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The morphology of neurons and networks plays an important role in processing

electrical and biochemical signals. Based on neuronal reconstructions, which are

becoming abundantly available through databases such asNeuroMorpho.org, numerical

simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be

performed in order to systematically investigate the influence of cellular morphology

and the connectivity pattern in networks on the underlying function. Development in

the area of synthetic neural network generation and morphology reconstruction from

microscopy data has brought forth the software tool NeuGen. Coupling this morphology

data (either from databases, synthetic, or reconstruction) to the simulation platform

UG 4 (which harbors a neuroscientific portfolio) and VRL-Studio, has brought forth the

extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations

on hybrid-dimensional morphology representations. The code basis is designed in a

modular way, such that e.g., new channel or synapse types can be added to the

library. Workflows can be specified through scripts or through the VRL-Studio graphical

workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox

workflows. In this paper, NeuroBox is used to study the electrical and biochemical

effects of synapse loss vs. synchrony in neurons, to investigate large morphology data

sets within detailed biophysical simulations, and used to demonstrate the capability of

utilizing high-performance computing infrastructure for large scale network simulations.

Using new synapse distribution methods and Finite Volume based numerical solvers

for compartment-type models, our results demonstrate how an increase in synaptic

synchronization can compensate synapse loss at the electrical and calcium level, and

how detailed neuronal morphology can be integrated in large-scale network simulations.

Keywords: HPC, large-scale neuronal networks, synaptic plasticity, electrical scale, anatomy, reconstruction,

simulation, cable equation
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1. INTRODUCTION

The structure of neurons and networks in the brain is
known to change continuously over time. Cellular growth,
synapse formation or synapse loss, reorganization of intracellular
architecture constantly make changes to the overall cellular and
network anatomy (Hughes, 1958; Abbott and Nelson, 2000;
Sheng and Hoogenraad, 2007; Shepherd and Huganir, 2007; Tai
et al., 2008; Colon-Ramos, 2009; Branco et al., 2010; Zeltser
et al., 2012; Tyagarajan and Fritschy, 2014). These changes in
geometric layout can be interpreted as a strong indicator that
the anatomy of the (sub)cellular and network level is deeply
involved on various functional levels. Neuroscientific research
has always been devoted to the interplay between morphology
and function on various functional levels. Experimental research
draws from microscopy techniques that can make morphology
and spatio-temporal signals visible (Spacek and Harris, 1997;
Arellano et al., 2007; Chen et al., 2008), theoretical work in
Computational Neuroscience has brought forth an abundant
spread of cellular and network models, many of them rely
on a spatial representation of neurons and networks (Bower
and Beeman, 1997; Hines and Carnevale, 1997; Balls et al.,
2004; Gewaltig and Diesmann, 2007; Andrews et al., 2010).
General purpose simulators such as NEURON or Genesis couple
electrical and biochemical models to graph-representations of
neurons and synaptically connected networks. The importance
of neuronal morphology used in such simulations can be
seen in reconstruction projects, such as the database project
NeuroMorpho (cf. Ascoli, 2006). Currently more than 30,000 cell
reconstructions are freely available on this platform.

Reconstructing morphology frommicroscopy data is a further
example of how deeply structure is integrated in the brain. Semi-
manual or fully automated reconstruction methods are being
developed in research groups around the world (e.g., Jungblut
et al., 2011; Popov et al., 2011; Burette et al., 2012), trying to
unravel the filigreed multi-level organization of the brain. This
dedication has advanced the field significantly, still many of
the anatomical questions are currently unresolved. To leverage
the power of large-scale network simulations, synthetic neuron
morphology tools have been developed (Wolf et al., 2013). These
algorithms are capable of generating synthetic networks with
realistic morphology statistics which can be used within detailed
functional simulations. In order to use these large data sets
in detailed and large network simulations high performance
computing platforms become an inevitable component of the
process. While most of the available network simulators were
originally conceived to run serially, there has been effort to
parallelize and optimize the code for ever growing computing
power.

In this paper, we present an approach focusing on the
topic of cellular and network anatomy within a large-
scale computing context. Building on scalable numerical
methods in a flexible and parallelized discretization and
solver framework for general ordinary and partial differential
equation systems, this unified approach does not make use of
the NEURON simulation environment (Hines and Carnevale,
1997) used in similar projects (Markram, 2015; Ramaswamy,

2015; Reimann, 2015). We introduce some of the authors’
contributions in morphology reconstruction as well as artificial
construction, hybrid-dimensional modeling and simulation of
coupled biochemical and electrical signals, and link these to
newly developed algorithms for massively parallel simulation of
cable equation models and synapse distribution on cells. The
latter can be used to simulate healthy and disease state neurons
with different synapse numbers and distributions.

The Materials and Methods section of this paper discusses
the tool NeuGen (Eberhard et al., 2006; Wolf et al., 2013) and
how it ties into a generalized simulation framework. Our model
for simulating electrical signals builds upon the known cable
theory and is briefly summarized. We introduce our methods for
handling synapse types and synapse distributions and introduce
a new way of numerically discretizing the resulting model
equations and computational domains, ultimately resulting in
a system that can be solved on massively parallel computing
architectures. These methods are compiled in the toolbox
NeuroBox which is developed on top of the numerics engine
UG 4 (cf. Vogel et al., 2013) that has been used in several
detailed studies of structure-function interplay (Xylouris et al.,
2007; Hansen et al., 2008; Nägel et al., 2008, 2009;Wittmann et al.,
2009; Grillo et al., 2010; Muha et al., 2011).

To study this anatomy-high-performance framework we
present a study of synapse loss vs. signal synchronicity and
the influence on somatic calcium signals as well as simulations
of large and detailed network simulations (10,000 neurons,
each neuron containing 574–586 degree of freedom) of a
neocortical column synthetically generated with NeuGen. In
these studies we show that synapse loss, which is a major factor in
neurodegenerative diseases, can be partially compensated by an
increase in synaptic synchronicity, while somatic calcium signals
rely strongly on the activation and frequency of action potentials.
We further show that wave activation in neocortical networks
is clearly driven by synapse density and that our employed
simulation framework scales well on JUQUEEN, one of the high-
performance computers at the German Jülich Supercomputing
Center. This in turn demonstrates that large-scale network
simulations do not necessarily have to come at the cost of
anatomy anymore.

2. MATERIALS AND METHODS

In this section we will introduce the tools and methods used for
the simulations performed in Section 3. A combination of neuron
and network generating tools (Section 2.1), synapse distribution
algorithms, a new approach for numerical discretization of the
network topology and a parallel computing framework (Section
2.2) forms the basis of our detailed anatomical and large-scale
network simulations and is integrated in a new and extendible
simulation toolbox, NeuroBox (Section 2.3).

