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Biological impacts of light beyond vision, i.e., non-visual functions of light, signify the
need to better understand light detection (or photoreception) systems in vertebrates.
Photopigments, which comprise light-absorbing chromophores bound to a variety
of G-protein coupled receptor opsins, are responsible for visual and non-visual
photoreception. Non-visual opsin photopigments in the retina of mammals and extra-
retinal tissues of non-mammals play an important role in non-image-forming functions
of light, e.g., biological rhythms and seasonal reproduction. This review highlights
the role of opsin photoreceptors in the deep brain, which could involve conserved
neurochemical systems that control different time- and light-dependent physiologies in
in non-mammalian vertebrates including teleost fish.
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INTRODUCTION

Light from the environment has a profound impact on almost all animals for adjusting
image-forming and non-image-forming responses. Vertebrate photoreceptor cells containing
photopigments, which comprise light-absorbing chromophores bound to different G-protein
coupled receptor opsins, are responsible for visual and non-visual photoreception. Transmitting
non-visual light signal to control physiology and behaviors (e.g., biological rhythms and seasonal
reproduction) involves complex light detection systems in retinal and extra-retinal tissues (Peirson
et al., 2009). The vertebrate eyes and pineal are component structures of the entire brain, which
are known to be photoreceptive. However, less attention is given to the deep brain that receives
light signal directly in most vertebrates. There is evidence of photic modulation of the mammalian
brain activity (Vandewalle et al., 2009; Flyktman et al., 2015) and presence of deep brain opsin
photoreceptors (Blackshaw and Snyder, 1999; Tarttelin et al., 2003; Kojima et al., 2011); however,
direct photoreception in the mammalian brain has not been demonstrated.

Direct photoreception in the deep brain is common in non-mammalian vertebrates (Fischer
et al., 2013; Kokel et al., 2013; Nakane et al., 2014), however, its relationship with physiological
functions is largely unknown. Recent demonstration of the involvement of deep brain opsin
photoreceptors in the control of seasonal reproduction in birds (Nakane et al., 2010, 2014) and
in motor responses in larval zebrafish (Fernandes et al., 2012; Kokel et al., 2013; Friedmann et al.,
2015) supports further functional studies in non-mammalian models. Ambient light conditions
are known to regulate physiologies in teleost fish, e.g., skin color change (Shiraki et al., 2010),
eye response (Menger et al., 2005), locomotion-related behaviors (Cahill et al., 1998; Hurd et al.,
1998; Appelbaum et al., 2009; Blaser and Rosemberg, 2012), reproduction (Migaud et al., 2010),
and development (Dekens et al., 2003; Dekens and Whitmore, 2008; Blanco-Vives et al., 2011;
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Villamizar et al., 2014). As we will discuss, multiple light-
dependent physiologies in teleost fish are supposedly under
the control of opsin photoreceptors in different brain regions.
However, an overall distribution of different deep brain opsin
photoreceptors is available only in larval zebrafish (Fernandes
et al., 2013), which appears somewhat different compared
with that in adults. Furthermore, although several studies
have mapped opsin localization in the brain of adult teleosts,
as discussed later, there are no functional studies. Here, we
review the highlights of deep brain opsins identified thus far,
which will lead to potential functional information of the brain
photoreceptor system.

DEEP BRAIN OPSIN PHOTORECEPTORS

Proof of concept for the deep brain photoreception in vertebrates,
dated over a century ago, is attributed to an observation done
by Frisch (1911). Frisch (1911) showed that European minnow
lacking the eyes and pineal remain capable to change their
skin color according to the change in ambient light, while
a crude lesion in their diencephalon abolishes the response.
Similarly, in house sparrows, an injection of India ink under
their scalp abolishes their testicular growth responding to the
change in photoperiod (Menaker and Keatts, 1968; Menaker
et al., 1970). Furthermore, direct illumination through a fiber
optic cable into the hypothalamus stimulates testicular growth
in blinded ducks (Benoit and Ott, 1944). In the Japanese quail,
brain tissues underneath the skull exhibit rhodopsin-like spectral
sensitivity (Foster et al., 1985; Oishi and Ohashi, 1993). In non-
mammalian vertebrates, with relatively light-permissive skull and
skin, reaching of light signals to deep brain opsin photoreceptors
is feasible (Hartwig and Veen, 1979).

