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SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale

spiking neural networks at speeds close to biological real-time. Rather than using

bespoke analog or digital hardware, the basic computational unit of a SpiNNaker system

is a general-purpose ARM processor, allowing it to be programmed to simulate a wide

variety of neuron and synapse models. This flexibility is particularly valuable in the study of

biological plasticity phenomena. A recently proposed learning rule based on the Bayesian

Confidence Propagation Neural Network (BCPNN) paradigm offers a generic framework

for modeling the interaction of different plasticity mechanisms using spiking neurons.

However, it can be computationally expensive to simulate large networks with BCPNN

learning since it requires multiple state variables for each synapse, each of which needs

to be updated every simulation time-step. We discuss the trade-offs in efficiency and

accuracy involved in developing an event-based BCPNN implementation for SpiNNaker

based on an analytical solution to the BCPNN equations, and detail the steps taken

to fit this within the limited computational and memory resources of the SpiNNaker

architecture. We demonstrate this learning rule by learning temporal sequences of neural

activity within a recurrent attractor network which we simulate at scales of up to 2.0× 104

neurons and 5.1 107× plastic synapses: the largest plastic neural network ever to

be simulated on neuromorphic hardware. We also run a comparable simulation on a

Cray XC-30 supercomputer system and find that, if it is to match the run-time of our

SpiNNaker simulation, the super computer system uses approximately 45×more power.

This suggests that cheaper, more power efficient neuromorphic systems are becoming

useful discovery tools in the study of plasticity in large-scale brain models.

Keywords: SpiNNaker, learning, plasticity, digital neuromorphic hardware, Bayesian confidence propagation

neural network (BCPNN), event-driven simulation, fixed-point accuracy
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1. INTRODUCTION

Motor, sensory and memory tasks are composed of sequential
elements and are therefore thought to rely upon the generation
of temporal sequences of neural activity (Abeles et al., 1995;
Seidemann et al., 1996; Jones et al., 2007). However it
remains a major challenge to learn such functionally meaningful
dynamics within large-scale models using biologically plausible
synaptic and neural plasticity mechanisms. Using SpiNNaker,
a neuromorphic hardware platform for simulating large-scale
spiking neural networks, and BCPNN, a plasticity model based
on Bayesian inference, we demonstrate how temporal sequence
learning could be achieved through modification of recurrent
cortical connectivity and intrinsic excitability in an attractor
memory network.

Spike-Timing-Dependent Plasticity (Bi and Poo,
1998) (STDP) inherently reinforces temporal causality which
has made it a popular choice for modeling temporal sequence
learning (Dan and Poo, 2004; Caporale and Dan, 2008; Markram
et al., 2011). However, to date, all large-scale neural simulations
using STDP (Morrison et al., 2007; Kunkel et al., 2011) have been
run on large cluster machines or supercomputers, both of which
consume many orders of magnitude more power than the few
watts required by the human brain. Mead (1990) suggested that
the solution to this huge gap in power efficiency was to develop
an entirely new breed of “neuromorphic” computer architectures
inspired by the brain. Over the proceeding years, a number of
these neuromorphic architectures have been built with the aim
of reducing the power consumption and execution time of large
neural simulations.

Large-scale neuromorphic systems have been constructed
using a number of approaches: NeuroGrid (Benjamin et al.,
2014) and BrainScaleS (Schemmel et al., 2010) are built using
custom analog hardware; True North (Merolla et al., 2014) is
built using custom digital hardware and SpiNNaker (Furber
et al., 2014) is built from software programmable ARM
processors.

Neuromorphic architectures based around custom hardware,
especially the type of sub-threshold analog systems which Mead
(1990) proposed, have huge potential to enable truly low-power
neural simulation, but inevitably the act of casting algorithms
into hardware requires some restrictions to be accepted in
terms of connectivity, learning rules, and control over parameter
values. As an example of these restrictions, of the large-
scale systems previously mentioned, only BrainScaleS supports
synaptic plasticity in any form implementing both short-term
plasticity and pair-based STDP using a dedicated mixed-mode
circuit.

As a software programmable system, SpiNNaker will require
more power than a custom hardware based system to simulate
a model of a given size (Stromatias et al., 2013). However
this software programmability gives SpiNNaker considerable
flexibility in terms of the connectivity, learning rules, and ranges
of parameter values that it can support. The neurons and
synapses which make up a model can be freely distributed
between the cores of a SpiNNaker system until they fit within
memory; and the CPU and communication overheads taken

in advancing the simulation can be handled within a single
simulation time step.

This flexibility has allowed the SpiNNaker system to be used
for the simulation of large-scale cortical models with up to
5.0× 104 neurons and 5.0× 107 synapses (Sharp et al., 2012,
2014); and various forms of synaptic plasticity (Jin et al., 2010;
Diehl and Cook, 2014; Galluppi et al., 2015; Lagorce et al.,
2015). In the most recent of these papers, Galluppi et al.
(2015) and Lagorce et al. (2015) demonstrated that Sheik et al.’s
(2012) model of the learning of temporal sequences from audio
data can be implemented on SpiNNaker using a voltage-gated
STDP rule. However, this model only uses a small number
of neurons and Kunkel et al.’s (2011) analysis suggests that
STDP alone cannot maintain the multiple, interconnected stable
attractors that would allow spatio-temporal sequences to be
learnt within more realistic, larger networks. This conclusion
adds to growing criticism of simple STDP rules regarding their
failure to generalize over experimental observations (see e.g.,
Lisman and Spruston, 2005, 2010; Feldman, 2012 for reviews).

We address some of these issues by implementing spike-based
BCPNN (Tully et al., 2014)—an alternative to phenomenological
plasticity rules which exhibits a diverse range of mechanisms
including Hebbian, neuromodulated, and intrinsic plasticity—
all of which emerge from a network-level model of probabilistic
inference (Lansner and Ekeberg, 1989; Lansner and Holst, 1996).
BCPNN can translate correlations at different timescales into
connectivity patterns through the use of locally stored synaptic
traces, enabling a functionally powerful framework to study
the relationship between structure and function within cortical
circuits. In Sections 2.1–2.3, we describe how this learning rule
can be combined with a simple point neuron model as the
basis of a simplified version of Lundqvist et al.’s (2006) cortical
attractor memory model. In Sections 2.4, 2.5, we then describe
how this model can be simulated efficiently on SpiNNaker
using an approach based on a recently proposed event-driven
implementation of BCPNN (Vogginger et al., 2015). We then
compare the accuracy of our new BCPNN implementation with
previous non-spiking implementations (Sandberg et al., 2002)
and demonstrate how the attractor memory network can be
used to learn and replay spatio-temporal sequences (Abbott
and Blum, 1996). Finally, in Section 3.3, we show how an
anticipatory response to this replay behavior can be decoded from
the neurons’ sub-threshold behavior which can in turn be used to
infer network connectivity.