2.1. Generating Large and Anatomically
Detailed Networks
The generation of large neural networks (containing more
than 10,000 neurons) is accomplished with the neural network
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generator NeuGen (Eberhard et al., 2006). NeuGen uses
anatomical fingerprints, i.e., experimental morphology data and
standard deviations to generate anatomically consistent neurons
that fit experimental mean and standard deviation. NeuGen
thus generates non-identical neurons of various types—e.g.,
pyramidal cells and spiny stellate cells of the neocortex and
hippocampus—and synaptically connects these to form neural
networks. The topology of the network is described in terms
of graph theory as an undirected, connected graph containing
edges and vertices in three-dimensional coordinate space.
NeuGen algorithms sample parameter values from experimental
data distributions and incorporates two categories of synapses:
Primary synapses representing external stimulation of the
network; as well as interconnecting synapses which represent
chemical synapses between neurons present in the network,
typically formed by a presynaptic axon and a postsynaptic
dendrite. The anatomy of the network can be exported to
a 3D graphics format for visualization and various discrete
morphology file formats that can be used in simulators such as
NEURON (Hines and Carnevale, 1997) or UG 4 (Vogel et al.,
2013). NeuGen is intended to provide anatomically accurate
large network topologies for general purpose neuron network
simulators.

The algorithm, which is not a growth-based algorithm, is
summarized by the following steps (cf. Figure 1):

– Generate sections for each neuron based on anatomical
fingerprints

– Interconnect sections of individual neurons
– Generate synapses based on a distance criterion and attach
functional parameters

It is worth highlighting two parameters when discussing
anatomical detail. To regulate the number of vertices for each
neuron (which represents the level of detail at which neuron
morphology is represented), one may adjust a parameter termed
section_length, the average compartment length in µm. In
cases where memory consumption is a constraint, choosing an
increased section length permits the creation of and simulation
on larger networks (with less anatomical detail) using the same
amount of memory. Secondly, the number of synapses inserted
into the networkmay be adjusted by a global threshold parameter
termed dist_synapse. If and only if the euclidean distance
between two sections falls below the threshold specified by this
parameter, these sections will be marked as potential synaptic
contact points. Whether or not a synapse will be placed in the
network depends on the type of pre- and postsynaptic neurons.
A connectivity matrix specifies which classes of neurons are
interconnected by synapses (Wolf et al., 2013).

Subsequent simulations need to refer to the compartments
contained in the grid for simulation control setup. Therefore,
an alphanumerical identifier is stored within the grid too. The
identifier is a string and composed out of the cell type (e.g.,
pyramidal or stellate) and the compartment type (e.g., axon
or dendrite) and groups all edges and vertices belonging to a
given cell and compartment type (cf. Figure 2). If desired one

FIGURE 1 | Flowchart sketching the streamlined pipeline for the generation and subsequent transformation of neuronal network morphologies to

grids suitable for large-scale network simulations. In case of three-dimensional simulations, where one-dimensional point/line reconstructions are used to

generate three-dimensional representations (see Grein et al., 2014) quality assessment of the generated grid can be performed in a semi-automatic way to allow for

the best possible preparation for the subsequent numerical simulations, for instance, we check for intersecting dendrites introduced during neuron tracing.
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FIGURE 2 | An exemplary neocortical network consisting of a total of

ten individual cells synthetically generated with NeuGen. The cellular

composition of the displayed network is identical to the networks described in

Table 1 above. Visualization comprises the different cell types distinguishable

by color: axons of L4 spiny stellate (lavender), axons of L2/3 pyramidal (red),

axons of L5A pyramidal (bright green), axons of L5B pyramidal (blue),

dendrites of L4 spiny stellate (yellow), dendrites of L2/3 pyramidal (cyan),

dendrites of L5A pyramidal (rose), dendrites of L5B pyramidal (light green),

somata of L4 spiny stellate (ocher), somata of L2/3 pyramidal (orange), somata

of L5A pyramidal (light blue), and L5B pyramidal (brown).

can request the identifier to group edges and vertices based
also on the section number of the compartment resulting in a
fine-grained access of the network (not shown).

The network can be exported to a variety of formats including
a format suitable for large neural network grid generation, e.g.,
a custom sparse data format based on a file format derived from
TXT (plain text or compressed plain text) or a more convenient
XML-based file format.

To useNeuGen in conjunction with the simulation framework
UG 4 (Vogel et al., 2013, cf. Section 3), the exported morphology
is exported to the UG 4 geometry format UGX (an xml-
based file format). To that end, topology information of the
exported network, consisting of the raw nodes and vertices, is
enriched by grid attachments such as diameter information and
synapses, together with their parametrizations. This procedure
is implemented as a plugin for UG 4 and produces large
neural networks (≥ 10, 000 neurons) in the matter of seconds
(cf. Table 1).

In addition to directly writing UGX-files from NeuGen, it
is possible to convert the following formats to UGX: SWC
(commonly used in the NeuroMorpho.org database, Ascoli et al.,
2007), HOC (widespread format utilized by NEURON, Hines
and Carnevale, 1997), TXT and NeuroML. The last three file
formats can be exported directly by NeuGen. NeuGen and the
corresponding UG 4-plugins thus form an efficient pipeline
for integrating large and anatomically realistic neural networks
and publicly accessible anatomical neuron reconstructions into
neuron and network simulation frameworks.

2.2. Simulating Electrical and Biochemical
Signals
Having established methods for generating network topologies in
the previous section, we now focus on the steps from modeling

TABLE 1 | Network creation statistics sorted by size, i.e., by number of

contained cells within the network, in ascending order.

Vertices Sections Cells Elapsed time [s] Grid size [mb]

1403 418 12 0.01 0.14

15535 4382 120 0.02 1.60

156596 43892 1200 0.50 16.9

1644260 465262 12000 44.7 65.6

2840213 1212108 120000 300 221.1

The networks are composed of L5A and L5B pyramidal cells (≈ 16% each), of L4 spiny

stellate cells (≈ 42%) as well as L2/3 pyramidal neurons (≈ 26%). The smallest network

contains 12 and the largest network 120,000 cells in total. To create even larger networks

with the same memory resources, one can decrease the number of compartments using

the section_length parameter.

electrical signals, handling membrane transport mechanisms,
including synapses to discretizing the model equations by
means of a new approach via finite volumes. Lastly we
summarize parallel methods for efficiently solving large-scale
networks.

2.2.1. Model Equations for Membrane Potential and

Ion Species
We follow the well established cable theory (cf. Thompson, 1854;
Scott, 1975) to model electrical signals on spatially resolved
neuron morphologies. A neuron’s morphology is given as a
graph consisting of vertices in a three-dimensional space and
edges connecting them. Common file formats for neuronal
morphologies (such as SWC or HOC) contain radius or diameter
values assigned to each vertex. We make use of this diameter
in the most simplistic way, i.e., by supposing the morphology
to be piecewise tubular, each piece being located around a
vertex and with the radius associated to this vertex. With only
very few modifications, we also implemented compartments
shaped like truncated cones resulting in a continuous radius
along the neurites, however, we restrict ourselves to the case of
tubular compartments in the following description for the sake of
simplicity. In each of the compartments, we impose the following
equation expressing the membrane’s role as an ideal capacitor:

Cm
∂V

∂t
= Iax + Im, (1)

where V is the membrane potential, Cm is the capacitance of
the compartment and Iax, Im are the axial and transmembrane
(inward) electric currents, respectively. The compartment’s
capacitance Cm depends on its shape and can be expressed in
terms of a membrane-specific constant cm,

Cm = cm · 2πal,

where a and l are the radius and the axial length of the
compartment, respectively.

