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Spinal muscular atrophy (SMA) is a recessive autosomal neuromuscular disease,
representing the most common fatal pediatric pathology. Even though, classically and
in a simplistic way, it is categorized as a motor neuron (MN) disease, there is an
increasing general consensus that its pathogenesis is more complex than expected. In
particular, neuromuscular junctions (NMJs) are affected by dramatic alterations, including
immaturity, denervation and neurofilament accumulation, associated to impaired
synaptic functions: these abnormalities may in turn have a detrimental effect on MN
survival. Here, we provide a description of NMJ development/maintenance/maturation
in physiological conditions and in SMA, focusing on pivotal molecules and on the
time-course of pathological events. Moreover, since NMJs could represent an important
target to be exploited for counteracting the pathology progression, we also describe
several therapeutic strategies that, directly or indirectly, aim at NMJs.
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PHYSIOLOGICAL DEVELOPMENT AND MUSCLE INNERVATION
AT THE NEUROMUSCULAR JUNCTION

Neuromuscular junctions (NMJs) are specialized synapses in the peripheral nervous system, which
allow the transmission between the motor nerve terminal and skeletal muscle fibers, consequently
inducing muscle contraction. In this review we will mostly refer to rodent NMJs, since the majority
of the available data in the literature usually come from experimental models, despite some
differences with human NMJs (see below).

The mechanisms leading to muscular innervation involve a huge number of molecules,
among which acetylcholine/acetylcholine receptors (ACh/AChRs), that are pivotal in
the impulse transmission, and several other proteins, that play a crucial role in the
development/maintenance/maturation of NMJs (as agrin, MuSK, rapsyn, etc.). These molecules
will be described below.

NMJ development begins at the embryonic days (E) 12–14 in themouse, until the stabilization of
mature endplate at E17 (Witzemann, 2006). Then, during postnatal development, further changes
in NMJ structure occur: the initial uniform receptor density in clusters is progressively rearranged
and transformed in multi-perforated and invaginated structures, acquiring the characteristic
‘‘pretzel like’’ pattern (Slater, 1982; Marques et al., 2000).

According to the classical model of NMJ development, NMJ location depends on the
random initial contact of the nerve terminal onto the developing muscle fibers, leading to the
AChRs clustering (‘‘agrin hypothesis’’, McMahan, 1990). However this view has been recently
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revised: NMJ development may require the prepatterning of
AChRs on muscle membrane where the outgrowing motor
neuron (MN) fibers will synaptically contact the muscle. This
means that AChR clusters are present on the muscle surface
before the motor fiber arrival, and that their initial position
probably influences the position of nerve–muscle contacts (Vock
et al., 2008): this theory (‘‘myocentric model’’) contemplates a
nerve-independent AChR prepatterning at the muscular level,
depending on muscle-specific regulators (as MuSK, and rapsyn,
see further; Witzemann, 2006; Tintignac et al., 2015). However,
between these two alternative models, the actual mechanisms are
probably in the middle (Tintignac et al., 2015).

Concerning the innervation, all muscle fibers undergo
an initial step of poly-innervation, followed by a postnatal
withdrawal of nerve terminals leading to motor neuronal
mono-innervation (notably in humans the withdrawal of
motor axon terminal occurs before birth; Macintosh et al.,
2006). The underlying mechanisms of such process probably
depend on the synaptic activity and on the competition
between nerve terminals (involving both Hebbian potentiation
of active synapses, and synaptotoxic/synaptotrophic cues in
NMJ stability): indeed inactive NMJs undergo a reduction
of post-synaptic specializations, whereas increasing activity
induces monoinnervation. Moreover, when a motor terminal
is stabilized, the neighboring inactive ones are eliminated:
they receive ‘‘punishment signals’’ released by active MNs,
that determine their elimination (Walsh and Lichtman,
2003; Bloch-Gallego, 2015). Synapse elimination covers
a gradual process of withdrawal (presence of retraction
bulb) and atrophy of the nerve terminal (Buffelli et al.,
2004).