2. MATERIALS AND METHODS

2.1. Simplified Cortical Microcircuit
Architecture
We constructed a network using connectivity based on a
previously proposed cortical microcircuit model (Lundqvist
et al., 2006) and inspired by the columnar structure of
neocortex (Mountcastle, 1997). The network consists of NHC

hypercolumns arranged in a grid where each hypercolumn
consists of 250 inhibitory basket cells and 1000 excitatory
pyramidal cells evenly divided into 10 minicolumns. Within
each hypercolumn, the pyramidal cells send AMPA-mediated
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connections to the basket cells with a connection probability
of 10% and a weight of 0.4 nA (defined as a postsynaptic
current (PSC) amplitude). The basket cells then send GABAergic
connections back to the pyramidal cells with a connection
probability of 10% and a weight of 2 nA. The basket cells
are also recurrently connected through GABAergic connections,
again with a connection probability of 10% and a connection
weight of 2 nA. The functional outcome of this local connectivity
(excitatory to inhibitory and vice versa) is to enable winner-
take-all (WTA) dynamics within each hypercolumn. While the
strength of the local synapses remains fixed, all pyramidal cells
in the network are also recurrently connected to each other
through global AMPA and NMDA connections using plastic
BCPNN synapses (see Section 2.2): also with a connection
probability of 10%. All connections in the network have distance-
dependent synaptic delays such that, between two cells located

in hypercolumns H
pre
xy and H

post
xy , the delay is calculated based

on the Euclidean distance between the grid coordinates of the
hypercolumns (meaning that all local connections have delays
of 1ms):

t
H
pre
xy H

post
xy

d
=

dnorm

√

(

H
post
x −H

pre
x

)2
+

(

H
post
y −H

pre
y

)2

V
+ 1

(1)

Where conduction velocity V = 0.2mmms−1 and dnorm =
0.75mm.

2.2. Synaptic and Intrinsic Plasticity Model
The spike-based BCPNN learning rule is used to learn the
strengths of all global synaptic connections and the intrinsic
excitabilities of all pyramidal cells in the network described in
Section 2.1. The goal of the learning process is to estimate
the probabilities of pre- and postsynaptic neurons firing (Pi
and Pj respectively), along with the probability of them firing
together (Pij). Then, as Lansner and Holst (1996) describe, these
probabilities can be used to calculate the synaptic strengths and
intrinsic excitabilities of the network allowing it to perform
Bayesian inference. Tully et al. (2014) developed an approach
for estimating these probabilities based on pre- and postsynaptic
spike trains (Si and Sj respectively), defined as summed Dirac

delta functions δ(·) where t
f
i,j represent the times of spikes:

Si(t) =
∑

t
f
i

δ(t − t
f
i ) Sj(t) =

∑

t
f
j

δ(t − t
f
j ) (2)

These spike trains are then smoothed using exponentially
weighted moving averages to calculate the Z traces:

τzi
dZi

dt
=

Si

fmax1t
− Zi τzj

dZj

dt
=

Sj

fmax1t
− Zj (3)

Here, the maximum allowed firing rate fmax and spike duration
1t = 1ms combine with the lowest attainable probability
estimate ǫ = 1000

fmaxτp
introduced in Equation (5) to maintain a

linear mapping from neuronal spike rates to probabilities. For
more details on the Bayesian transformation entailed by these
equations, see Tully et al. (2014). The Z trace time constants τzi
and τzj determine the time scale over which correlations can be

detected and are inspired by fast biological processes such as Ca2+

influx via NMDA receptors or voltage-gated Ca2+ channels. The
Z traces are then fed into the P traces, where a coactivity term is
introduced:

τp
dPi

dt
= Zi − Pi τp

dPij

dt
= ZiZj − Pij τp

dPj

dt
= Zj − Pj (4)

The P trace time constant τp models long-term memory storage
events such as gene expression or protein synthesis. It can be set
higher to more realistically match these slow processes, but since
simulation time increases with higher τp values, in this work we
keep them just long enough to preserve the relevant dynamics.
Estimated levels of activity in the P traces are then combined to
compute a postsynaptic bias membrane current Iβj and synaptic
weight between pre- and postsynaptic neurons wij:

Iβj = βgain log(Pj + ǫ) wij = w
syn
gain log

Pij + ǫ2

(Pi + ǫ)
(

Pj + ǫ
) (5)

Here, βgain is used to scale the BCPNN bias into an intrinsic
input current to the neuron which is used to model an A-type
K+ channel (Jung and Hoffman, 2009) or other channel capable
of modifying the intrinsic excitability of a neuron (Daoudal and
Debanne, 2003). Similarly, w

syn
gain is used to scale the BCPNN

weight into a current-based synaptic strength.

2.3. Neuronal Model
We model excitatory and inhibitory cells as IAF neurons with
exponentially decaying PSCs (Liu and Wang, 2001; Rauch et al.,
2003). The sub-threshold membrane voltageVm of these neurons
evolves according to:

τm
dVm

dt
= −Vm + Rm

(

Is + Ia + Iβj
)

(6)

The membrane time constant τm and capacitance Cm determine
the input resistance Rm =

τm
Cm

through which input currents
from the afferent synapses (Is), spike-frequency adaption
mechanism (Ia) and the intrinsic input current from the BCPNN
learning rule (Iβj ) – described in Section 2.2—are applied. When
Vm reaches the threshold Vt a spike is emitted, Vm is reset to Vr

and α is added to the adaption current Ia. We use Liu andWang’s
(2001) model of spike-frequency adaption with the adaption time
constant τa:

τa
dIa

dt
= −Ia (7)

The synaptic input current to postsynaptic neuron j (Isj ) is
modeled as a sum of exponentially shaped PSCs from other
presynaptic neurons in the network:

τsyn
dIsj

dt
= −Isj +

∑

syn

n
∑

i=0

w
syn
ij

∑

t
f
i

δ(t − t
f
i ) (8)
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w
syn
ij indicates the weight of the connection between neurons i

and j [where syn ∈ (AMPA, GABA, NMDA) denotes the synapse

type], t
f
i represents the arrival time of spikes from presynaptic

neuron i (where there are n neurons in the network), and τsyn is
the synaptic time constant.

2.4. Simulating Spiking Neural Networks on
SpiNNaker
SpiNNaker is a digital neuromorphic architecture designed for
the simulation of spiking neural networks. Although systems
built using this architecture are available in sizes ranging
from single boards to room-size machines, they all share the
same basic building blocks—the SpiNNaker chip (Furber et al.,
2014). Each of these chips is connected to its six immediate
neighbors using a chip-level interconnection network with a
hexagonal mesh topology. Each SpiNNaker chip contains 18
ARM cores connected to each other through a network-on-chip,
and connected to an external network through amulticast router.
Each core has two small tightly-coupled memories: 32 KiB for
instructions and 64KiB for data; and shares 128MiB of off-
chip SDRAM with the other cores on the same chip. Although
this memory hierarchy is somewhat unusual, the lack of global
shared memory means that many of the problems of simulating
large spiking neural networks on a SpiNNaker system are shared
with more typical distributed computer systems. Morrison et al.
(2005) and Kunkel et al. (2012) developed a collection of
approaches for mapping such networks onto large distributed
systems in amemory-efficientmanner while still obtaining supra-
linear speed-up as the number of processors increases. The
SpiNNaker neural simulation kernel employs a very similar
approach where, as shown in Figure 1, each processing core
is responsible for simulating between 100 and 1000 neurons
and their afferent synapses. The neurons are simulated using a
time-driven approach with their state held in the tightly-coupled
data memory. Each neuron is assigned a 32 bit ID and, when a
simulation step results in a spike, it sends a packet containing
this ID to the SpiNNaker router. These “spike” packets are then
routed across the network fabric to the cores that are responsible
for simulating these synapses. Biological neurons have in the
order of 103 – 104 afferent synapses, so updating all of these every
time step would be extremely computationally intensive. Instead,
as individual synapses only receive spikes at relatively low rates,
they can be updated only when they transfer a spike as long as
their new state can be calculated from:

1. The synapse’s previous state.
2. The time since the last spike was transferred.
3. Information available from the time-driven simulation of the

postsynaptic neuron.