Expanding genomic information and cloning efforts have
discovered several groups of non-visual opsins expressed in the
deep brain of vertebrates, so-called deep brain opsins. There
are four subfamilies of deep brain opsins, each of which shares
only 25–42% amino acid identity with existing opsin family
members (Peirson et al., 2009). Most deep brain opsins present
in non-mammalian vertebrate classes (i.e., birds, amphibians,
reptiles, and fish) are also found in the mammalian genome:
encephalopsin/panopsin (Opsin3), melanopsin (Opsin4), and
neuropsin (Opsin5) (Blackshaw and Snyder, 1999; Provencio
et al., 2000; Tarttelin et al., 2003; Kojima et al., 2011). Among
the deep brain opsins, the earliest found is vertebrate ancient
(VA)-opsin in the Atlantic salmon (Soni and Foster, 1997). VA-
opsin has an elongated variant, VA-long (VAL)-opsin, initially
reported in the zebrafish (Kojima et al., 2000); and later found
as a common deep brain opsin in non-mammalian species
(Halford et al., 2009). Most deep brain opsins are expressed
in the retina and brain, although some [e.g., teleost-multiple-
tissue (TMT)-opsin] are also expressed in peripheral tissues
(Provencio et al., 1998; Moutsaki et al., 2000, 2003; Philp et al.,
2000; Bellingham et al., 2002; Tarttelin et al., 2003; Kojima et al.,
2011).

The presence of deep brain opsins should render brain
cells direct photosensitivity. In fact, studies have shown

photosensitivity of brain regions in teleosts in vitro and in vivo
(Fischer et al., 2013; Kokel et al., 2013; Moore and Whitmore,
2014); also, intrinsic photosensitivity of Opsin5-positive neurons
in birds in vitro (Nakane et al., 2014). While vertebrate visual
opsins are sensitive to red, green, and blue spectrums of light
(Yokoyama, 2000), deep brain opsins have distinct spectral
sensitivity to blue–green spectrum and some (e.g., Opsin5) to
ultraviolet light (Kojima et al., 2008; Nakane et al., 2010; Matos-
Cruz et al., 2011; Sato et al., 2011; Fischer et al., 2013).

OPSIN LOCALIZATION IN THE BRAIN OF
TELEOST FISH

Among many brain regions, particularly the thalamus of
adult teleosts expresses several deep brain opsin genes: va-
opsin, val-opsin (valop), tmt-opsin (tmtops), and opsin4 (opn4)
isoforms. In the zebrafish thalamus, two isoforms of the
valop genes (valopa and valopb) are actually co-expressed
in single neurons constituting a major valop cell group
located in the thalamic nuclei of the zebrafish (Hang et al.,
2014). It is interesting to know that a newly defined brain
region, the intercalated thalamic nucleus, contains the valopa
and valopb co-expressing neurons (Hang et al., 2014). In
addition, tmtops1b-expressing neurons might be present in
the same thalamic nucleus in the zebrafish (Fischer et al.,
2013). Furthermore, opn4m1a1/m1a2-expressing cells are co-
localized with va-opsin expressing neurons in the dorsal
thalamus of the Atlantic salmon (Sandbakken et al., 2012).
The expression of multiple deep brain opsins in different fish
species suggests that the thalamus is a major brain region for
photoreception.

In addition to the thalamus, multiple cell groups expressing
deep brain opsins are distributed in the rostral brain regions.
In the telencephalon, no studies have reported the expression
of deep brain opsins, whereas the granular layer of the olfactory
bulb was shown to contain tmtops1b-expressing neurons in the
medaka fish; and the preoptic area contains tmtops2-expressing
neurons (Fischer et al., 2013). In the diencephalon, the
habenula contains va-opsin and opn4x1a/x1b1/x1b2-expressing
neurons, and the supraoptic/chiasmatic nucleus contains
opn4x1b1/x1b2-expressing neurons in the Atlantic salmon and
the Atlantic cod (Drivenes et al., 2003; Sandbakken et al., 2012).
Furthermore, the lateral part of the lateral tuberal nucleus
contains opn4m1a1/m1a2-expressing neurons in the Atlantic
salmon (Sandbakken et al., 2012). The existence of multiple opsin
photoreceptors suggests predominant photoreceptor activity and
function in the rostral brain region.