Several molecules contribute the development and
stabilization of NMJs. One key molecule is agrin, a heparan
sulfate proteoglycan synthesized and released by neurons,
muscle fibers and Schwann cells (Ruegg et al., 1992): neural agrin
has been described as 1000-fold more effective in stimulating
AChR clustering than that synthesized by other cells (Reist
et al., 1992). Depending on the theories mentioned above, agrin
can be considered both an inducer of AChR clustering and a
stabilizer of the post-synaptic membrane (Witzemann, 2006); it
triggers the autophosphorylation of the muscle-specific tyrosine
kinase receptor (MuSK), and they interact with each other via a
transmembrane protein named low-density lipoprotein receptor
related protein 4 (LRP4; Kim et al., 2008), determining the
AChR clustering through the cytoplasmic linker protein rapsyn.
Indeed the knockout mouse models for either agrin or MuSK
similarly cause dramatic reduction and alterations of AChRs,
leading to perinatal death (DeChiara et al., 1996; Gautam et al.,
1996).

Other ‘‘auxiliary proteins’’ (including neuregulins,
dystrophin-glycoprotein complex, ErbB receptors, and Wnts)
participate in the development and maintenance of NMJs (for
an extensive review, refer to Tintignac et al., 2015). Since the
NMJ formation is partially regulated by different molecules
in rodents and humans (for example, 19 different Wnts), this
process is probably differently orchestrated among species
(Wu et al., 2010). Finally microRNAs (miRNAs) could play an

important role in NMJ formation, functioning and/or synaptic
homeostasis as well, in both invertebrates and vertebrates (Kye
and Gonçalves Ido, 2014). For example, Drosophila mutants
that lack miR-125 showed a size reduction of NMJs and delayed
endplate maturation, compared to aged-matched controls
(Caygill and Johnston, 2008). In addition, in mammals, some
miRNAs seem to be implied either in the correct synaptic
function in the NMJs (miRNA-124; Zhu et al., 2013), or in their
reinnervation after injury/during MN disease (miRNA-206;
Williams et al., 2009).

Increasing evidence suggest that NMJs can represent an
early pathological target in several neuromuscular diseases,
including spinal muscular atrophy (SMA) and amyotrophic
lateral sclerosis (ALS), although they are historically considered
MN-centered pathologies. Here we intend to describe and
analyze the vulnerability of SMA endplates, also discussing the
potential therapeutic approaches that specifically target NMJs.

SPINAL MUSCULAR ATROPHY: A BRIEF
DESCRIPTION OF PATHOGENIC
MECHANISMS

SMA is a recessive autosomal neuromuscular disease and the
most common fatal pediatric pathology, with an incidence of
around 1 in 10,000 live births and a carrier frequency of 1:31
(Prior et al., 2010).

SMA is caused by the deletion/mutation of the survival
motoneuron gene (SMN). In humans, there are two SMN
genes, the telomeric SMN1 coding for an ubiquitous protein
(full-length SMN or FL-SMN), and its centromeric homolog
SMN2 mostly generating a protein lacking exon 7 (∆7-SMN),
which is not functional: indeed SMN2 gene produces a
limited amount of functional protein which can modulate
SMA severity (Lorson et al., 1999). This accounts for the
presence of four main clinical SMA types (I-IV), characterized
by different age of onset and disease severity (Lefebvre et al.,
1995; see Table 1). The genetic defects occurring in SMA
determine the degeneration of spinal MNs, leading to a
progressive muscular atrophy and in the most severe cases, to
death.

As reviewed by Li et al. (2014), SMN is a 38 kD protein and
accumulates into nuclear structures named Gems: here SMN
can associate with eight other proteins (Gemins2–8 and Unrip)
to form a large macromolecular complex. Its role concerns
the biogenesis/assembly of small nuclear ribonucleoproteins
(snRNPs), the pre-mRNA maturation and the axonogenesis
(Fallini et al., 2012). Lack of SMN determines specific MN
death, although the reasons for this selectivity remain unclear:
on one hand, the disrupted formation snRNPs could affect
the splicing of some genes involved in MN circuitry; on the
other, SMN could play a role in axons (including support in
axonal growth and branching, RNA metabolism and transport),
lacking in SMA. Probably these two hypotheses are intertwined,
that is, reduced snRNP assembly could influence the splicing
of genes important for axons (Burghes and Beattie, 2009;
Fallini et al., 2012). Moreover SMN has been also found
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TABLE 1 | Classification of human SMA forms (according to Lefebvre et al., 1995; Feldkötter et al., 2002; D’Amico et al., 2011).