Using this event-driven approach on SpiNNaker is also
advantageous as, due to their sheer number, synapses need to be
stored in the off-chip SDRAM which has insufficient bandwidth
for every synapse’s parameters to be retrieved every simulation
time step (Painkras and Plana, 2013). Instead, on receipt of
a “spike” packet, a core retrieves the row of the connectivity
matrix associated with the firing neuron from SDRAM. Each

FIGURE 1 | Mapping of a spiking neural network to SpiNNaker. For

example a network consisting of 12 neurons is distributed between two

SpiNNaker cores. Each core is responsible for simulating six neurons (filled

circles) and holds a list of afferent synapses (non-filled circles) associated with

each neuron in the network. The SpiNNaker router routes spikes from firing

neurons (filled circles) to the cores responsible for simulating the neurons to

which they make efferent synaptic connections.

of these rows describes the parameters associated with the
synapses connecting the firing neuron to those simulated on
the core. Once a row is retrieved the weights are inserted
into an input ring-buffer, where they remain until any synaptic
delay has elapsed and they are applied to the neuronal input
current.

In addition to enabling large-scale simulations with static
synapses, this event-driven approach can, in theory, be extended
to handle any type of plastic synapse that meets the 3
criteria outlined above. However, simulating plastic synapses has
additional overheads in terms of memory and CPU load—both of
which are very limited resources on SpiNNaker. Several different
approaches have been previously developed that aim to minimize
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Algorithm 1 Algorithmic Implementation of STDP

function processRow(t)
for each j in postSynapticNeurons do

history← getHistoryEntries(j, told, t)

for each (tj, sj) in history do
wij ← applyPostSpike(wij, tj, told, si)

(tj, sj)← getLastHistoryEntry(t)
wij ← applyPreSpike(wij, t, tj, sj)
addWeightToRingBuffer(wij, j)

si ← addPreSpike(si, t, told)
told ← t

memory usage (Jin et al., 2010), reduce CPU load (Diehl and
Cook, 2014) or offload the processing of plastic synapses to
dedicated cores (Galluppi et al., 2015). Morrison et al. (2007)
also extended their work on distributed spiking neural network
simulation to include synaptic plasticity, developing an algorithm
for simulating plastic synapses in an event-driven manner, using
a simplified model of synaptic delay to reduce CPU and memory
usage. In this work, we combine elements of Diehl and Cook’s
(2014) and Morrison et al.’s (2007) approaches, resulting in
Algorithm 1 which is called whenever the connectivity matrix
row associated with an incoming “spike” packet is retrieved from
the SDRAM.Aswell as the weights of the synapses connecting the
presynaptic neuron to the postsynaptic neurons simulated on the
local core (wij), the row also has a header containing the time at
which the presynaptic neuron last spiked (told) and its state at that
time (si). The exact contents of the state depends on the plasticity
rule being employed, but as only the times of presynaptic spikes
are available at the synapse, the state often consists of one ormore
low-pass filtered versions of this spike train.

The algorithm begins by looping through each postsynaptic
neuron (j) in the row and retrieving a list of the times (tj) at
which that neuron spiked between told and t and its state at
that time (sj). In the SpiNNaker implementation, these times and
states are stored in a fixed-length circular queue located in the
tightly-coupled data memory to which a new entry gets added
whenever a local neuron fires. Next, the effect of the interaction
between these postsynaptic spikes and the presynaptic spike that
occurred at told is applied to the synapse using the applyPostSpike
function. The synaptic update is then completed by applying
the effect of the interaction between the presynaptic spike that
instigated the whole process and the most recent postsynaptic
spike to the synapse using the applyPreSpike function before
adding this weight to the input ring buffer. Finally, the header of
the row is updated by calling the addPreSpike function to update
si and setting told to the current time.

2.5. An Event-based, SpiNNaker
Implementation of Bayesian Learning
Equations (3)–(5) cannot be directly evaluated within the event-
driven synaptic processing scheme outlined in Section 2.4, but

as they are simple first-order linear ODEs, they can be solved to
obtain closed-form solutions for Z(t) and P(t). These equations
then need only be evaluated when spikes occur. Vogginger et al.
(2015) converted this resultant system of equations into a spike-
response model (Gerstner and Kistler, 2002) which, as it only

consists of linear combinations of e
−t
τz and e

−t
τp , can be re-framed

into a new set of new state variables Z∗i , Z
∗
j , P
∗
i , P
∗
j , and P

∗
ij. These,

like the state variables used in many STDP models are simply
low-pass filtered versions of the spike-trains and can be evaluated
when a spike occurs at time t:

Z∗i (t) = Z∗i (t
last)e

− 1t
τzi + Si(t) P∗i (t) = P∗i (t

last)e
−1t

τp + Si(t)
(9)

Z∗ and P∗ can now be stored in the pre and postsynaptic state
(si and sj) and updated in the addPreSpike function called from
algorithm 1; and when postsynaptic neurons fire. The correlation
trace, Pij can similarly be re-framed in terms of a new state
variable:

P∗ij(t) = P∗ij(t
last)e

−1t
τp + Si(t)Z

∗
j (t) (10)

P∗ij can now be stored alongside the synaptic weight wij in each

synapse and evaluated in the applyPreSpike and applyPostSpike
functions called from algorithm 1. The final stage of the event-
based implementation is to obtain the Pi, Pj and Pij values
required to evaluate (Equation 5) from the new state variables
and thus obtain wij and βj.

Pi(t) = ai
(

Z∗i (t)− P∗i (t)
)

(11)

Pij(t) = aij

(

Z∗i (t)Z
∗
j (t)− P∗ij(t)

)

(12)

With the following coefficients used for brevity:

τzij =

(

1

τzi
+

1

τzj

)−1

ai =
1

fmax

(

τzi − τp
)

aij =
1

fmax
2 (τzj + τzi

) (

τzij − τp
) (13)

This approach makes implementing spike-based BCPNN on
SpiNNaker feasible from an algorithmic point of view, but
limitations of the SpiNNaker architecture further complicate the
problem. The most fundamental of these limitations is that, as
Moise (2012, p. 20) explains, for reasons of silicon area and
energy efficiency, SpiNNaker has no hardware floating point unit.
While floating point operations can be emulated in software,
this comes at a significant performance cost meaning that
performance-critical SpiNNaker software needs to instead use
fixed-point arithmetic. Hopkins and Furber (2015) discussed the
challenges of using fixed-point arithmetic for neural simulation
on the SpiNNaker platform in detail but, in the context of this
work, there are two main issues of particular importance. Firstly
the range of fixed-point numeric representations is static so, to
attain maximal accuracy, the optimal representation for storing
each state variable must be chosen ahead of time. Vogginger et al.
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(2015) investigated the use of fixed-point types for BCPNN as a
means of saving memory and calculated that, in order to match
the accuracy of a time-driven floating point implementation, a
fixed-point format with 10 integer and 12 fractional bits would be
required. However, not only is the model described in Section 2.2
somewhat different from the reduced modular model considered
by Vogginger et al. (2015), but the ARM architecture only allows
8, 16, or 32 bit types to be natively addressed. Therefore, we re-
evaluated these calculations for the SpiNNaker implementation
and chose to use 16 bit types for two reasons:

1. In order to implement the getLastHistoryEntry and
getHistoryEntries functions used in algorithm 1, each
neuron needs to store a history of Z∗j and P∗j values in the

tightly-coupled data memory, therefore minimizing the size
of these variables is important.

2. The SpiNNaker CPU cores can perform multiplication
operations on signed 16 bit values faster than it can on 32 bit
values, allowing more spikes to be transferred each time-step.