Axial currents need to be calculated at both ends of
a compartment, at the interface with the neighboring
compartments. They are assumed to be purely ohmic in
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nature and are expressed in terms of voltage between the two
vertices associated with the neighboring compartments:

Ix2→x1
ax = V(x2) − V(x1)

rc
π

x2
∫

x1

(a (x))−2 dx

= V(x2) − V(x1)
rc
2π

(

a−2
1 + a−2

2

) |x2 − x1|
,

where rc is a material constant, the specific resistance of the
cytosol, x is the axial coordinate, and x1, x2 as well as a1, a2 are
depicted in Figure 3. Note that the former equation implicitly
assumes that the extracellular potential is constant in space.

Finally, the transmembrane current Im into the compartment
is expressed in terms of electrical flux density im as

Im = im · 2πal (2)

and depends on transport mechanisms (e.g., Hodgkin-Huxley-
type channels, Na/K pumps, leakage), synapses and electrodes
definable on the membrane.

In order to track individual ion species, concentrations for K+,
Na+, and Ca2+ or any other ion type can be added to the model.
Each of the species satisfies a diffusion-convection equation in
axial direction and is coupled to transport mechanisms in the
plasma membrane.

Note that as these ions are charged, they are affected by
potential gradients in reality—and conversely, for the same
reason, their concentrations directly affect the potential. A
physically more accurate model of ionic movement in neurons
incorporating both electric and diffusive properties of individual
ion species is electro-diffusion. It has ben demonstrated that the
modeling error introduced by using the cable equation can be
prominent in thin compartments (Qian and Sejnowski, 1989) or
where three-dimensional structural detail is concerned (Lopreore
et al., 2008).

2.2.2. Membrane Transport Mechanisms
What is truly at the heart of most neuronal simulations is
transport across membranes. We have defined an interface
allowing the addition of arbitrary transport mechanisms to the
electrical model in the transmembrane current density term im of
Equation (2). These transport mechanisms are granted access to
the underlying grid as well as to the unknowns of the voltage and
ion species equations. Thus, they are able to declare and calculate

their own sets of states, which may depend on given ones and
vary in space and in time—like the gating parameters m, n and h
in classical Hodgkin-Huxley-type channels governed by ordinary
differential equations in time which depend on the membrane
potential (Hodgkin and Huxley, 1952). As the dependence of
inner states of membrane transport systems on the potential
and on ion concentrations is typically strongly non-linear, we
have decided (in the interest of fast computation) to include
transmembrane currents only by an explicit scheme, i.e., inner
states are updated before any time step of the solution process
using only the solution from the previous time step.

The concept is not unlike the NMODL model description
language for NEURON by Hines and Carnevale (1997, 2000). In
fact, we have developed an automated translation unit that can
convert existing NMODL files to C++ source code compilable in
our framework.

2.2.3. Synapses
Glutamate being the primary excitatory neurotransmitter inmost
synapses of the central nervous system, we define excitatory
synaptic input localized at dendrites as the postsynaptic response
of AMPA or NMDA receptors to presynaptic glutamate signals.
AMPA and NMDA receptors, cation channels that become
permeable in glutamate-bound state and thereby exhibit a
conductance change in direct response to incoming presynaptic
spikes, induce transmembrane flux of sodium, potassium and
calcium ions causing a local excitatory depolarization of the
membrane potential.

In our simulations we distinguish two general categories
of synapses: Primary synapses connected to dendrites as the
postsynaptic side,—they are used to initialize activity in single
cells as well as networks and represent connections to other
neurons not included in the simulation. The second category are
synapses connecting dendrites and axons both present within a
network morphology. We call these interconnecting synapses.

As there is no information on the presynaptic side of primary
synapses, the common and simple approach of alpha functions
provides a reasonable approximation to model postsynaptic
conductance profiles (Roth and van Rossum, 2009):

g(t) = gmax
t − tonset

τ
exp

(

− t − tonset − τ

τ

)

, (3)

FIGURE 3 | Illustration of the piece-wise tubular compartments of the Finite Volume cable equation model and the definition of axial ohmic flux.
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where gmax denotes the maximal conductance, τ the rise/decay
and tonset the arrival time of a single presynaptic spike. Note that
gmax occurs at t = tonset + τ . The synaptic current Ips(t) is then
defined by

Ips(t) = g(t)(V(t)− Erev), (4)

with g(t) given by (3) for tonset ≤ t ≤ tonset + 6τ and g(t) =
0 otherwise. V(t) denotes the current postsynaptic membrane
potential and Erev a reversal potential. For glutamatergic
synapses, we use Erev ≈ 0mV (Purves et al., 2001).

Interconnecting synapses are activated upon rise of the
presynaptic membrane potential above a threshold Vth and
the following current Iis(t) to the postsynaptic end is modeled
according to a bi-exponential activity function:

tmax = τ1τ2

τ2 − τ1
log

(

τ2

τ1

)

, (5)

n =
(

exp

(

− tmax

τ2

)

− exp

(

− tmax

τ1

))−1

, (6)

Iis(t) = gmax (V − Erev) n

(

exp

(

− t

τ2

)

− exp

(

− t

τ1

))

,

(7)

where gmax is the maximal conductance; Erev is a reversal
potential; τ1 and τ2 are constants regulating rise and decay time
of the conductance; tmax designates the point in time (after initial
activation) at which the conductance is maximal, and the factor
n normalizes the conductance such that its value is gmax at tmax.

Synaptic currents—like all other trans-membrane currents—
are evaluated using the solution for the potential of the
previous time step only. This has significant benefits in parallel
computation, as there is no direct coupling of solutions for
the next time step between cells connected to one another by
synapses.

2.2.4. Activation Patterns of Primary Synapses
Our implementation provides a method to set generic activation
patterns for a given set of input synapses in the computational
domain. To achieve that, we introduce the continuous random
variables Xonset and Xτ for the timing parameters tonset and τ

[cf. Equation (3)], respectively. Both of which we assume to be
normally distributed, i.e., Xonset ∼ N (µonset, σ

2
onset) and Xτ ∼ N

(µτ , σ
2
τ ) with probability density functions given by:

fN ( xξ , µξ , σ
2
ξ ) =

1

σξ

√
2π

e
− 1

2 (
xξ−µξ

σξ
)2
, ξ ∈ {onset, τ } (8)

After specification of a peak conductance gmax, a mean onset
time µonset and duration µτ of synaptic activity as well as
corresponding standard deviation values σonset and στ , the
parameters tonset and τ are set to random values drawn from
the above normal distributionsN (µonset, σ

2
onset) andN (µτ , σ

2
τ ),

respectively.

2.2.5. Spatial Distribution of Primary Synapses
Given neuron morphologies (defined as graphs in three-
dimensional coordinate space), we attach all information
parameterizing synapses to the dendritic edges they are
associated to. The distribution is managed by the C++ class
SynapseDistributor. It provides methods to create new or
delete existing ones to user-specified statistical distributions.

In our studies, we assume a uniform distribution of nsyn ∈ N

synapses on the edge sample space

Sedge: = {ei | i = 1, ..., nedge} (9)

of the basal and apical dendrites. For this purpose, we consider
a discrete random variable Xi

syn, i ∈ {1, ..., nsyn}, for the i-th

synapse to be distributed. With every draw Xi
syn can thereby take

one of the edge indices j ∈ {1, ..., nedge} as value, i.e., Xi
syn =

xij: = j. To account for the heterogenous edge lengths every edge

index is assigned an associated probability given by the following
probability mass function:

P (Xi
syn = xij) = pij : =

‖ej‖2
∑nedge

k=1 ‖ek‖2
(10)

The exact location of the i-th synapse xij on the j-th edge is

then drawn from a continuous uniform distribution in the range
(0, 1).