SMN2 copy Disease Highest motor Clinical Average
number onset function achieved features survival

Type I (severe; Werdnig-
Hoffmann disease)

1–2 0–6 months Never sit unaided Hypotonia; symmetrical flaccid paralysis;
limited head control; poor spontaneous
motility; tongue fasciculation; respiratory
distress

<2 years

Type II (intermediate) 3 7–18 months Sit; Never stand unaided Tremors of upper extremities; deep
tendon reflex lack; joint contractures;
kyphoscoliosis; masticatory muscle
weakness

10–40 years

Type III (mild; Kugelberg-
Welander disease)

3–4 >18 months Stand and walk (depending
on the disease severity)

Muscular weakness (depending on the
disease severity)

Adult

Type IV (adult) >4 20–30 years Walk unaided No relevant motor symptoms; no
respiratory and nutritional problems

Adult

localized in presynaptic terminals at the NMJ, and interacts
directly with heterogeneous nuclear ribonuclear protein R,
suggesting its crucial role in recruiting and transporting RNA
particles into axons and axon terminals (Dombert et al.,
2014).

Indeed increasing evidence suggest that SMA pathogenesis
is more complex than expected: many authors have recently
speculated that, even though MNs are the most affected cells in
SMA, their loss might not only depend from the lack of SMN:
retrograde signals coming frommuscles and NMJs can be crucial
players of the MN alteration (Bottai and Adami, 2013). Indeed
several alterations have been described at peripheral level.

NMJ ALTERATIONS IN SMA

Both human and murine SMA NMJs show three main
pathological features, including immaturity, denervation and
neurofilament (NF) accumulation (Figure 1). The morphology
and the functionality of endplates can be easily evaluated by
α-bungarotoxin (α-BgTx) staining, that binds AChRs of skeletal
muscles, in association to an immunoreaction against NF, which
can highlight the NMJ innervation.

In agreement with other authors (Cifuentes-Diaz et al.,
2002; Kariya et al., 2008; Kong et al., 2009; Ruiz et al.,
2010), we observed that SMN∆7 SMA mice (one of the most
used experimental models, resembling SMA type II) show
dramatic abnormalities in the NMJ morphology: they are
immature (perforation number is reduced), significantly smaller
compared to WT, and sometimes fragmented (Valsecchi et al.,
2015). Interestingly, this experimental model displays significant
transcriptome changes, also regarding NMJ development: for
example, the expression of Z+ agrin mRNA (required for NMJ
maturation) is drastically reduced in SMA MNs (Zhang et al.,
2013).

Therefore there is a defect in maturation of NMJs: in fact
the fetal form of AChRs (gamma-AChRs) is still expressed at
late stages of development (Kariya et al., 2008). Moreover at
(postnatal day 14, P14) 50% NMJs are immature, compared to
10% of controls (Kariya et al., 2008). The results in the mouse
models are confirmed in SMAI patients, in whom a decrease in

NMJ area and number of perforations, and increased expression
of the fetal gamma-AChR subunits have been described (Harding
et al., 2015).

The lack of SMN seems to have a central role in NMJ
formation and maturation. Interestingly, controlled knockdown
of SMN in neonatal mice induced a severe neuromuscular disease
phenotype, whereas the depletion of SMN after P17 in mice
(when the fully NMJmaturation is established) had relatively low
effect: moreover in adult SMN-depleted mice, a selective NMJ
pathology occurred only in aged or injured animals. These results
put again the NMJ at the core of SMA (Kariya et al., 2014).
To further support the relationship between SMN and NMJ
formation/maturation, NMJ-like structures were generated using
MNs derived from SMA patient-specific induced pluripotent
stem cells (iPSCs): the clustering of AChRs was strongly impaired
(Yoshida et al., 2015).