Based on a total of 16 bit, the number of bits used for the integer
and fractional parts of the fixed-point representation needs to
be determined based on the range of the state variables. As all
of the Z∗ and P∗ state variables are linear sums of exponential
spike responses and P∗ has the largest time constant, it decays
slowest meaning that it will reach the highest value. Therefore we
can calculate the maximum value which our fixed-point format
must be able to represent in order to handle a maximum spike
frequency of fmax as follows:

P∗max =
1

1− e
− 1

fmax×τp

(14)

In order to match the firing rates of pyramidal cells commonly
observed in cortex, low values of the maximum firing rate (fmax,
e.g., 20 or 50Hz) are often used with the BCPNNmodel described
in Section 2.2. On this basis, by using a signed fixed-point format
with 6 integer and 9 fractional bits, if fmax = 20Hz, traces with
τp < 3.17 s can be represented and, if fmax = 50Hz, traces with
τp < 1.27 s can be represented.

The second problem caused by the lack of floating point
hardware is that there is no standard means of calculating
transcendental functions for fixed-point arithmetic. This means
that the exponential and logarithm functions required to
implement BCPNNmust be implemented by other means.While
it is possible to implement approximations of these functions
using, for instance a Taylor series, the resultant functions are
likely to take in the order of 100 CPU cycles to evaluate (Moise,
2012), making them too slow for use in the context of BCPNN
where around ten of these operations will be performed every
time a spike is transferred. Another approach is to use pre-
calculated lookup tables (LUTs). These are particularly well suited

to implementing functions such as e
−t
τ where t is discretized to

simulation time steps and, for small values of τ , the function
decays to 0 after only a small number of table entries. While the
log(x) function has neither of these ideal properties, x can be
normalized into the form x = y × 2n : n ∈ Z, y ∈ [1, 2) so
a LUT is only required to cover the interval [1, 2) within which
log(x) is relatively linear.

3. RESULTS

3.1. Validating BCPNN Learning on
SpiNNaker with Previous Implementations
In this section we demonstrate that the implementation of
BCPNN we describe in Section 2.5 produces connection weights
and intrinsic excitabilities comparable to those learned by
previous models. To do this we used the procedure developed
by Tully et al. (2014) and the network described in Table 1

to compare two neurons, connected with a BCPNN synapse,
modeled using both our spiking BCPNN implementation and
as abstract units with simple, exponentially smoothed binary
activation patterns (Sandberg et al., 2002). We performed this
comparison by presenting the neurons with five patterns of
differing relative activations, each repeated for ten consecutive
200ms trials. Correlated patterns meant both neurons were firing
at fmax Hz or ǫ Hz each trial; independent patterns meant
uniform sampling of fmax Hz and ǫ Hz patterns for both neurons
in each trial; anti-correlated patterns meant one neuron fired at
fmax Hz and the other at ǫ Hz or vice-versa in each trial; both
muted meant both neurons fired at ǫ Hz in all trials; and post
muted meant uniform sampling of presynaptic neuron activity
while the postsynaptic neuron fired at ǫ Hz in all trials.

As Figure 2 shows, during the presentation of patterns in
which both units are firing, the responses from the abstract
model fall well within the standard deviation of the SpiNNaker
model’s responses, but as units are muted, the two models
begin to diverge. Further investigation into the behavior of
the individual state variables shows that this is due to the P∗

term of Equation (11) coming close to underflowing the 16 bit
fixed-point format when a long time has passed since the last
spike. This inaccuracy in the P∗ term is then further amplified
when the weights and intrinsic excitabilities are calculated using
(Equation 5) as for small values of x, log(x) approaches its vertical
asymptote. The standard deviations visible in Figure 2 reflect the
fact that for the spiking learning rule, the realization of Poisson
noise that determined firing rates was different for each trial, but
with a rate modulation that was repeated across trials.

3.2. Learning Sequential Attractors using
Spike-Based BCPNN
In this section we consider a functional use case of the the
modular attractor network described in Section 2.1 involving
learning temporal sequences of attractors. With asymmetrical
BCPNN time constants, it was previously proposed that this
network could self-organize spontaneously active sequential
attractor trajectories (Tully et al., 2014). We built a suitable
network using the neuron and plasticity models described in
Sections 2.2, 2.3; and the parameters listed in Table 2. Using this
network we employed a training regime—a subset of which is
shown in Figure 3A—in which we repeatedly stimulated all cells
in a mutually exclusive sequence of minicolumns for 50 training
epochs. Each minicolumn was stimulated for 100ms, such that
the neurons within it fired at an average rate of fmax Hz. During
training we disabled the term in Equation (8) that incorporates
input from the plastic AMPA and NMDA synapses meaning
that, while the weights were learned online, the dynamics of
the network did not disturb the training regime. A recall phase
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TABLE 1 | Model description of the BCPNN validation network.

(A) Model summary

Populations Presynaptic, postsynaptic, presynaptic input, postsynaptic

input

Connectivity One-to-one

Neuron model Leaky integrate-and-fire with exponential-shaped synaptic

current inputs and spike-frequency adaption (Liu and Wang,

2001)

Synapse model Current-based with exponential-shaped PSCs

Plasticity BCPNN AMPA synapses

Input Externally generated Poisson spike trains

Measurements Intrinsic bias current and synaptic weights

(B) Populations

Name Elements Size

Presynaptic Leaky IAF 1

Postsynaptic Leaky IAF 1

Presynaptic input External spike source 1

Postsynaptic input External spike source 1

(C) Connectivity

Source Target Pattern Weight

Presynaptic input Presynaptic One-to-one 2 nA

Postsynaptic input Postsynaptic One-to-one 2 nA

Presynaptic Postsynaptic One-to-one Plastic

(D) Neuron and synapse model

Type Leaky integrate-and-fire with exponential-shaped synaptic current

inputs and spike-frequency adaption (Liu and Wang, 2001) as

described in Section 2.3

Parameters τm = 10ms membrane time constant

Cm = 250 pF membrane capacitance

Vt = −55.4 mV threshold voltage

Vr = −70mV reset voltage

α = 0.0 nA adaption current (disabled)

τAMPA = 2.5ms AMPA synapse time constant

(E) Plasticity

Type BCPNN AMPA synapses as described in Section 2.2

Parameters fmax = 50Hz maximum spiking frequency

τzi
= 10ms presynaptic primary trace time constant

τzj
= 10ms postsynaptic primary trace time constant

τp = 1000ms probability trace time constant

w
syn
gain
= 1 nA weight gain

βgain = 1 nA intrinsic bias gain

(F) Input

Type Description

Externally generated Poisson spike trains As described in Section 3.1

After Nordlie et al. (2009).

FIGURE 2 | Spike-based BCPNN estimates abstract BCPNN for

different input patterns. Comparing weight and bias (inset) development

under different protocols when using abstract (dotted) and SpiNNaker (solid)

versions of the learning rule. SpiNNaker simulations were repeated 10 times

and averaged, with standard deviations illustrated by the shaded regions.

followed this learning phase in which a 50ms stimulus of fmax

Hz was applied to all cells in the first minicolumn of the
learned sequence. During both the training and recall phases we
provided background input to each cell in the network from an
independent 65Hz Poisson spike source. These Poisson spike
sources are simulated on additional SpiNNaker cores to those
used for the neural simulation algorithm described in Section 2.4.

We found that the training regime was able to produce the
recurrent connectivity required to perform temporal sequence
recall in the same serial order that patterns were presented
during training as shown in Figure 3B. Each sequence element
replayed as a learned attractor state that temporarily stifled
the activity of all other cells in the network due to WTA
and asymmetrically projected NMDA toward neurons of the
subsequent sequence element, allowing a stable trajectory
to form. Activity within attractor states was sharpened and
stabilized by learned auto-associative AMPA connectivity;
and sequential transitions were jointly enabled by neural
adaptation and inter-pattern heteroassociation via NMDA
synapses.