2.2.6. Discretization and Solution
We use a first-order (vertex-centered) Finite Volume (FV)
scheme. This type of discretization method is well-suited for
any type of problem resulting from a conservation law. In a FV
scheme, one typically has a conservation formulation like the
following:

∂ρ

∂t
= −divEj on the domain �, (11)

where ρ is the density of a conserved quantity,Ej is a flux density of
the same quantity. In our case, ρ represents the charge density for
the voltage equation and the ionic concentration for the species
equations; the flux densities are given by the electric current
density and the ionic flux density, respectively. The conservation
equation is then transformed into a system of ordinary—i.e., non-
differential—equations by partitioning the domain on which the
equation holds into so-called control volumes (in our case, those
are exactly the compartments as defined above),

� =
⋃

i

�i,

then by integrating Equation (11) on each control volume (thus
ensuring local conservation)

∫

�i

∂ρ

∂t
dx =

∫

�i

−divEj dx






= −

∫

∂�i

Ej · Eni dS






∀i,
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and finally by assuming the unknown function to be part of some
finite-dimensional space (in our case: piecewise linear) in order to
be able to represent it by a finite number of unknowns which can
be used to express the integrals explicitly in a system of ordinary
equations,

ρ =
∑

k

λkρk,

where {ρk} are a known basis of the finite-dimensional function
space; while {λk} are the coefficients in the corresponding
representation of ρ and, at the same time, the unknowns of the
resulting system of equations.

Time discretization is achieved by an Euler scheme, backwards
with respect to axial fluxes and forward with respect to radial
fluxes. The latter treatment results in a step size requirement
for the time integration, the numerically well-known Courant-
Friedrichs-Lewy (CFL) condition (Courant et al., 1928). In this
particular case this condition states: The more trans-membrane
flux there is, the smaller the time step has to be chosen. If the
requirement is not met (i.e., if the time step size is chosen too big)
the solution will “explode,” meaning that it will tend to infinity
very rapidly. In order to prevent such instability, we calculate and
use an estimate for the allowed step size. Thus, our time step is
neither too big (“explosion”) nor too small (inefficiency).

Discretization is performed using the numerical framework
UG 4 (Vogel et al., 2013). It is written in C++ and simulations
can be set up and run using the widespread scripting language
Lua, which makes this framework easy to use without learning a
highly specialized language of its own.

Solution of the symmetric system of linear equations emerging
from the discretization is also done within the UG 4 framework.
The tree structure of neurons allows for an efficient usage (i.e.,
with linear runtime complexity in terms of the number of
unknowns) of a direct solver if the unknowns are numbered in
such a way that, in each line of the matrix, there is at most one
non-zero entry to the right of the diagonal. We use a Cuthill-
McKee (Cuthill and McKee, 1969) ordering to guarantee this.
We solve by calculating the LU decomposition in a sparse matrix
format.

2.2.7. Parallelization
As UG 4 comes with full MPI support for parallel calculations,
the inevitable usage of large-scale computer facilities for the
simulation of large networks is straight forward. Partitioning of
the domain can be performed using METIS 5.0 (Karypis and
Kumar, 1998) and can be achieved on two levels:

In large networks, whole neurons can be assigned to the
processors (as described for NEURON in Migliore et al., 2006),
resulting in an “embarrassing” parallelism, since there is no direct
coupling between the neurons if synaptic events triggered on the
presynaptic side in one time step are taken into account only in
the next time step on the postsynaptic side. If whole neurons can
be distributed in such a way that the processors’ workloads are
well balanced, this will be the preferred way of parallelizing, as
the solution of the problem works exactly like in the serial case
and communication is only needed at active synapses.

On a second parallelization level, it is also possible to
cut neurons and assign their parts to different processors.
The process of solving the system of equations is a little bit
more involved then. Assuming the system to be solved on a
processor is

Ax = b,

then the iterative solving process on each processor is defined by
the following pseudo-code:

x0 = solution from the precedent time step
d = d0 = b− Ax0 (“defect” vector)
while |d| < |d0| · reductionFactor on any processor do

c = A−1d (calculate correction)
Sum up (over all processors) the corrections in all cutting

points and store back in c.
x = x+ c (update solution)
d = b− Ax (update defect)

end while

In order for this to work, the process-wise matrices A need to
be stored “additively,” i.e., the entries of the global system matrix
must be equal to the sum of the corresponding entries in the
process-wise matrices (where existent).

It usually takes about five to fifteen iterations until
convergence is achieved, depending on how many neurons are
cut and at which locations. Of course, in the case where no
neuron is cut by the distribution of the network, the iteration
will converge in one step. The gain in computation time from
parallelizing on this level is not as big as from distributing whole
neurons, obviously—however, it can still provide some speedup
as it is not solving the system which takes the most time, but
setting it up in the first place.

2.3. Simulation Workflow
The efficiency of simulating large and complex systems in
neuroscience strongly depends on the scaling properties of
code on high performance computers (Section 2.2.7). Additional
aspects when looking at efficiency are the time invested for setting
up a model, the computational tools, compiling and visualizing
data and finally accessibility to an extendible code basis.

The simulation toolbox NeuroBox focusses on these aspects
by allowing users to compile visual or script-based workflows.
Workflows can define models, numerical tools and include third-
party tools, such as ImageJ (Schneider et al., 2012). The multi-
level design, founded on the multi-physics engine UG 4 (Vogel
et al., 2013) and the Visual Reflection Library (VRL, Hoffer et al.,
2013), allows non-experts intuitive access to advanced numerical
methods for solving anatomically detailed biophysical models.
NeuroBox is an open-source project hosted on github and thus is
conceived as a modular and extendible C++ framework, where
new biological components such as ion channels, receptors,
synapse types etc. can be added manually or through an NMODL
importer. This section briefly introduces script-based and visual
workflow design and examples of the extendibility of NeuroBox,
which as a platform is capable of hosting large multi-domain
workflows.
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2.3.1. Using Lua Scripts
The complete process of setting up and solving a problem
in parallel is handled internally by UG 4. In order to
use its functionality, we developed our code as a UG 4
plugin and compile against the UG 4 libraries. We register
our classes and functions at the UG 4 registry (this is
done in the C++ code) in order to make them available

at the Lua script level, where a simulation can then be
formulated using the registered functionality (in addition
to any valid Lua command; see Figure 4). A schematic
representation of what a typical simulation workflow
looks like is shown in Figure 5, an example script with
extensive comments is provided in Listing 1 in Supplementary
Material.

FIGURE 4 | Sketch of the NeuroBox framework, using an ion channel model as an example. Functionality of the channel is implemented in a C++ class

deriving from a pre-defined interface. The implementation can be automatically generated by conversion from NMODL model file. Registering the class at the UG 4

registry and compiling makes the channel available for usage in simulations defined either by a Lua script or by a graphical workflow representation using VRL-Studio.