Moreover such delayed maturation seems associated to an
impaired synaptic function of motor terminals: indeed mutant
mice show slowed postsynaptic potentials and reduced evoked
neurotransmitter release (Ruiz et al., 2010). The reason of such
compromised synaptic transmission could be related to a reduced
rate of transport of synaptic vesicle 2-c and synaptotagmin,
observed at P11 in SMN∆7 SMA mice, before the reduction
in synaptic vesicle density (Dale et al., 2011). Therefore the
pathological findings in animal models suggest an impairment
in NMJ function: repetitive nerve stimulation in SMA type II
and III patients resulted in pathological decremental responses,
suggesting that the functional abnormalities could be, at least in
part, postsynaptic (Wadman et al., 2012).

These synaptic abnormalities appear early, before the motor
symptoms onset, in SMN∆7 SMA mice (Murray et al.,
2008), and even at prenatal stages in Smn−/−;SMN2 mice,
in which intercostal muscles show a very early denervation
(E18.5)—suggesting that axon outgrowth and NMJ formation
did not occur (McGovern et al., 2008). The symptoms become
evident when about 50% endplates result denervated (Ling et al.,
2012).

SMA is not the only neuromuscular disease with synaptic
alterations: a comparison between ALS and SMA showed that,
even though the involvement of muscle groups was similar in
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FIGURE 1 | WT and spinal muscular atrophy (SMA) neuromuscular junctions (NMJs) in P10 quadriceps of SMN17 SMA mice. Immunofluorescence
against neurofilament (NF, green) and α-bungarotoxin (α-BgTx, red) reveals dramatic alterations at SMA NMJ level, compared to WT: endplates are immature (less
perforated in comparison to control mice), are completely engulfed by NF (thick arrows) and sometimes receive multiple innervation (thin arrow; Valsecchi et al.,
2015). Scale bar = 20 µm for WT, 15 µm for SMA.

the two pathologies, in ALS the presynaptic alterations precede
the postsynaptic ones, whereas in SMA they were coincident
(Comley et al., 2015).

Another feature demonstrating an incorrect NMJ
development concerns the persistence of polyneuronal
innervation: such condition is generally associated to early
stages of NMJ structuring, but is strongly delayed in SMA∆7
mice (Lee et al., 2011).

These synaptic alterations could be related to the denervation
affecting SMA muscles. Indeed Ling et al. (2012) performed an
extensive analysis of about 20 muscles in the SMN∆7 SMA
mouse model and found a dramatic denervation in axial and
appendicular muscles (in particular affecting muscles located in
the head and trunk, and involved in maintaining head posture,
respiration, mastication) at the late phase of the disease. This
confirmed the hypothesis of Murray et al. (2008) suggesting that
‘‘muscle fiber-type and body location are likely to be important
determining factors in regulating synaptic vulnerability during
SMA’’. Similarly, we observed that MNs innervating axial and
proximal muscles are the most affected in SMN∆7 SMA mice
(d’Errico et al., 2013), confirming a selective weakness of these
compartments. Other groups refer poor denervation in this
mouse model, limited to intercostal and paraspinal muscles
(Kong et al., 2009).

Notably it was demonstrated that muscles, even though
initially innervated, lost the innervation during SMA

progression, suggesting an impairment in synapse maintenance
(Ling et al., 2012). The synaptic integrity of NMJs seems
to depend upon levels of SMN produced by MNs, rather
than by muscles (Martinez et al., 2012). Another possibility
could be correlated with the impaired cellular transport in
MNs: NF accumulation, resulting from dysregulation of the
axonal transport machinery (Kreutzer et al., 2012), may have
a role in the destabilization of NMJs. Interestingly it has been
hypothesized that the reduction in SMN leads to disruption of
β-actin mRNA transport and affects shuttling of NF within the
axon of the MN, leading to aberrant NF accumulation and poor
terminal arborization (Bowerman et al., 2007, 2009). Also the
protein levels of dynein seem to be reduced, suggesting in turn
an impairment in axonal transport (Dale et al., 2011).