Because of the modular structure of the network described in
Section 2.1, this temporal sequence learning can be performed
using networks of varying scales by instantiating different
number of hypercolumns and linearly scaling thew

syn
gain parameter

of the connections between them. By doing this, we investigated
how the time taken to simulate the network on SpiNNaker scales
with network size. Figure 4 shows how these times are split
between the training and testing phases; and how long is spent
generating data on the host computer, transferring it to and
from SpiNNaker and actually running the simulation. As the
SpiNNaker simulation always runs at a fixed fraction of real-time
(for this simulation 0.5×), the simulation time remains constant
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TABLE 2 | Parameters for the modular attractor network.

(A) Model summary

Populations and connectivity Modular structure described in Section 2.1

Neuron model Leaky integrate-and-fire with exponential-shaped

synaptic current inputs and spike-frequency

adaption (Liu and Wang, 2001)

Synapse model Current-based with exponential-shaped PSCs

Plasticity BCPNN AMPA and NMDA synapses

Input Externally generated Poisson spike trains and

independent fixed-rate Poisson spike trains

Measurements Spiking activity, membrane voltages, intrinsic bias

current and synaptic weights

(B) Neuron and synapse model

Type Leaky integrate-and-fire with exponential-shaped synaptic current

inputs and spike-frequency adaption (Liu and Wang, 2001) as

described in Section 2.3

Parameters τm = 20ms membrane time constant

Cm = 250pF membrane capacitance

Vt = −50mV threshold voltage

Vr = −70mV reset voltage

α = 0.15 nA adaption current

τa = 300ms adaption time constant

τAMPA = 5ms AMPA synapse time constant

τGABA = 5ms GABA synapse time constant

τNMDA = 150ms NMDA synapse time constant

(C) Plasticity

Type BCPNN AMPA synapses as described in Section 2.2

Parameters fmax = 20Hz maximum spiking frequency

τzi
= 5ms presynaptic primary trace time constant

τzj
= 5ms postsynaptic primary trace time constant

τp = 2000ms probability trace time constant

w
syn
gain
= 0.546

NHC
nA weight gain

Type BCPNN NMDA synapses as described in Section 2.2

Parameters fmax = 20Hz maximum spiking frequency

τzi
= 5ms presynaptic primary trace time constant

τzj
= 150ms postsynaptic primary trace time constant

τp = 2000ms probability trace time constant

w
syn
gain
= 0.114

NHC
nA weight gain

βgain = 0.05 nA intrinsic bias gain

(D) Input

Type Description

Externally generated Poisson spike trains As described in Section 3.2

Independent fixed-rate Poisson spike trains As described in Section 2.1

After Nordlie et al. (2009).

as the network grows, but the times required to generate the data
and to transfer it grow significantly, meaning that when NHC =

16 (2.0× 104 neurons and 5.1× 107 plastic synapses), the total
simulation time is 146min. However, the amount of time spent

in several phases of the simulation is increased by limitations of
the current SpiNNaker toolchain. 84min is spent downloading
the learned weight matrices and re-uploading them for the
testing: A process that is only required because the changing
of parameters (in this case, whether learning is enabled or not)
mid-simulation is not currently supported. Additionally, the
current implementation of the algorithm outlined in Section 2.4
only allows neurons simulated on one core to have afferent
synapses with a single learning rule configuration. This means
that we have to run the training regime twice with the same
input spike trains, once for the AMPA synapses and once for
the NMDA synapses: Doubling the time taken to simulate the
training network.

Previous supercomputer simulations of modular attractor
memory networks have often used more complex neuron models
and connectivity (Lundqvist et al., 2010), making simulation
times difficult to compare with our SpiNNaker simulation due
to the simplifications we outlined in Section 2.1. In order to
present a better comparison, we built a network model with
the same connectivity as our SpiNNaker model and simulated
it on a Cray XC-30 supercomputer system using NEST version
2.2 (Gewaltig and Diesmann, 2007) with the spike-based BCPNN
implementation developed by Tully et al. (2014). NEST does not
include the adaptive neuron model we described in Section 2.3
so we used the adaptive exponential model (Brette and Gerstner,
2005): a simple point neuron model with spike-frequency
adaption.

As previously discussed SpiNNaker runs at a fixed-fraction
of real-time so we distribute our NEST simulations across
increasing numbers of Cray XC-30 compute nodes (each
consisting of two 2.5GHz Intel Ivy Bridge Xeon processors)
until the simulation completed in the same time as those
shown in Figure 4 for our SpiNNaker simulations. Table 3

shows the result of both these supercomputer simulations
and a second set with the time taken for the mid-simulation
downloading and re-uploading of weights—currently required
by the SpiNNaker software—removed. Due to this redundant
step and because NEST parallelizes the generation of simulation
data across the compute nodes, at all three scales, our
modular attractor network can be simulated using 2 compute
nodes. However, if we remove the time spent downloading
and re-uploading the weights, 9 compute nodes are required
to match the run-time of the SpiNNaker simulation when
NHC = 16.

While a more in-depth measurement of power usage is out of
the scope of this work, we can also derive approximate figures
for the power usage of our simulations running on both systems
based on the 1W peak power usage of the SpiNNaker chip and
the 30 kW power usage of a Cray XC-30 compute rack (Cray,
2013). While these figures ignore the power consumed by the
host computer connected to the SpiNNaker system; the power
consumed by the “blower” and storage cabinets connected to the
Cray XC-30; and assume that all CPUs are running at peak power
usage, they show that even in the worst case, SpiNNaker uses
45× less power than the Cray XC-30 and, if the limitations of the
current SpiNNaker software are addressed, this can be improved
to 200×.
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FIGURE 3 | Learning sequential attractor states. (A) Training. (B) Replay.

FIGURE 4 | Total simulation time on SpiNNaker.

3.3. Connectivity Patterns Show Different
Signatures in Membrane Potentials
The purpose of this section is to study how learning parameters
influence the resulting connectivity patterns and the effect of
learned connectivity on membrane dynamics during sequence

replay. For this purpose we vary two parameters of the learning
rule that control the time window within which correlations are
detected − τzi on the pre- and τzj on the postsynaptic side.
The network is trained using the same regime described in
Section 3.2 and two different configurations, one with τzi =

τzj on NMDA synapses, and one with τzi 6= τzj . If τzi and
τzj are equal, the Zi and Zj traces evolve in the same manner,
meaning that, as their dynamics propagate through the P traces
to the synaptic weights, the forward and reciprocal connections
between minicolumns develop symmetrically as shown in the top
row of Figure 5. However, when τzi 6= τzj , the Zi and Zj traces
evolve differently and, as the bottom row of Figure 5 shows,
asymmetrical connections develop between minicolumns. It is
important to note that the spiking activity during the training
regime is the same in both configurations and the shape of
the resulting connectivity results only from the learning time-
constants τzi and τzj .

In order to analyze the effect of the different learned
connectivity patterns shown in Figure 5, we studied the impact
of the two connectivity kernels on the subthreshold dynamics
of neurons during sequence replay. As described in Section 3.2,
after training, the trained sequence can be replayed by applying
a 50ms stimulus of fmax Hz into all cells of the first minicolumn
in the learned sequence. Later, in the sequence replay when the
stimulus has been removed, we recorded the membrane potential
of all of the neurons in the network and stored the point in time
when the firing rate of the respective minicolumn was maximal.
We then align the membrane potential traces to this point in time
and average them over all cells in a minicolumn. Interestingly,
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TABLE 3 | Comparison of power usage of modular attractor network simulations running on SpiNNaker with simulations distributed across enough

compute nodes of a Cray XC-30 system to match SpiNNaker simulation time.