The caudal brain regions including the midbrain and the
hindbrain also contain deep brain opsins for photoreception
in particular regions. In the midbrain, the Edinger–Westphal
nucleus in the zebrafish contains a small number of valopb-
expressing neurons (Hang et al., 2014). In the same nucleus,
tmtops1b- and tmtops2-expressing neurons might co-exist
(Fischer et al., 2013). The optic tectum contains tmtops1b-
expressing neurons in the medaka fish, and the semicircular
torus contains tmtops3a-expressing neurons (Fischer et al., 2013).
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In the hindbrain, the superior raphe contains valopa-expressing
neurons in the zebrafish, and the intermediate reticular formation
(IMRF) contains valopb-expressing neurons (Hang et al., 2014).
The IMRF might also contain tmtops1b- and tmtops2-expressing
neurons (Fischer et al., 2013). Expression of deep brain opsins
in the cerebellum has not been reported. Generally, the number
of opsin-expressing neurons in each group is small in the caudal
brain of teleosts. The small groups of opsin photoreceptors might
represent subfunctional involvement of photoreceptor activity in
the caudal brain region.

The current knowledge indicates that the majority of opsin-
expressing neurons in adult teleosts are located in the thalamus,
while there are many other minor photoreceptive brain regions
(Figure 1A).

NEUROCHEMICAL HETEROGENEITY OF
DEEP BRAIN OPSIN PHOTORECEPTORS
IN TELEOSTS

The brain of adult teleosts has evolutionary conserved brain
regions involving distinct neurotransmitter or neuropeptide
systems, each of which is specialized for a particular physiological
function. Neurons expressing different deep brain opsins in fish
species differ in their neurochemical properties (Table 1). In the
zebrafish, the val-opsin cell group in the thalamus is GABAergic;
that in the Edinger–Westphal nucleus is thyrotropin-releasing
hormone TRH-ergic; and that in the superior raphe is
serotonergic (Hang et al., 2014). In the Atlantic salmon, the
opsin4 cell group in the habenula is serotonergic; that in the

FIGURE 1 | Opsin localization and photosensitivity in the brain of adult teleost fish. (A) An illustration mapping the neuronal groups that express deep brain
photopigments, VA-opsin, VAL-opsin, Opsin4, and TMT-opsin (indicated by color dots). (B) An illustration mapping the diurnal rhythmicity (of clock-related gene
expression; green dots) and light-sensitivity (of c-fos expression; orange dots), based on a previous work by Moore and Whitmore (2014). Red dotted lines in (A,B)
divide the rostral and caudal regions of the adult brain, based on a previous work by Hang et al. (2015). Anatomical nomenclature used in this review are according
to a brain atlas of adult zebrafish (Wullimann et al., 1996). Abbreviation (for A): Cb, cerebellum; Di, diencephalon; HB, hindbrain; MB, midbrain; OB, olfactory bulb;
ON, optic nerve; Tel, telencephalon; TeO, optic tectum; (for B): A, anterior thalamic nucleus; ATN, anterior tuberal nucleus; CCe, corpus cerebellum; CM, corpus
mamillare; CP, central posterior thalamic nucleus; Dc, central zone of dorsal telencephalic area; Dd, dorsal zone of dorsal telencephalic area; DIL, diffuse nucleus of
the inferior lobe; Dl, lateral zone of dorsal telencephalic area; DP, dorsal posterior thalamic nucleus; DTN, dorsal tegmental nucleus; ECL, external cellular layer of
olfactory bulb; Ha, habenula; Hc, caudal zone of periventricular hypothalamus; Hd, dorsal zone of periventricular hypothalamus; Hv, ventral zone of periventricular
hypothalamus; ICL, inner cellular layer of olfactory bulb; LCa, caudal lobe of the cerebellum; LH, lateral hypothalamus; LX, vagal lobe; NLV, nucleus of lateral
lemniscus; PGZ, periventricular gray zone; PP, periventricular pretectal nucleus; PPa, parvocellular preoptic nucleus, anterior part; PPp, parvocellular preoptic
nucleus, posterior part; PTN, posterior tuberal nucleus; SOC, supraoptic/chiasmatic nucleus; TeO, optic tectum; TL, longitudinal torus; TPp, periventricular nucleus
of posterior tuberculum; Val, lateral division of valvula cerebelli; Vam, medial division of valvula cerebelli; VL, ventrolateral thalamic nucleus; VM, ventromedial thalamic
nucleus; Vp, posterior nucleus of ventral telencephalic area; Vs, supracommissural nucleus of ventral telencephalic area; Vv, ventral nucleus of ventral telencephalic
area; ZL, zone limitans.
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TABLE 1 | Brain region-specific opsin photoreceptors in adult teleosts.