FIGURE 5 | Illustration of the simulation workflow. After creation of a neuronal (network) morphology, the system of linear equations emerging from the cable

equation is assembled by the central class CableEquation; synapse handling (i.e., activation, calculation of fluxes, parallel coordination) is taken care of by the class

SynapseHandler, while all trans-membrane fluxes are handled by individual classes which all derive from a common interface known to the CableEquation

class. The system is solved using UG4 solvers and parallelism.
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2.3.2. Using Graphical Workflows
We take advantage of the open source software VRL-
Studio (Hoffer et al., 2013) to represent simulation workflows
graphically. Each class and function registered in the UG 4
registry can be represented in VRL-Studio. This allows any
user to put together a simulation by dragging and dropping
the graphical representations of involved objects (like instances
of the cable equation discretization, the channel and pump
mechanisms or the synapse handler) and adding application
of their methods with only a few clicks. Scripts are not
necessary but possible. The important aspect is that VRL-
Studio can combine textual and visual programming in a
single interactive development environment. For some aspects,
script-based development has many advantages. Therefore, VRL-
Studio provides access to the UG 4 APIs. Lua-scripts can
be integrated into the visual workflow. A Lua editor with
advanced autocompletion support allows for intuitive Lua-based
development. Even more important is the fact that VRL-Studio
workflows can integrate any Java library, such as ImageJ and
JFreeChart. Automatic GUI generation works for these external
libraries as well. Users can easily extend existing workflows with
customGroovy scripts, e.g., for pre- and post-processing. Custom
scripts are also available as graphical components. Using external
libraries in custom scripts is a powerful tool for adding domain-
specific knowledge to the NeuroBox platform.

Typically the following steps can be followed to set up a
new NeuroBox workflow (a screenshot of a simple graphical
simulation workflow created in this way is depicted in
Figure 6):

1. The first step is the definition of the computational
domain (the neuronal morphology) and the unknown

functions (membrane potential, ion concentrations) to
be computed. This is done by adding an instance of
DomainAndFunctionDefinition to the canvas and
selecting the grid file as well as names for the unknown
functions and subsets of the domain they are supposed to be
defined on (subsets defined in the geometry file can be chosen
from a list).

2. The following step in the workflow is the definition of all
membrane transport mechanisms (channels and pumps) as
well as a synapse handler (if any synapses are present in the
domain). All of them may be drag-and-dropped onto the
canvas and then parameterized as needed.

3. An instance of the central CableEquation class is added
to the canvas. All defined membrane transport mechanisms
as well as the synapse handler (if applicable) need to be
connected by (gray) data connections. Initial conditions need
to be supplied.

4. A solver is added to the canvas. The time stepping parameters
need to be set as required. Output options can be specified.

5. Workflow connections (yellow) are drawn establishing the
unique order in which the objects are created and their
methods called. Any object receiving data input from another
object needs to be behind that object in the workflow, i.e., the
objects need to be in the order indicated by the enumeration
here.

6. The simulation may be started, output can be observed in the
log window, recorded and visualized.

2.3.3. Adding Functionality
As there is an abundance of membrane transport mechanisms
and even more models trying to describe them, it is hardly

FIGURE 6 | Screenshot of a simple network simulation workflow assembled in VRL-Studio. Each window represents an object, the named panels in the

window represent a method call with the contents of the panel as parameters. The control flow is defined by the yellow connections, data transfer between objects is

marked by gray connections.
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possible to implement all of them in advance. In order to support
a large pool of available models, we wrote a file converter that
will produce C++ code suitable to be compiled with our UG
4 implementation from any model file conforming to Neuron’s
NMODL description language (Hines and Carnevale, 2000). Of
course, membrane transport models can also be implemented
directly on the C++ level, implementing the required methods
of a pre-defined interface class. This requires writing code for
the initialization and updating (typically: evolving some kind
of gating variables, expressed in terms of ordinary differential
equations) of a model as well as code for the computation of the
ion and charge flux through the membrane effectuated by the
model. After registration of a new model at the UG 4 registry
and compilation of the corresponding code, the model can be
used on the Lua script level or on the graphical workflow level
in VRL-Studio. The whole process is depicted schematically in
Figure 4.

2.4. Setups for Our Simulations
2.4.1. Synapse Loss Simulations
We conducted in silico experiments investigating the impact of
synapse loss in various activation patterns, particularly focussing
on the effects it has on the formation of action potentials and the
somatic calcium signal. For the simulations we chose a layer 3
pyramidal cell from the rat neocortex reconstructed by Radman
et al. (2009), which was well suited to serve as reference cell
for further studies as its reconstruction comprised the complete
description of soma, dendrites and axon. The corresponding
neuronal morphology is publicly available in the SWC file format
as part of the NeuroMorpho.org database (Ascoli et al., 2007)
under the name 13-L3pyr-77. It was converted to the UGX
file format to meet UG 4 format specifications.

Subject to the discrete probability distribution specified in
section 2.2.5, N = 100 distributions of nsyn = 1000 synapses
each were drawn from the sample space Sedge defined in (9). We
simulated synapse loss by successively removing portions of the
previously created synapses uniformly from the neuron.

Regarding synapse activity we used a maximal conductance
of gmax = 1.2 nS and a constant rise/decay time of τ = 0.4ms
representing a fast AMPA receptor channel parameterization
(Gabbiani et al., 1994) throughout the simulations.We compared
three levels of input pattern synchrony, namely: complete
synchrony (σonset = 0), moderate asynchrony (σonset = 5ms),
and high asynchrony (σonset = 10ms).

A fraction of 0.2–4% of the current through AMPA receptor
channels is carried by calcium ions, depending mainly on the
exact AMPA subtype (Burnashev et al., 1995; Garaschuk et al.,
1996). As we did not consider calcium buffer (calmodulin,
calbindin) reactions in our simulations, we reduced this
amount to 0.1% in order to (roughly) represent fast binding
of free calcium to these buffers. Calcium dynamics were
also regulated by N-type voltage-dependent calcium channels
modeled according to Borg-Graham (1999) and NCX and PMCA
pump mechanisms (first-order, second-order Hill-type model,
resp.). A leakage term was added to ensure zero-flux for the
equilibrium state.

2.4.2. Network Simulations
For the simulations in Section 3.2.2, we used NeuGen to create
five neocortex geometries composed of 3500 L2/3 pyramidal;
3500 L4 spiny stellate; 1500 L5A and L5B pyramidal cells each
whose somata were contained in a box with extensions of
about 0.5mm × 0.5mm × 1mm (length × width × depth),
resulting in a cell density which is of the same order of
magnitude as reported by Rockel et al. (1980). In each of the
five geometries, NeuGen distributed an average of 30 primary
synapses per L4 spiny stellate cell and an average of 25 per L5B
pyramidal (cf. Constantinople and Bruno, 2013) for thalamic
input. Interconnecting synapses were created wherever axon and
dendrite from compatible neuron types came close enough, with
the critical distance dist_synapse (cf. Section 2.1) being
1 µm for the first network, 2 µm for the second and so on. The
numbers of synapses thus created show a cubical dependence on
the critical creation distance (cf.Table 2), which is to be expected,
as the sphere around any dendritic point within which axonal
points eligible for connection through a synapse are located
grows cubically in volume with increasing radius.