Simulation SpiNNaker Cray XC-30

NHC time [min] # chips Peak CPU power usage [W] # compute nodes Peak CPU power usage [W]

4 17 6 6 2 938

9 50 12 12 2 938

16 146 21 21 2 938

4 9 6 6 4 1875

9 23 12 12 14a 6563

16 62 21 21 9 4219

Cray XC-30 power usage is based on the 30 kW power usage of an entire Cray XC-30 compute rack (Cray, 2013). SpiNNaker power usage is based on the 1W peak power usage of

the SpiNNaker chip (Furber et al., 2014).

Top: SpiNNaker simulation times include downloading of learned weights and re-uploading required by current software.

Bottom: Time taken to download learned weights, re-generate and re-upload model to SpiNNaker have been removed.
aWe are unsure why more supercomputer compute nodes are required to match the SpiNNaker simulation times when NHC = 9 than when NHC = 16. We assume this is an artifact of

the different scaling properties of the two simulators, but further investigation is outside of the scope of this work.

FIGURE 5 | Average strength of NMDA connections between attractors resulting from different learning time constants. Darker colors correspond to

larger synaptic weights. τzi
increases from left-to-right. Top, red row: Symmetrical kernel with τzj

= τzi
. Bottom, green row: Asymmetrical kernel with τzj

= 5ms.

as Figure 6 illustrates, these averaged and aligned membrane
responses show different characteristics for the network models
built on symmetric and asymmetric connectivity. Both network
types show similar membrane characteristics before the sequence
arrives at the minicolumn, but, the network with symmetric
connectivity shows a significantly slower decrease in membrane
potential after the sequence has passed. In contrast, the
network with asymmetric connectivity shows a strong after-
stimulus hyperpolarization due to the increased inhibitory
input originating from minicolumns later in the sequence
which get subsequently activated. The slower decrease in the
mean membrane potential in the symmetric network can be
explained by the excitatory projections in both directions of
the sequence providing excitatory current flow to previously

activated neurons. The implications of this experiment and
interpretations of these different characteristics is discussed in
Section 4.2.

4. DISCUSSION

The contribution of this study is threefold. Firstly, we have
shown that BCPNN can be efficiently implemented within
the constraints of the SpiNNaker neuromorphic architecture.
Secondly, we have shown how BCPNN can be used in a
functionally meaningful context to perform near real-time
learning of temporal sequences within a large-scale modular
attractor network—the largest plastic neural network ever to
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FIGURE 6 | Aligned average membrane potentials during sequence

replay for two different connectivities. The membrane potentials have

been recorded from all neurons in the trained network during sequence replay.

These membrane voltages have then been averaged and aligned to the time of

peak activity in the temporal domain (bold lines represent the mean, shaded

areas represent the standard deviation). The y-axis has been normalized to

improve visibility (0 corresponds to Vt and −1 corresponds to the minimal

membrane voltage in the sample). In the network with asymmetric connectivity

the mean membrane response shows a pronounced drop after the peak

response, whereas the network with symmetric connectivity does not.

Oscillatory behavior originates from switches between discrete attractor states

alternated by phases of inhibitory feedback.

be simulated on neuromorphic hardware. Finally, we have
demonstrated the value of SpiNNaker as a tool for investigating
plasticity within large-scale brain models by exploring how, by
changing a single parameter in the BCPNN learning rule, both
symmetric and asymmetric connectivity can be learned, which in
turn influence underlying membrane potential characteristics.

4.1. Learning Temporal Sequences in
Cortical Microcircuits
The total duration of temporal sequences is longer than the
time courses of individual cellular or synaptic processes and
therefore, such sequences are thought to be driven by circuit-
level phenomena although the intricacies of this relationship
have yet to be fully explored. The massively recurrent and
long-range nature of cortical connectivity, taken together with
the emergence of temporal sequences at fine scales and
distributed over spatial areas, suggests the presence of generic
cortical microcircuit mechanisms. The model presented here
is modularly organized into hypercolumns, each implementing
WTA dynamics (Douglas and Martin, 2004). This modular
structure also allowed us to vary the number of hypercolumns the

network contained without effecting its functionality (Djurfeldt
et al., 2008). Such distributed systems generally exhibit an
improved signal-to-noise ratio, error resilience, generalizability
and a structure suitable for Bayesian calculations (McClelland
et al., 1986; Barlow, 2001). Like their uniformly interconnected
counterparts, they can also exhibit high variability in their
spike train statistics (Litwin-Kumar and Doiron, 2012; Lundqvist
et al., 2012). Moreover, due to their capacity to exhibit a
rich repertoire of behaviorally relevant activity states, these
topologies are also well suited for information processing
and stimulus sensitivity (Lundqvist et al., 2010; Wang et al.,
2011).

Previous investigations have shown that the attractors which
emerge within such modular networks reproduce features of
local UP states (Lundqvist et al., 2006). This observation remains
consistent with the extension considered here since, in vivo,
UP state onsets are accompanied by the sequential activation
of cortical neurons (Luczak et al., 2007). This redundant neural
coding scheme should not necessarily be viewed in terms of
anatomical columns, but rather functional columns consisting
of subgroups of neurons with similar receptive fields that are
highly connected (Yoshimura et al., 2005) and co-active (Cossart
et al., 2003). Similar stereotypical architectures have been used as
building blocks for other unifiedmathematical frameworks of the
neocortex (Johansson and Lansner, 2007; George and Hawkins,
2009; Bastos et al., 2012).

The dynamics of the model consists of attractors, whose
activations produce self-sustaining spiking among groups of
neurons spread across different hypercolumns. Activity within
attractors is sharpened by the fast dynamics of the AMPA
receptor, until the network transitions to a subsequent attractor
due to neural adaptation and asymmetrical NMDA connectivity,
both of which have longer time constants of activation.
In this work we have shown how these dynamics could
be learned using BCPNN, a learning rule which offers an
alternative to phenomenological STDP rules that often require
complementary mechanisms due to their prevailing instability
(Kempter et al. 2001; Babadi and Abbott 2010; but see Gütig et al.
2003).

4.2. Sequence Anticipation and
Asymmetric Connectivity as Observed in
the Membrane Potential Dynamics
In both the symmetric and asymmetric networks, the stimulus-
aligned mean membrane potential traces show a similar rise
prior to sequence arrival which can be interpreted as a form
of anticipation of the impending activity peak. By anticipation
we mean the premature build-up of a neuronal response which
is becoming increasingly similar to the response when the
actual stimulus is present and represents the neural signature
of expectation or prediction of future input. Anticipation is
an important function of neural circuits and is observed not
only in early sensory structures such as the retina (Berry et al.,
1999; Hosoya et al., 2005; Vaney et al., 2012), but also in
downstream structures and cortical areas (Rao and Ballard, 1999;
Enns and Lleras, 2008) which are involved in more abstract
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cognitive tasks (Riegler, 2001; Butz et al., 2003). Anticipation
can also be regarded as a form of prediction of future events:
something which Bar (2007) and Bubic et al. (2010) argue is a
fundamental function of the brain. This predictive capability can
improve sensory perception (Yoshida and Katz, 2011; Rohenkohl
et al., 2012) and is important for other modalities such as
motor control and learning (Shadmehr et al., 2010; Schlerf
et al., 2012). However, the connectivity which implements this
predictive or anticipatory function, and the mechanisms which
give rise to it, are not well understood. We believe that BCPNN
learning helps fill this gap—as we discussed in Section 3.2,
it can learn functional connectivity at a network scale and,
as previously argued in this section, it exhibits anticipatory
behavior.