Indeed NF accumulation is a pathological hallmark of SMA,
since it has been found in the majority of affected muscles:
its accumulation has been associated to the slow and delayed
transport of components essential for NMJ maturation and
maintenance (Torres-Benito et al., 2012). SMA NMJs are
completely engulfed by NF, including its phosphorylated forms
(Cifuentes-Diaz et al., 2002; Ling et al., 2012; Valsecchi et al.,
2015), and this increases over time (Kariya et al., 2008); moreover
this accumulation seems to be restricted to the endplate, sparing
MN cell body, motor root and nerve (Cifuentes-Diaz et al., 2002;
Dale et al., 2011), suggesting local alterations in NF dynamics.
Nevertheless, retinal neuron primary culture, obtained from
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SMN-deficient mice, were characterized by NF aggregation into
their neurites: the authors ascribed such alterations to transport
defects, rather than to abnormalities in NF production (Liu et al.,
2011).

Finally, Ling et al. (2012) also found that NF accumulates
in both affected and spared muscles in SMN∆7 SMA mouse
model, and appears before the onset of denervation: therefore NF
accumulation and denervation do not seem strictly correlated.
However, NMJs of proximal muscles are affected by NF
accumulation earlier than distal ones. Therefore such process
could involve various muscles with a different timing, resulting
for some reason more harmful for the proximal than the distal
ones (Kariya et al., 2008). Could the extent of NF engulfment
explain muscle impairment or sparing in SMA? The specific
causes of such selectivity still remain unclear.

In conclusion, even though the time-course of abnormalities
affecting endplates remains matter of debate (Figure 2), there is
a general consensus that the NMJ breakdown is an early event in
SMA pathogenesis, which probably anticipates MN dysfunction
and motor symptom onset. To this extent, NMJs could represent
an important therapeutic target, to be exploited to counteract the
pathology progression.

THERAPEUTIC APPROACHES

Even though for SMA no effective treatment is currently
available, the efforts of researchers are constantly oriented to
discover and test new drugs or compounds, at least aiming
to delay the disease progression. A therapeutic strategy aimed
at improving neuromuscular transmission (for example by
increasing the release and the half-life of Ach) could be an
effective and valid approach (Wadman et al., 2012).

Here we will focus on the therapeutic effects on NMJs, either
when endplates represent the direct target of the treatment, or
in case of systemic/less focused treatment also having an impact

on NMJs. Additionally we will also mention still unexplored
molecular targets in SMA.

SMN Overexpression
Due to the central role of SMN in the SMA pathogenesis, many
groups have evaluated the effects of its overexpression in mouse
models. Moreover, some authors displayed that the synaptic
connectivity at the NMJ level strictly depends on the presence
of SMN in MNs, rather than in muscles: overexpression of
SMN inMNs re-established the presynaptic properties of quantal
content and the probability of synaptic vesicle release, with the
consequent increase of the endplate size, the NF reduction and
the denervation decrease (tibialis anterior and splenius capitis
muscles; Martinez et al., 2012). Moreover the beneficial effects
on rescuing endplate size and mitigating NMJ denervation status
was obtained by restoring low levels of SMN (Paez-Colasante
et al., 2013). However, selective overexpression of SMN in SMA
neurons significantly reduced the NMJ defects (gastrocnemius,
triceps and tibialis anterior muscles), but moderately improved
motor performance and extended the lifespan of treated mice:
despite the partially positive results, an ubiquitous restoration
of SMN could have been more effective (Lee et al., 2012; Paez-
Colasante et al., 2013). Moreover there is a time window in
which SMN replacement is most beneficial to NMJs: indeed
early P2 intracerebroventricular administration of scAAV9-SMN
in SMN∆7 SMA mice completely preserved the integrity and
innervation of NMJs (longissimus capitis), compared to late (P7)
administration (Robbins et al., 2014). Therefore even high SMN
levels are ineffective in rescuing the phenotype, once the disease
has reached advanced stages.