Axonal, dendritic and somatic membranes contained classical
Hodgkin-Huxley-type sodium and potassium channels. Their
flux density is described by

ihh = c(T)
(

gKn
4(V − EK)+ gNam

3h ( V − ENa)
)

, (12)

∂n

∂t
= c(T) (αn (V) (1− n) − βn (V) n) , (13)

∂m

∂t
= c(T) (αm (V) (1−m) − βm (V)m) , (14)

∂h

∂t
= c(T)

(

αh (V)
(

1− h
)

− βh (V) h
)

, (15)

where c(T) is a temperature-dependent constant with a value
of about 3.2 at 37 ◦C (roughly taken from Collins and Rojas,
1982; Tiwari and Sikdar, 1999); gK , gNa are (location-specific)
conductance constants; EK and ENa Nernst potentials; and the
rate functions α and β are taken from the original Hodgkin and
Huxley publication (Hodgkin and Huxley, 1952).

We used a leakage flux density to achieve zero net flux at
resting potential:

il = c(T) gl (V − El) , (16)

where gl is the leakage flux conductance and El an (artificial)
reversal potential calibrated to ensure zero membrane net flux at
resting potential.

TABLE 2 | Number of synapses connecting specific cell types for various

critical creation distances dist_synapse (averaged w.r.t. postsynaptic

cell type) in the 10,000 cell networks created by NeuGen.

Synapse creation distance [µm] 1 2 3 4 5

L4 → L2/3 7.5 59 200 474 926

L4 → L5A 2.7 22 74 173 338

L2/3 → L5A 1.4 11 39 92 179

L2/3 → L5B 1.2 9.5 33 77 150

L2/3 → L2/3 0.48 3.8 13 30 58
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TABLE 3 | Base synaptic conductance values for connections between

different types in units of nS.

Synaptic type: pre- \post- L2/3 pyr. L4 stell. L5A pyr. L5B pyr.

L2/3 pyr. 1.0 – 0.8 0.3

L4 stell. 0.7 1.6 0.6 –

L5A pyr. 0.5 – 2.0 –

L5B pyr. – – – 1.3

Connections that are not created by NeuGen are marked by a dash.

For initialization, the membrane potential was set to
the resting potential of −0.065V globally, voltage-dependent
potassium and sodium channels were also set to their resting
states. At the beginning of the simulation, thalamic input
synapses were activated using an alpha function [cf. Equation
(3)] with tonset, τ drawn from normal distributions with
(µonset, σonset) = (5ms, 2.5ms), (µτ , στ ) = (2.5ms, 0.1ms),
respectively, and gmax = 1.2 nS.

Synapses between cells of the network were exclusively
excitatory glutamatergic in nature and modeled as described in
Section 2.2.3 using a parameterization which represents a fast
AMPA receptor channel (Gabbiani et al., 1994). The maximal
conductance parameter of synapse S with a presynaptic neuron
of type T1 and a postsynaptic neuron of type T2 is calculated by
NeuGen according to the formula

gmax (S) =
(

1+ 0.001 · dsd(S)
)

· gs (T1,T2) , (17)

with dsd(S) being the post-synapse’s distance to the soma in
µm; and a type-specific base conductance the values of which
are summed up in Table 3. All other synaptic parameters were
the same for each synapse. No delay through neuro-transmitter
release and diffusion was considered.

All parameter values for the network simulations are summed
up in Table 4.

Simulations were performed on 160 processors for a
simulated time period of 20ms and took about two hours.
Parallel scaling results for this type of problem are presented
in Section 3.2.1.

3. RESULTS

3.1. Influence of Synapse Loss on
Formation of Action Potentials and
Somatic Calcium Signal
The human brain is one of the most complex structures
known in the universe. It consists of nearly 100 billion nerve
cells, each of which is entangled in a dense and constantly
adapting network of massive information exchange. On average,
a single neuron is linked with 10,000 to 100,000 other
neuronal or non-neuronal cells via synapses (Cragg, 1975). Brain
function relies essentially on those highly dynamic synaptic
connections.

In this part of our study, we investigate the three-dimensional
spatial distribution and activity pattern in time of glutamatergic

TABLE 4 | Parameters for the large-scale network simulation.

Parameter Meaning Value Unit

rc Specific resistance of the cytosol 1.5 � m

cm Specific capacitance of the membrane 1 × 10−2 F m−2

ga
K

Specific potassium channel

conductance of the axonal membrane

4 × 102 S m−2

gs
K

Specific potassium channel

conductance of the somatic

membrane

2 × 102 S m−2

gd
K

Specific potassium channel

conductance of the dendritic

membrane

3 × 101 S m−2

gaNa Specific sodium channel conductance

of the axonal membrane

3 × 104 S m−2

gsNa Specific sodium channel conductance

of the somatic membrane

1.5 × 103 S m−2

gdNa Specific sodium channel conductance

of the dendritic membrane

4 × 101 S m−2

ga
l

Specific leak conductance of the

axonal membrane

2 × 102 S m−2

gs
l

Specific leak conductance of the

somatic membrane

1 S m−2

gd
l

Specific leak conductance of the

dendritic membrane

1 S m−2

EK Potassium Nernst potential −0.09 V

ENa Sodium Nernst potential 0.06 V

Ea
l

Leak reversal potential of the axonal

membrane

−0.066148458 V

Es
l

Leak reversal potential of the somatic

membrane

−0.030654022 V

Ed
l

Leak reversal potential of the dendritic

membrane

−0.057803624 V

Vr Resting potential (global) −0.065 V

c(T ) Temperature factor for HH channel

activity

3.21

τ1 Time constant in interconnecting

synapses

2 × 10−4 s

τ2 Time constant in interconnecting

synapses

1.7 × 10−3 s

Erev Reversal potential for interconnecting

synapse influx

0 V

Vth Threshold potential for interconnecting

synapse activation

−0.01 V

synapses in neurons of the cerebral cortex. Both are key factors
to the integrative properties of the cell. For this purpose, we
have developed a tool for automatic placement of synaptic
functionality onto neuron morphologies. We apply this tool to
systematically assess the impact of activation patterns on the
signal processing in single neurons. In particular, we perform
in silico experiments where we successively knock out synapses
at dendritic locations. We thus investigate situations where
synapse loss contributes to pathological states e.g., Alzheimer’s
disease (Scheff et al., 2006). At the same time, we address the
question under which circumstances the neuron will sustain
its integrative capability. More precisely, how does impulse
conductance and especially the initiation of action potentials at
the axon hillock depend on the number of input synapses and
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their signal synchrony? Does a higher input signal synchrony
sustain action potential initiation during increasing synapse loss?
The degree of synchrony is defined by the size of the standard
deviation from a given mean value. In our experiments, we
vary the standard deviation of the start time σonset of synaptic
excitations.

In the following sections, we present the results of a series
of in silico experiments on a layer 3 pyramidal cell from the rat
neocortex (cf. Section 2.4.1), in which we compare three levels of
input pattern synchrony, namely: complete synchrony (σonset =
0), moderate asynchrony (σonset = 5ms), and high asynchrony
(σonset = 10ms). We randomly distributed 1000 excitatory
synapses on the geometry in 100 sample configurations. In each
of these 100 configurations, we gradually increased synapse loss
and analyzed the neuron’s capability of creating action potentials,
and at the same time, recorded corresponding calcium levels
within the soma.