We studied the network response by looking at the membrane
potential dynamics prior to and after a stimulus and compared
the response of two network connectivities trained with different
learning parameters. As membrane potential dynamics are the
result of a multitude of parameters, we constructed identical
experimental settings in terms of input, to make sure that
the differences in the membrane potential dynamics can be
linked as closely as possible to the differences in the underlying
connectivity. That is, the only major difference between the two
settings is the characteristic shape of the connectivity (either
being symmetric or asymmetric, see Figure 5) resulting from
different learning parameters. Since the two models implement
a different flow of recurrent excitation, the gain parameters
in both networks have been adjusted so that both operate
in a similar activity regime in order to enable a meaningful
comparison of the temporal characteristics introduced by the
connectivity shape. The voltage traces arising from the different
network connectivities shown in Figure 6 exhibit different
post-stimulus characteristics during sequence replay, with a
faster hyperpolarization happening in networks with asymmetric
connectivity. Hence we propose that by aligning the average
membrane voltage of a population of neurons—in a perceptual
context, to its preferred stimulus and, in a task-related context,
to its peak activity—and then analyzing the post-stimulus
characteristics of this average voltage, the population’s afferent
connectivity can be inferred.

4.3. Asymmetric Connectivity Supports
Motion Preference
In the context of visual perception of motion, asymmetric
connectivity has been found to play an important role in
direction-sensitive ganglion cells in the retina (Kim et al., 2008;
Vaney et al., 2012). A previous study by Kaplan et al. (2013)
proposed asymmetric connectivity as a means of extrapolating
the trajectory of a moving stimulus in the absence of a stimulus:
similar, in many respects, to the experiment presented here.
Recently, this hypothesized tuning property-based connectivity
has been confirmed by the observation of neuronal modules
in mouse V1 that exhibit similar motion direction preference
(Wertz et al., 2015). The model we present here uses a
Hebbian-Bayesian rule to explain how such feature-selective
connectivity between neurons tuned to similar stimulus features

could arise. It could therefore serve not only as a framework
for modeling observed connectivity patterns and helping to
understand their functional implications, but also as a means
of linking experimentally observed connectivity with earlier
modeling studies (Kaplan et al., 2013) by explaining how
asymmetric connectivity can arise through learning.

The question of how a preferred sequence direction could be
learned and replayed is not only relevant for sensory systems,
but also other systems where sequence learning, generation
and replay are important (Luczak et al., 2015). We addressed
this question by training networks with both symmetric and
asymmetric connectivity using a single sequence direction. We
then triggered sequence replay in both networks in a similar
way to experiments by Gavornik and Bear (2014) and Xu
et al. (2012) which studied sequence learning in early visual
cortices. Models with symmetric connectivity can show sequence
replay in both directions, not only in the trained one. The
intuition being that if one were to employ the same training
protocol described in Section 3.2, one could replay the sequence
forwards or backwards by presenting a cue to the first or last
attractor. Instead of being directed by asymmetrical connectivity,
the preferred sequence trajectory would evolve according to
adaptation. Hence, the direction of the sequence during training
alone is not sufficient to create a preferred replay direction as
observed in experiments (Xu et al., 2012). Instead, we argue
that the asymmetric connectivity caused by a difference in the
learning parameters, i.e., an unequal temporal correlation time
window, is necessary to replay sequences in only the trained, and
therefore preferred, direction.

4.4. Results in Context of Anatomical Data
The presented model addresses the question of how connectivity
emerges at a cellular and network level in response to temporally
varying stimuli. Through usage of different learning time
constants, connectivity kernels of varying widths develop as
shown in Figure 5. There exists a large body of anatomical
evidence reporting regional variations in cortical circuitry in
terms of structural features such as dendritic morphology and the
density of dendritic spines (see e.g., Jacobs and Scheibel, 2002;
Elston, 2003 for reviews). In the visual system the hierarchical
organization of areas (Riesenhuber and Poggio, 1999) is reflected
in their varying dendritic complexity. When compared to areas
such as V1, V2, and V4 which respond to simpler visual features,
areas associated with more complex functionality also exhibit
more complex dendritic morphologies and have a higher number
of connections (Jacobs and Scheibel, 2002; Elston and Fujita,
2014).

It stands to reason that the structural and electrophysiological
differences observed in both pyramidal cells and interneurons
influences activity on a cellular level (Spruston, 2008), shaping
the way in which information is integrated and therefore the
functional roles of both the individual cells and the entire
circuit (Elston, 2003). These regional variations appear to be
consistent across species and to change during development (see
Elston and Fujita, 2014 for a recent review). Pyramidal cells in
V1 reduce their dendritic complexity and those in inferotemporal
and prefrontal areas grow larger dendritic structures over
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the first months and years of development. In the light of
the presented model, these observations could lead to the
interpretation that reducing the dendritic extent of pyramidal
cells mirrors an improved perceptual precision in V1 as finer
temporal correlations are detected (represented by short learning
time constants τzi,j and smaller dendritic extent as shown in
the panels on the left side of Figure 5). In contrast, as more
abstract associations are learned, pyramidal cells in higher areas
grow more spines over larger dendritic territories. This allows
these cells to integrate information from more diverse sources,
requiring integration and association to occur over longer time
scales (larger τzi,j ). In this context, it is important to note that the
learning time constants may not necessarily equal the synaptic
time constants (which are determined by receptor and channel
kinetics), but could vary depending on the area and with it the
function or task to be learned.

Despite the fact that our model uses point neurons and thus
does not directly represent the dendritic field, we argue that
the learning time-constants determine a neuron’s capability to
integrate information over time which – given a topographic
stimulus representation such as that seen in V1—could be
linked to the size of the dendritic field of a neuron. Hence, the
presented learning framework offers the possibility to study these
arguments in more quantitative detail.

4.5. Scaling the Modular Attractor Model
In Section 3.2 we presented simulations of the modular
attractor network model described in Section 2.1 with up
to 16 hypercolumns, connected using sparse, random 10%
global connectivity. At this scale each pyramidal cell in the
network receives 4.0× 103 afferent excitatory synapses but—if
the model were scaled up to, for example, the scale of the mouse
neocortex with approximately 1.6× 107 neurons (Braitenberg
and Schüz, 2013)—each pyramidal cell would receive 1.3× 106

afferent synapses. As we discussed in Section 4.4, pyramidal cell
connectivity varies widely across the layers and areas of the
neocortex. However, in this section we base our discussion of
the scaling properties of our model on the assumption that each
pyramidal cell receives 8.0× 103 afferent synapses. This number
is consistent with averages calculated across cortical layers and
areas in mice (Braitenberg and Schüz, 2013), cats (Beaulieu
and Colonnier, 1989) and humans (Pakkenberg et al., 2003).
The reason this number is significantly lower than the one
obtained by naïvely scaling our current model is because of the
“patchy” nature of long-range cortical connectivity (Goldman
and Nauta, 1977; DeFelipe et al., 1986; Gilbert and Wiesel,
1989; Bosking et al., 1997). Specifically, each pyramidal cell
only connects to around 10, approximately hypercolumn-sized,
clusters of neurons located within a radius of a few millimeters.
Additionally, while each hypercolumn in our model contains 10
minicolumns, biological hypercolumns typically have closer to
100 (Mountcastle, 1997; Buxhoeveden and Casanova, 2002). This
means that, because of the winner-take-all dynamics within each
hypercolumn, while 10% of neurons in our model are active
at any given time, only 1% would be active in a more realistic
model.