Brain region Opsin Fish species Neuronal localization
(opsin isoform)

Neuronal marker and
hormone (specific
region)

Reference

Telencephalon
(Rostral forebrain)

TMT-opsin Medaka
Oryzias latipes

ICL
(tmtops1b)

– Fischer et al., 2013

VA-opsin Atlantic salmon
Salmo salar

Ha, Th – Philp et al., 2000;
Sandbakken et al., 2012

VAL-opsin Zebrafish
Danio rerio

Th∗

(valopa/valopb)
GAD67 Kojima et al., 2000;

Fischer et al., 2013;
Hang et al., 2014

Medaka Th – Fischer et al., 2013

Diencephalon
(Caudal forebrain)

Opsin4 Atlantic salmon Ha (opn4x1a/x1b1/x1b2),
SOC (opn4 x1b1/x1b2), Th
and NLTl
(opn4m1a1/m1a2)

TH (SOC), 5HT (Ha),
CRF and nNOS (NLTl)

Sandbakken et al., 2012

Atlantic cod
Gadus morhua

Ha (opn4x1a), SOC
(opn4x1b)

– Drivenes et al., 2003

TMT-opsin Zebrafish Th (tmtops1b) – Fischer et al., 2013

Medaka Th (tmtops1b/2),
POA (tmtops2)

– Fischer et al., 2013

Mesencephalon
(Midbrain)

VAL-opsin Zebrafish EW∗ (valopb) TRH Hang et al., 2014

Medaka DTN – Fischer et al., 2013

TMT-opsin Zebrafish DTN (tmtops2b/3a) and
TeO (tmtops1b)

ChAT (TeO) Fischer et al., 2013

Medaka DTN and TeO (tmtops1b/2),
TSc (tmtops3a)

ChAT (TeO) Fischer et al., 2013

Rhombencephalon
(Hindbrain)

VAL-opsin Zebrafish SR (valopa), IMRF∗ (valopb) pet1 (SR) Hang et al., 2014

Medaka NVIIm ChAT Fischer et al., 2013

TMT-opsin Zebrafish NVIIm (tmtops1b/2a) ChAT Fischer et al., 2013

Medaka NVIIm (tmtops1b/2) ChAT Fischer et al., 2013

Hyphens (−) indicate information not available. Note that VA-opsin in the zebrafish was reported to have no photosensitivity, although VA-opsin in the Atlantic salmon
is blue sensitive; VAL-opsin (valop) is green sensitive; Opsin4 (opn4) and TMT-opsin (tmtops) are blue sensitive. Asterisks (*) indicate the localization of valop cells in
those regions are reinterpreted by Hang et al. (2014). GAD67 is a marker for GABAergic neurons; TH, tyrosine hydroxylase or dopaminergic neurons; ChAT, choline
acetyltransferase or cholinergic neurons; pet1, raphe serotonergic neurons. 5HT is 5-hydroxytryptamine or serotonin; CRF, corticotrophin-releasing factor; nNOS, nitrite
oxide synthase; TRH, thyrotropin-releasing hormone. Anatomical nomenclature: DTN, dorsal tegmental nucleus; EW, Edinger–Westphal nucleus; Ha, habenula; ICL, inner
cellular layer of olfactory bulb; IMRF, intermediate reticular formation; NLTl, lateral part of the lateral tuberal nucleus; NVIIm, facial motor nucleus; POA, preoptic area; SOC,
supraoptic/chiasmatic nucleus; SR, superior raphe; TeO, optic tectum; Th, thalamus; TSc, central nucleus of torus semicircularis.

supraoptic/chiasmatic nucleus is dopaminergic; and that in the
lateral part of the lateral tuberal nucleus consists of neurons
expressing either corticotrophin-releasing factor or neuronal
nitric oxide synthase (Sandbakken et al., 2012). In the medaka
fish, the tmt-opsin cell group in the optic tectum and the facial
motor nucleus are cholinergic (Fischer et al., 2013).