3.1.1. Generation of Action Potentials
Both moderate (µonset = 15ms, σonset = 5ms) and high
(µonset = 30ms, σonset = 10ms) asynchrony cases show a
strong action potential spike train response to the initial synapse
distribution. The number of spikes ranges from two to three in
the moderate asynchrony case and from one to three in the high
asynchrony case (Figure 7). The synchronous setup, however,
produced exactly one action potential for the initial distribution
of 1000 synapses in all samples. Only the cation influx at new
synapses perpetually being active in the asynchronous cases
can induce the repetitive spiking, while cation influx through
all synapses is completely compensated by potassium efflux
during hyper-polarization in the synchronous case. The number
of action potentials decreased with increasing synapse loss in
both asynchronous cases until complete signal breakdown (in
at least 90 % of the sample patterns) at 75% synapse loss in
the moderately and at 60% in the highly asynchronous case. In
contrast, synchronous activation patterns sustained generation of

an action potential up to a loss of about 97.7% (corresponding to
23 synapses).

3.1.2. Calcium Signaling
In all setups, synchronous as well as asynchronous, calcium
levels at the soma exclusively depend on whether or not
an action potential is elicited. We see step increases in the
calcium concentration with every action potential. Calcium
diffusion, however, is only able to transport calcium within
a very local vicinity of its original point of entry at active
synapses. After termination of electrical signaling, calcium levels
exponentially decay to equilibrium levels due to the activity of
NCX and PMCA pumps. This shows a direct correspondence
between synapse loss and somatic calcium levels through the
number of action potentials elicited in a neuron. Sample
evolution of membrane potential and calcium concentration
at the soma (from the moderately asynchronous setting)
for various levels of excitatory synapse loss are depicted in
Figure 8.

3.2. Large-Scale Network Simulations with
Detailed Anatomy
3.2.1. Parallel Scaling
In order to test the parallel scaling properties of our
network simulation implementation, we created six neocortical
geometries containing 320, 640, 1280, 2560, 5120, and 10,240
neurons, respectively. The average number of compartments per
neuron in the six geometries ranged from 574 to 586. We defined
a random thalamic activation pattern, where synapse activation
times and durations for the thalamic input synapses created
by NeuGen were drawn from the same normal distribution for
all geometries. We then performed one thousand time steps
using 32, 64, 128, 256, 512, and 1024 processors of the Jülich
supercomputer JUQUEEN on the geometries, respectively—thus
in each simulation, a processor would be assigned approximately
the same amount of work (“weak scaling”). We profiled the

A B

FIGURE 7 | (A) Number of evoked action potentials in simulations of a layer 3 pyramidal neuron upon synaptic activation at varying levels of synapse loss.

Experiments on N = 100 sample distributions of synapses with initiation of synaptic activity drawn from a normal distribution N

(

3σonset, σ
2
onset

)

in units of ms.

Square, circle and triangle symbols represent mean values, vertical bars show standard deviations. (B) Synapse input synchrony counteracts synapse loss. The y-axis

indicates the percentage of simulated cells that evoked at least one action potential upon synaptic activity in the three examined levels of synchrony

(σonset ∈ {45ms, 15ms, 0ms}) at three different levels of synapse loss.
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execution of the program to obtain the amount of time spent
in the main components of the simulation. Table 5 shows the
results. Leaving out the loading of the geometry into memory and
its distribution to the involved processors (both are inherently
serial), we achieve good scaling. The times spent for preparing
the channel mechanisms and synapses before a time step, for
assembling, for factorizing the matrix and applying the inverse
remain approximately constant. As a typical network simulation
will have more than 1000 time steps, the loading and distribution
of the domain (which is only performed once, i.e., at the start
of the parallel simulation) will have much less of an impact
on scaling behavior than in this particular study. We thus

demonstrated that our code is suitable to be used efficiently for
simulations of large-scale networks of neurons.

3.2.2. Network Connectivity Affects Network Activity
When a neuronal network is created by NeuGen, synapses
connect presynaptic axons to postsynaptic dendrites (if the
involved neuron types allow this) where axon and dendrite are
sufficiently close to each other (cf.Wolf et al., 2013). Themaximal
distance dist_synapse for which synapses are placed can be
chosen by the user. This criterion, albeit not representative of
an actual model of synaptogenesis (NeuGen does not reproduce
neuronal growth, but only a fully grown state), might be

FIGURE 8 | Courses of the membrane potential in mV (row 1) and calcium concentrations in mM (row 2) measured at the soma. 400 (column 1), 300

(column 2), 200 (column 3) synaptic inputs asynchronously activated at µonset = 15ms with standard deviation σonset = 5ms.

TABLE 5 | Weak parallel scaling results obtained by code profiling.

Problem size (#neurons) 320 640 1280 2560 5120 10240

#Processors 32 × 64 × 128 × 256 × 512 × 1024

Loading domain 12.8 2.08 26.6 2.03 54.1 2.09 113 2.17 246 2.29 562

Domain distribution 4.89 2.12 10.4 2.06 21.4 2.11 45.3 2.10 95.0 2.07 197

Determining step size 42.0 1.03 43.5 1.02 44.2 0.98 43.4 1.00 43.4 1.02 44.1

Preparing time step 52.9 1.01 53.5 0.99 53.2 1.02 54.2 1.02 55.5 1.13 62.5

Assembling system 325 1.02 330 1.03 338 0.97 329 0.99 327 1.02 333

Applying solver 24.0 1.03 24.8 1.01 25.0 0.94 23.4 1.04 24.3 0.92 22.3

Rest 6.41 1.90 12.2 0.33 4.00 2.18 8.7 2.05 17.8 1.13 20.1

Total time 468 1.07 501 1.08 540 1.14 617 1.31 809 1.54 1241

Total w/o load & distribute 450 1.03 464 1.00 465 0.99 458 1.02 468 1.03 483

Timings show almost ideal scaling for setting up the system of equations as well as solving it. Loading and distributing the domain to the involved processors is inherently serial as it is

done by a single processor in every simulation—however, the time percentage of the two tasks is much lower in typical simulations as they run much longer and loading and distributing

is only performed once at the beginning. The remaining variance of the simulation runs is mainly due to differences in the quality of domain distribution. All time values in units of seconds.
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considered as a parameterization of the agility of filopodia and
growth cones during synaptogenesis (Munno and Syed, 2003). In
any case, it has a direct effect on the connectivity properties of the
network.

We conducted simulations on five neocortical networks, each
composed of the same 10,000 neurons, but with the connection
distance ranging from 1 µm to 5 µm in steps of 1 µm. This
resulted in networks with increasing numbers of synapses and
connected neurons (Table 3). As previously described inWanner
(2007), we initialized network activity by depolarizing L4 spiny
stellate cells via primary thalamic input synapses, activity then
spread out through the cortical layers due to interconnecting
synapses. Analysis of the time courses of the membrane potential
at the somata in conjunction with activity data from the
interconnecting synpases (Figure 9) reveals significant impact of
the connectedness on the overall qualitative (and quantitative)
behavior following the same thalamic input pattern in all five
simulations.