Antisense Oligonucleotides (ASOs)
The use of ASOs represents another valid strategy to increase the
levels of SMN, specifically restoring the SMN2 splicing pattern,

FIGURE 2 | Hypothesis of time-course of NMJ abnormalities affecting SMA muscles. (A) In normal condition, a correct amount of SMN results in the
development of mature NMJs, characterized by pretzel-like morphology and functional synaptic activity. Moreover isosurface reconstruction obtained by Imaris
software (Bitplane) shows thin NF-positive fibers (green) innervating the NMJs (red). (B) Instead, in SMA, lack of SMN impairs axonal transport: this could determine
NF accumulation at the NMJ level (as also shown by Imaris isosurface rendering), affecting their correct maturation and innervation (endplates are smaller, less
perforated and sometimes denervated), and consequently their synaptic function. Such alterations could backwards damage motor neurons (MNs; Valsecchi et al.,
2015).

Frontiers in Neuroanatomy | www.frontiersin.org 5 February 2016 | Volume 10 | Article 6

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Boido and Vercelli NMJ at the SMA Core

activating the SMN2 promoter, and extending the half-life of
SMN mRNA or protein (Tsai, 2012). Valproic acid (VPA) is
currently one of the most studied ASOs: VPA administration in
SMA type III mice improved motor performance, reduced NMJ
denervation and muscular atrophy (Tsai et al., 2008). Moreover,
in vitro, co-culturing C2C12 cells (myoblast cell line) and SMA
patient-specific iPSCs resulted in a defective AChR clustering,
that was improved by VPA administration, in association with
the increase of SMN∆7 and SMN-FL mRNA levels, but without
NF decrease (Yoshida et al., 2015).

In a mouse model of the intermediate forms of SMA
(Burgheron mutant) showing a delay in NMJ maturation and
a decrease in the number of functional neuromuscular units,
the systemic administration of SMN-restoring ASOs at the age
of onset could extend survival and rescue the neurological
phenotypes (Bogdanik et al., 2015).

Similar positive results has been also induced by trichostatin A
injection, which increased innervation in severely affected
muscles (longissimus capitis, splenius capitis, serratus posterior
inferior and semispinalis capitis) in SMN∆7 SMA mice:
indeed denervation was reduced of about 90% in the most
vulnerable muscles (Ling et al., 2012). Other ASOs (2′-O-
2-methoxyethyl–modified ASO, Passini et al., 2011; 8-mer
ASO, Keil et al., 2014) induced significant improvements in
the NMJ morphology and innervation, in muscle physiology,
motor performance, and survival respectively in SMN∆7 SMA
mice (quadriceps and intercostal muscles) and in the milder
5058-Hemi hybrid SMA mice (intercostal muscles).

Despite the impressive results offered by ASOs, translation
to human patients still needs additional steps, in order to better
establish timing, volume, and location of dosing, and to avoid
toxic side effects (Porensky and Burghes, 2013).

Neurotrophic Factors and Stem Cells
Impairment of AChR clustering in SMA is due to a delay in the
switch from fetal gamma-subunit to the adult epsilon-subunit,
normally occurring by 2 weeks after birth (Missias et al., 1996),
and depending on neurotrophic factor release (Kues et al.,
1995). Among neurotrophins, brain-derived neurotrophic factor
(BDNF) and neurotrophin-3 (NT-3) can especially support
functional maturation of NMJs (Wang et al., 1995). For this
reason their replacement could be a valid therapeutic approach.
Indeed in several experimental models (MN diseases as well
as trauma), neurotrophic factors can exert general positive
effects, including reduction of MN death, stimulation of axon
regrowth, preservation of peripheral functional connections,
NMJ maturation (Wyatt and Keirstead, 2010). In 1997,
adenovirus-mediated gene transfer of NT-3 induced substantial
therapeutic effects in a murine model of progressive motor
neuronopathy, increasing animal survival and improving NMJ
function (Haase et al., 1997). More recently, stem cell-
derived MNs, transplanted in a murine model of SMA with
respiratory distress type 1, appeared well integrated into the
host, with axons reaching ventral roots and muscles, and
forming new functional NMJs: this positive outcome can
be ascribed to the neuroprotective effects exerted by graft,

which even modulated inflammation (Corti et al., 2009). Also
mesenchymal stem cells (MSCs) could be good candidates
for MN disease cell therapy, since they display a great
plasticity, secrete several growth factors [such as vascular
endothelial growth factor, glial cell-derived neurotrophic factor
(GDNF) and BDNF], modulate host immune system (Mazzini
et al., 2009), and delay atrophy in denervated muscles (Jiang
et al., 2012): allogenic MSCs have been administered to SMA
type I patients, inducing improvements of general physical
condition during treatment, without side effects (Villanova
and Bach, 2015), but reference to NMJ feature was not
reported.