As Sharp and Furber (2013) discuss, when simulating spiking
neural networks on SpiNNaker, the majority of CPU time is
spent within the event-driven synaptic processing stage, making
the CPU load highly dependent on the rate of incoming
synaptic events (a single spike innervating a single synapse). The
combined effect of the more realistic global connectivity and
sparser activity discussed in the previous paragraph would be
to reduce the rate of incoming synaptic events by a factor of 5
when compared to our current model. This means that a model
with more realistic connectivity could actually run faster than the
current model on SpiNNaker - Potentially in biological real-time
rather than the 0.5× real-time we use in this work.

However, as we discussed in Section 3.2, the time spent
actually running simulations on SpiNNaker is often dwarved by
the time spent generating simulation data on the host computer
and transferring it to and from the SpiNNaker system. One way
of reducing the time taken to generate the simulation data and
upload it to SpiNNaker would be to perform some of the data
generation on SpiNNaker itself. The most obvious target for this
approach would be the generation of the connectivity matrices
as, not only do these represent the bulk of the uploaded data,
but they are typically defined probabilistically meaning that they
could be generated based on a very small uploaded definition.
While this approach would undoubtedly reduce the time taken to
generate and upload the simulation data, even the 1min currently
taken to download the results at the end of the simulation would
grow to several hours if the network was scaled up to the size of
even amouse’s neocortex. These slow upload and download times
are due to current simulations all having been run on single board
SpiNNaker systems, connected to the host computer through a
single ethernet link. While the theoretical bandwidth of this link
is 100Mbit s−1, inefficiencies in the current SpiNNaker system
software reduce the effective bandwidth to only a few MiB s−1.

Not only is work currently underway to improve the
bandwidth of the ethernet links, but in the case of large-scale
network simulations running across multiple SpiNNaker boards,
if the host computer is powerful enough and connected to
the SpiNNaker system through a sufficiently fast network, data
can be transferred to multiple SpiNNaker boards in parallel.
Furthermore, if still more bandwidth is required, each SpiNNaker
board also has several high-speed serial connectors which could
be used for transferring data to and from SpiNNaker at the
full 1 Gbit s−1 bandwidth of the chip-level interconnect network.
Together, the improvements to the scalability of the model
discussed in this section would also act to further increase the
power efficiency of SpiNNaker when compared to traditional
super computer systems that we briefly discuss in Section 3.2.

4.6. Extensions of BCPNN on SpiNNaker
and other Future Considerations
Since we have shown that BCPNN learning is possible on
SpiNNaker, the implementation we describe in Section 2.5
could be extended to support spike-based reinforcement
learning (Izhikevich, 2007) by adding an extra level of E (i.e.,
“eligibility”) traces with time constants between those of the
Z and P traces (Tully et al., 2014). Representing downstream
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cellular processes that interact with increased intracellular Ca2+

concentrations (Yagishita et al., 2014), E traces propagate into
the P traces at a rate previously described as κ (Tully et al.,
2014). The κ parameter models the delivery of delayed reward
signals in the form of interactions with global neuromodulatory
systems, which have been linked to the emergence of sequential
activity (Gavornik and Bear, 2014; Ikegaya, 2004). Using this
extended BCPNN model, the modular attractor memory model
we describe in Section 2.1 could be extended to include basal
ganglia input (Berthet et al., 2012), allowing it to switch between
behavioral sequences when this might be a beneficial strategy for
successful task completion (Ponzi and Wickens, 2010).

Similarly, Vogginger et al.’s (2015) original event-driven
BCPNNmodel includes a set of E∗ state variables which are used
to represent the components of the spike-response model arising
from E trace dynamics. Though omitted here, the SpiNNaker
BCPNN implementation could be extended to include these
traces at the cost of some extra computational cost, and the
memory required to store an additional 16 bit trace with each
synapse and with each entry in the postsynaptic history structure.
In Section 3.1 we showed that by using a 16 bit fixed-point
representation for the Z∗ and P∗ state variables, we can produce
results comparable to previous floating-point implementations
when both τp and fmax are relatively small. However, this
approach doesn’t scale to the type of model described by Fiebig
and Lansner (2014) where learning time constants span many
orders of magnitude. In these situations, it may be necessary to
use a 32 bit fixed-point representation for the P∗ traces, further
increasing the memory and computational cost of the learning
rule.

As spikes from neuromodulator-releasing populations can
arrive at the synapse at any time, integrating spike-based
reinforcement learning into an event-driven, distributed
simulation requires incorporating the times of modulatory as
well as postsynaptic spikes into algorithm 1. Because entire
populations of neuromodulator-releasing neurons can affect the
modulatory input received by a single synapse, the per-neuron
history structure discussed in Section 2.4 is not a viable means
of storing them. Potjans et al. (2010) extend Morrison et al.’s
(2007) STDP algorithm to support neuromodulated learning
by introducing “volume transmitter” populations which handle
all the incoming modulatory input to a virtual “volume.”
These populations maintain a spike-history of all incoming
modulatory spikes which they deliver to the synapses of neuronal
populations within this volume, both at presynaptic spike times
and after a fixed period so as to ‘flush out’ the spike-history
data structure and allow it to be kept relatively small. This
approach has the potential to map well to the SpiNNaker
architecture and could be used as the basis of a future SpiNNaker
implementation of spike-based reinforcement learning using
BCPNN.

A benefit of the model proposed here is its robustness and
flexibility. Non-sequential attractor networks without learning
have previously been emulated on a neuromorphic microchip
(Pfeil et al., 2013) and on a simulated version of the BrainScaleS
system (Petrovici et al., 2014). Though not shown here, the
connectivity required by these types of randomly hopping
attractor networks can also be learned. Variations of this

network run on supercomputers have been shown to account
for disparate cognitive phenomena including perceptual rivalry
and completion (Kaplan and Lansner, 2013); attentional blink
(Lundqvist et al., 2006; Silverstein and Lansner, 2011); and
diverse oscillatory regimes (Lundqvist et al., 2010). But our
model was a reduced version of previous detailed ones insofar
that we did not utilize Hodgkin-Huxley neurons with calcium-
dependent potassium channels or regular spiking non-pyramidal
cells; nor did we explicitly model connections among basket
cells, saturating synapses, a Vm-dependent Mg2+ blockade or
short-term depression.

A problem not stressed by the aforementioned models is how
the connectivity required for stable activity propagation might
be learned (Wörgötter and Porr, 2005; Kunkel et al., 2011),
despite the biochemical (Peters et al., 2014) andmetabolic (Picard
et al., 2013) changes accompanying learned sequential behaviors.
Several promising approaches have been developed (Sussillo and
Abbott, 2009; Laje and Buonomano, 2013; Hennequin et al.,
2014), albeit with biological motivations driven more from
the perspective of algorithmic optimization, rather than from
bottom-up neural processing. Here, we have shown that activity
could propagate through recurrent cortical microcircuits as a
result of a probabilistic learning rule based on neurobiologically
plausible time courses and dynamics. The model predicts that
the interaction between several learning and dynamical processes
constitute a compound mnemonic engram that can flexibly
generate step-wise sequential increases of activity within pools of
excitatory neurons. We have shown that this large-scale learning
model can be efficiently simulated at scale using neuromorphic
hardware and our simulations suggest that flexible systems
such as SpiNNaker offer a promising tool for the study of
collective dynamical phenomena emerging from the complex
interactions occurring between individual neurons and synapses
whose properties change over time.
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