In the least connected network, the number of synapses
connecting thalamically activated L4 spiny stellate cells to L2/3

pyramidal cells (only 7.5 per L2/3 pyramidal cell on average) does
not suffice to lead to the depolarization of a single L2/3 cell in the
network. Obviously, this means there can be no active synapses
connecting L2/3 to L5A and although there are also synapses
connecting L4 to L5A directly, there is no activity in L5A, either.
While in the network next in synapse number, considerable
depolarization of layer 2/3 pyramidal neuron somata manifests
itself due to 7.5-fold increase in average number of active
synapses from L4 to L2/3, there is still practically no signal in
L5A. Only in the networks created with synapse creation distance
parameters ≥ 3 µm are action potentials elicited at the somata of
L5A. The same networks exhibit the formation of a second action
potential in some of the initially activated L2/3 somata, the two
most connected networks also show the occurrence of a second
action potential in some of the L5A cells. These second action
potentials are the combined effect of (i) charge from previous
synaptic inputs that has not yet been cleared and (ii) additional
influx at the re-activated synapses. It is noteworthy that somatic
activity in both L2/3 and L5A pyramidal cells peaks higher (L2/3:
0.0, 0.56, 0.84, 0.87, 0.87; L5A: 0.0, 0.0, 0.39, 0.78, 0.87) and earlier

FIGURE 9 | Simulation results for networks of 10,000 neurons. The columns contain time plots for networks created with a synapse creation distance of 2 µm,

3 µm, 4 µm (FLTR), respectively. Row 1: Relative number of active somata, i.e., V ≥ −45mV, in different levels (L2/3 red, L4 green, L5A blue, L5B orange). Row 2:

Number of active synapses at L2/3 pyramidal neurons originating from different levels (L2/3 red, L4 green). Row 3: Number of active synapses at L5A pyramidal

neurons originating from different levels (L2/3 red, L4 green, L5A blue). Initial activation of L4 spiny stellate and L5B pyramidal cells by the same thalamic input pattern

in all simulations.
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FIGURE 10 | Signal propagation through a neocortical slice of 10,000 neurons. Only somata are visualized. Primary excitation of L4 spiny stellate cells (left) is

followed by activation of somata of L2/3 pyramidal cells (middle), before the signal propagates to pyramidal neurons of layer 5A (right). Note how the depolarization of

somata expands through layers 2/3 and 5A like a wavefront indicating increased signal run time to neurons more remote with respect to the signal origin.

(L2/3: –, 8.8ms, 7.9ms, 7.6ms, 7.6ms; L5A: –, –, 11.4ms, 10.2ms,
9.7ms) the more synaptic connections there are in the respective
cortical layers.

Explicit influence of spatial extensions of the neural network
can be identified in Figure 10: Somatic depolarization and
hyperpolarization expands through the layers of L2/3 and L5A
pyramidal cells like a wave, activating the neurons in the order
imposed by the distance to the respective origin of that activation.

4. DISCUSSION

In this paper we presented studies of electrical and biochemical
signals in single cells and networks to investigate the interplay
between synapse loss and signaling synchrony. Amajor focus was
the anatomically realistic representation of cells and networks, for
which a novel simulation toolbox NeuroBox was developed.

The synapse distribution studies on the layer 3 pyramidal cell
from the rat neocortex show a significant impact of the activation
pattern (in space and time) on the signal conductance capabilities
of the cell. Two effects are apparent: (1) The more asynchronous
the input signals are, the more spikes can be generated by this
input—up to a point where the asynchrony begins to affect the
likelihood of generating a single spike. (2) Themore synchronous
input signals are, the higher the cell’s resilience is to synapse loss
with regard to its capability of generating action potentials in
response to synaptic input.

In the context of the study of synaptic input patterns, we
also conducted simulations of calcium dynamics, including
Ca2+ influx through synaptic AMPA-R channels as well
as voltage-dependent calcium channels, NCX and PMCA
pump mechanisms distributed throughout the membranes of
dendrites and soma. Results showed that the somatic calcium
concentration, key factor in the control of gene expression
(Hardingham et al., 1997) and thus development and survival
of cells, is directly coupled to the number of action potentials
initiated in the cell, each action potential leading to a step
increase in calcium levels. However, we neglected effects of
internal calcium stores and also correct consideration of calcium
buffers here. Especially the large amounts of calcium releasable
through ryanodine and IP3 receptor channels in the membrane
of the endoplasmic reticulum need to be taken into account in a
detailed three-dimensional simulation in order to achieve a more
accurate description of calcium signaling, possibly including
calcium waves (cf. Berridge, 1998, among others). A method
of coupling the one-dimensional simulation of the membrane
potential to a detailed three-dimensional simulation of calcium
signals has previously been developed by the authors (Grein et al.,
2014) and may be applied here.

Using NeuGen for the generation of a neocortical column, we
have shown that our implementation of a compartment model
for the cable equation and trans-membrane current mechanisms
in neural networks is adequate for large-scale applications and
scales well with the number of neurons involved. It is reasonable
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to assume that simulations on even larger neural networks can
successfully and efficiently be conducted on high-performance
computers with the help of our implementation.

The neural network simulations we performed were very basic
in nature. We only considered four of the diverse neuron types
present in the neocortex. Unlike (e.g., Anderson et al., 2007;
Vierling-Claassen et al., 2010; Neymotin et al., 2011), we did not
take into account inhibitory synapses and their role in regulating
cortical signal processing. Unlike the three aforementioned
contributions, however, we created neural networks whose
spatial resolution—about 500 compartments per neuron in our
simulations as compared to 3, 16 and 1 in theirs—allowed
for a realistic spatial positioning of synapses. We utilized the
simple (yet not unreasonable) distance rule of NeuGen to create
synapses instead of putting experimental projection data (as
extensively reviewed for excitatory neurons by Feldmeyer, 2012)
to good use. Incorporation of experimental findings into the
existing framework, however, is not difficult. The addition of
inhibitory synapses, for instance, is merely a question of re-
parameterization in a preprocessing step. All that considered, our
network simulations make it possible to examine the impact of
intra- and trans-laminar synaptic connections on each level and
can therefore serve as a valuable tool to decipher the functional
role of detailed anatomy in cortical information processing.

With a focus on accessible workflow control that includes
high-performance numerical methods, a modular neuroscientific
repository and the option of including third-party tools, we
developed the toolbox NeuroBox and used it to perform all
simulations in this paper. NeuroBox is an open source project
hosted on github with the intent to offer its full functional
scope to a broad community. Visual workflow design and
control through VRL-Studio makes NeuroBox projects easy to
use and share with experts and non-experts alike. This feature
is highly beneficial for rapid prototyping and offers an efficient
pathway from in silico experiment design to full implementation
thereof.

The possibility to integrate third-party tools, such as
ImageJ, anatomical reconstructions (e.g., neuromorpho.org)
and the automated import of NMODL models, integrates
NeuroBox ideally into ongoing endeavors in the computational
neuroscience field. Due to the modular design, this toolbox
is easily extendible through various pathways discussed in

Section 2 and thus can growwith continued research. As problem
sizes typically increase alongside growing high-performance
computing power, NeuroBox was built with links to UG 4, a
general purpose package for solving partial differential equations.
Advanced numerical methods with time and space adaptivity,
error estimation and parallel communication layer advance the
possibilities for solving anatomically realistic large-scale network
problems.
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