerative diseases.

5.1. Brain Evolution and Development

We propose that the Grand Loop, spanning sensory, limbic,
and motor cortices, and specifically traversing in our model
somatosensory cortices, is prototypical and embryonic in origin,
since other modalities develop fully only after birth and do not
share a granular-agranular tiling boundary in von Economo’s
map. The topological relationship between other modalities
and this backbone may then provide alternative pathways
for completing a full traversal and rapidly binding percepts,
needs, and behaviors. Finally, the tight coupling between
somatosensory inputs and limbic states (i.e., tissue damage, pain)
and motor states (i.e., sensorimotor feedback, proprioception)
argues that this loop is likely preeminent in both brain evolution,
organization, and development.

This model additionally provides insights into those
organisms lacking cortices, wherein the stages of the proposed
traversals may not be segregated anatomically (e.g., into
Brodmann areas), but instead may be nucleated (e.g., in the
birdsong system), or even superimposed within the same pallial
regions (e.g., in fish and amphibians). Synfire ring development
is robust given the synaptic modifications proposed by Zheng
and Triesch (2014). It furthermore does not require anatomical
segregation between layers to emerge or for synfire activity
to propagate (e.g., for Figure5, we sorted each matrix after
areas developed in order to illustrate them clearly and connect
subcortical structures to each).

Synfire rings may represent a prototypical substrate for
behavior generation (Figure 13), and through subpallial
regulatory inputs from thalamus and basal ganglia as described
herein, for behavior selection. In such a scenerio, the evolution
of a multilaminate neocortex to support such rings may have
solved the problem of entropy maximization over the ensemble
of synfire events in very large networks. Since the neural network
implementation of Infomax requires a dense lateral network, to
optimize each stage of a synfire ring and traversals in general
would necessitate both the segregation of stages and a registered
information maximizing network (Figure 13). This solution
to the problem would then support rapid expansion of the
synfire ring substrate by evolution, given that redundancy in
large networks could suddenly be managed and eliminated by
information maximization.

5.2. Resting State Networks

The challenge of modeling resting state activity in the brain
has presented itself based on observations that distinct networks
spanning multiple cortical areas appear in imaging studies to
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FIGURE 13 | A generalized schematic for an information-based exchange network.

serve either active or inactive states of the organism (Fox
et al., 2005). Inactivity correlated networks appear even under
anesthesia (Vincent et al., 2007), and these areas have very high
metabolic rates, tipping the brain’s energy budget toward a large
investment in the organism’s doing nothing.

What this costly outlay accomplishes may be explained by
our model’s use of closed-loop activity in the information-
based exchange network to increase entropy over the ensemble
of traversals. In an evolutionary context, this activity may be
viewed as preadapting the brain to selecting novel behaviors
in novel contexts by maximizing such a quantity first, before
engaging with the environment, then using the preadapted
diverse traversals to explore it and seek reward.

While others have noted that resting state dynamics may
represent a “constant state of inner exploration” (Deco et al,
2011), our model is the first to assign a quantitative measure to
the fruits of this brain activity, providing a new way to reason
about the trade-off between evolutionary pressures toward latent
adaptive behaviors and the large metabolic cost of resting state
network activity.

5.3. Dynamic Disease Risk

We hypothesize that basic controls are required to establish
“cognitive homeostasis,” i.e., a process by which variables that
change brain dynamics are carefully regulated so that properties
of brain state transitions (and thus brain information processing
and behavioral dynamics) remain relatively stable under constant
neuromodulatory conditions. We refer to these stable properties
as “set points,” i.e., targeted norms for critical system variables
supporting normal behavior, percepts, affect, and cognition. In
our model, these controls are based on a consistent set of
parameters that yield consistent spiking and bursting patterns,

even when the network undergoes reorganization (e.g., when
Ach was modified, the system adjusted and produced stable
traversals). Stable ranges of firing among burst rates and
traversals, coefficients of correlated firing and bursts, and entropy
and mutual information among population spiking and bursting
have been our initial targets for describing these system set points
using the brain model.

In real brains, given evolutionary pressures for robust self-
regulation and behavior, the system is certainly replete with
controls aimed at maintaining these set points. The challenge
of studying brain disorders such as neurodegenerative disease
is sorting primary and secondary risks from the multitude
of compensatory mechanisms, each of which manifests itself
as a deviation from normal brain and neuronal function
given some primary genetic or injury risk. Researchers have
shown, for example, that mutant Huntingtin protein disturbs
NMDA receptor localization, densities, and currents at the
corticostriatal synapse in mouse models of the disease (Cepeda
etal., 2001). Knowing how this change arises and perturbs circuit
dynamics, plasticity, and system set points may provide a better
understanding of why certain neurons succumb and others don’t
when subjected to the same mutant protein.

We propose that perturbations in our model may result in
stable dynamics, but with measurable risks related to stressors
on normal neuronal function. If these deviations are extreme
in our model, and therefore difficult to compensate for in
biological tissue, a cascade of neuronal dysfunction may result.
Neurodegenerative diseases such as Huntington’s, Parkinson’s,
and Alzheimer’s, may then be understood as cascading failures
given initial stressors derived from plasticity abnormalities at
the corticostriatal synapse, within the striato-nigro-striatal loop,
and over the process of entropy maximization in layer 2/3,
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respectively. For example, subtle changes to STDP or homeostatic
plasticity may result in increased synaptic competition or cycling
in the space of possible weights, which is then difficult to
compensate for locally, given that traversals entail global brain
states. If these risks increase when stressed neurons are removed
from a simulation, the model may then be used to predict disease
progression.

Implementation of the current brain model of information-
based exchange forms a framework for the analysis of cognitive
homeostasis and disease using IBM’s scalable approach to
structural and neurophysiological modeling of neocortex and
brain nuclei (Kozloski and Wagner, 2011). Here we extend this
approach and that of many brain modeling projects, which
seem focused on validating complex local circuit and tissue
models at the expense of validating tissue inputs. Minimal
complexity brain models, in our case an information-based
exchange network, may be necessary to capture brain dynamics
and provide validatable inputs to complex tissue models. The
current model has now been reimplemented in the same model
graph simulation infrastructure in which IBM’s Neural Tissue
Simulator was implemented, and thus will allow direct coupling
between these in a single scalable, extensible program.

With this new approach, inputs and models of the various
components may be simulated and compared to in vivo
experimental observations. Furthermore, simulations over very
long time scales can be used to stress the model and its
set points in physiologically and clinically realistic ways.
Additional perturbations to the model may include physiological
stimulation, such as simulated deep brain stimulation (DBS)
in simulated neural tissue, simulated drugs with known targets
in the detailed model, and different simulated disease states
with hypothesized mechanisms at the level of gene, protein,
regulatory network, etc. Stimulation, drug effects, and disease
mechanisms can then be targeted to test certain hypotheses about
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