On the other hand, the administration of a recombinant AAV
vector encoding human insulin-like growth factor 1 (IGF-1)
into the deep cerebellar nucleus of a SMA type III mouse
model significantly reduced MN death, although without a
correlated correction of muscle pathology or improvement of
motor functions: in fact, analysis of the gastrocnemius NMJs
revealed that the treatment did not rescue the denervation, since
probably the survived MNs were not really functional and able
to efficiently innervate the muscle (Tsai et al., 2012). However
in our experience (Valsecchi et al., 2015), and in agreement
with the literature (D’Amico et al., 2011), gastrocnemius, as a
distal muscle, is generally less affected by SMA. Nevertheless the
authors suggested to support such approach with SMN therapy,
reinforcing the idea that SMN can positively influence the NMJ
functionality (Tsai et al., 2012).

miRNAs
Other promising therapeutic targets are represented by miRNAs,
whose involvement in MN diseases is gradually emerging.
Notably, SMN complex is involved in miRNA biogenesis and/or
function, and increasing evidence demonstrated that miRNA
dysregulation (regarding cell cycle, development, metabolism,
and synaptic plasticity) affects SMA neurons and muscles
(Kye and Gonçalves Ido, 2014; Valsecchi et al., 2015), even
at embryonic age in SMN∆7 SMA mice (Luchetti et al.,
2015). In particular some miRNAs (miRNA-310, miRNA-125,
let-7, miRNA-124) seem important players for both NMJ
formation/function and synaptic homeostasis, in invertebrate
and mammalian models (Kye and Gonçalves Ido, 2014).
However, due to the relative novelty of such discoveries, few
therapeutic approaches have been currently evaluated in SMA.

For example, miRNA-9 is down-regulated in MNs derived
from SMN1mut mESCs (Haramati et al., 2010) and in skin
fibroblast cells of SMA patients (Wang et al., 2014): miRNA-9
is located downstream of SMN1 and can regulate the NF
expression, suggesting its involvement in NF defects reported in
SMA (Haramati et al., 2010). Additionally its expression seems to
be related to SMA severity, making it a promising tool for SMA
prognosis (Wang et al., 2014). An experimental modulation of
the expression of miRNA-9 (gain- and loss-of-function studies)
is still lacking, but should help in clarifying its role in SMA NF.

Also, deletion of miRNA-206 may accelerate ALS progression
(G93A-SOD1 mice; Williams et al., 2009) and worsen dystrophic
condition in an experimental model of Duchenne muscular
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dystrophy (Liu et al., 2012); miRNA-206 is also necessary to
induce NMJ regeneration after sciatic nerve crush (Williams
et al., 2009). It can effectively repress histone deacetylase 4
(HDAC4, known to inhibit muscle reinnervation; Bruneteau
et al., 2013), resulting in the activation of FGF binding
protein 1 (FGFBP1) which in turn boosts the FGF action
during reinnervation (Williams et al., 2009). We have recently
demonstrated that the same pathway is activated in SMN∆7
SMA mice (Valsecchi et al., 2015): as in ALS, miRNA-206 may
play a compensatory role in reinnervation, acting as a survival
endogenous mechanism, although not sufficient to prevent the
disease progression (Williams et al., 2009; Liu et al., 2012;
Valsecchi et al., 2015). Finally it is worth noting that, although
other miRNAs could contribute to formation of NMJ andmuscle
reinnervation (miRNA-133b and miRNA-1, that together with
miRNA-belong to the so called ‘‘myomiR’’ network; van Rooij
et al., 2008), the only miRNA-206 seems essential in maintaining
and repairing endplates (Valdez et al., 2014). Indeed the delivery
of miRNA-206 mimics or the modulation of its downstream
targets could be beneficial for SMA and similar neuromuscular
diseases.

Agrin
Agrin is one of the fundamental molecules in stabilizing
synaptic contacts and controlling axon growth (Witzemann,
2006). Interestingly SMN∆7 SMA MNs lack neuronal (Z+)
agrin protein at P1, and are completely deficient at P3
(Zhang et al., 2013). Moreover cultured skeletal muscle cells
isolated from SMA type I patients show abnormal fusion
mechanisms and impaired agrin-induced AchR aggregation,
proving that NMJs cannot be correctly built (Arnold et al.,
2004). Therefore agrin could be an interesting therapeutic target.
Agrin fragment administration determined NMJ stabilization
and phenotype amelioration in SARCO mice (experimental
model of Sarcopenia, characterized by age-related muscle
wasting), and accelerated reinnervation after sciatic nerve
crush, by activating the agrin/Lrp4/MuSK system (Hettwer
et al., 2014). Moreover recently it has been demonstrated,
in co-coltures of myotubes and PC12 cells, that muscular
innervation (functional NMJ formation) was triggered when
cells were treated with a combination of agrin and laminin,
rather than only agrin, probably due to different signaling
pathways underlying AChR clustering (Zhang et al., 2015).
Additional in vivo studies may help in clarifying which
therapeutic approach could be more efficient for SMA or
similar neuromuscular diseases, in order to support functional
neuromuscular development/restoration.

Exercise
Even though historically physical activity was not recommended
to neuromuscular disorder patients (including SMA)
dreading the risk of further muscle damage (Bennett and
Knowlton, 1958), nowadays strong evidence reversed this
opinion. Exercise can exert beneficial effects on muscle
and NMJ morphology/function, during aging and in case
of peripheral nerve injury or degenerative pathologies. As

reviewed by Nishimune et al. (2014), exercise can induce the
activation of several molecules, including extracellular matrix
molecules (laminin), neuregulins (Neuregulin-1, PGC-1a)
and neurotrophic factors (BDNF, GDNF, IGF), and modulate
miRNA expression (miRNA-206), positively influencing
NMJ morphology and transmission, their maintenance and
regeneration. Indeed, neuromuscular system is strongly
influenced by exercise, able to induce both structural and
functional modifications; physical activity can also favorably
support AChR assembly (Ferraiuolo et al., 2009). Therefore,
using exercise as a trigger of these molecular pathways could
represent a valid therapeutic approach for MN/neuromuscular
diseases or age-related atrophic pathologies. For example,
old mice undergone wheel running training (in association
with diet caloric restriction) displayed a reduced number of
fragmented and denervated NMJs in the tibialis anterior, gracilis
and gastrocnemius muscles (Valdez et al., 2010). Moreover,
trained (running) type II SMA-like mice exhibited improved
motor performance, diminished muscle atrophy and reduced
MN death, compared to sedentary mice (Grondard et al.,
2005). Better understanding the molecular pathways activated
by exercise at the muscular and NMJ level in SMA could be
extremely useful. Indeed physical activity should be associated to
other therapies, to obtain a synergistic effect.

CONCLUSION

The role of NMJs in the pathogenesis of SMA is anything but
peripheral, so that pathological changes at the endplate level even
precede the MN loss.

However divergent data are often present in the literature, and
a more extensive analysis is therefore needed to better clarify the
molecular, functional and temporal defects affecting NMJs, and
consequently muscles and MNs.

As shown, numerous therapeutic approaches (stem cells,
miRNAs, ASOs, etc.) have been tested either directly in SMA or
in other similar neuromuscular/atrophic diseases. The obtained
results are generally promising, but additional studies are
necessary in view of a translational approach.

Indeed many crucial points still need to be unravelled,
concerning the overall SMN function, the selective vulnerability
of proximal muscles and MNs, the precise time-course of
pathological events, the correlation among NMJ, muscle and
neuron defects. Only the answers to these critical questions will
allow to identify the best and most efficient therapy/ies for SMA.
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