The neurochemical heterogeneity of deep brain opsin
photoreceptors in adult teleosts supports the idea that each of
them in different brain regions is involved in distinct light-
dependent physiologies.

DIURNAL RHYTHMICITY AND LIGHT
SENSITIVITY IN THE BRAIN OF TELEOST
FISH

The activity of opsin photoreceptors in the brain of adult teleosts
may vary according to time of day and ambient light conditions.
Our recent work in the zebrafish revealed that the expression of

the valop genes in the thalamus is rhythmic and suppressed by
light, while that in the midbrain and the hindbrain is arrhythmic
and not affected by light (Hang et al., 2015). This suggests region-
dependent diurnal rhythmicity and light sensitivity in the brain.
In fact, the expression of a rhythmic clock gene per3, light-
responsive clock genes cry1a and per2, and a neuronal activity
marker gene c-fos vary among various nuclei of adult zebrafish
(Moore and Whitmore, 2014).

Figure 1B illustrates locations of diurnal rhythmicity and
light sensitivity in the brain of adult zebrafish, which are mostly
present in the rostral brain regions, however, less in the caudal
brain regions. This is in agreement with the general localization
patterns of deep brain opsin photoreceptors currently known
(Figure 1A), and arrhythmic expression of the valop genes seen
in the caudal brain regions in the zebrafish. Indeed, the diurnal
rhythmicity and the light sensitivity of the valop genes in the
thalamus of zebrafish shown in Hang et al. (2015) align with the
diurnal expression of per3 and light-induced c-fos expression in
the thalamus. Besides, when observe closely, the adult zebrafish
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head has the upper scalp with a less pigmented anterior part
(Vargas et al., 2011), which allows a wide range of the wavelength
and a large amount of light reaching to the rostral brain regions
underneath. Taken together, opsin photoreceptors located in the
rostral and caudal brain regions may be regulated differently
and serve different functionalities especially in the zebrafish
physiology.

FUNCTIONAL DIVERGENCE OF DEEP
BRAIN OPSIN PHOTORECEPTORS IN
TELEOSTS

The thalamus is a major photoreceptive brain region.
Studies suggest its involvement in the control of forebrain
(telencephalon) activity linking to a light-avoidance behavior in
the zebrafish (Lau et al., 2011; Mueller, 2012). The telencephalon
of adult teleost fish shows light sensitivity, yet no opsin
expressions have been reported (Figure 1), and thus may receive
light information from the photoreceptive thalamus. One of the
major neurotransmitters GABA is associated with the thalamic
valop cell group in the zebrafish, which is regulated by daily
cycles and light (Hang et al., 2014, 2015). In contrast to that,
distinct valop cell groups in the caudal brain are not affected
by light. The evidence suggests functional divergence between
the photoreceptors in the thalamus and those in other brain
regions.

Opn4-expressing neurons in the habenula are proposed to
be involved in an unidentified function of the parapineal
organ; while dopaminergic opn4-expressing neurons in the
supraoptic/chiasmatic nucleus and the lateral part of the
lateral tuberal nucleus might have a role in multiple pituitary
functions related to photic control of reproduction in teleost
fish (Sandbakken et al., 2012). Cholinergic tmtops-expressing
neurons reported in the optic tectum and facial motor nucleus
might be photoreceptive interneurons or motorneurons (Fischer
et al., 2013). TRH-(thyrotropin-releasing hormone)-ergic valop-
expressing neurons in the Edinger–Westphal nucleus might
mediate a light-dependent eye response; while serotonergic
valop-expressing neurons in the superior raphe could regulate
anxiety-like behavior depending on ambient light conditions
(Hang et al., 2014). Furthermore, in larval zebrafish, Opsin4 in
the hypothalamus and unidentified opsins in the hindbrain are
involved in photic motor response (Fernandes et al., 2012; Kokel
et al., 2013). These photoreceptive brain regions reported in
larvae might have similar functions in adult. The association of
deep brain photoreceptors with distinct neurochemical systems
supports their involvement in multiple physiologies in teleosts.

The diurnal and photic regulation of the valop genes in the
thalamus demonstrated in Hang et al. (2015) is in agreement
with the idea that deep brain opsin photoreceptors mediate
time- and light-dependent physiology to adjust to environmental
changes. It is likely that other opsins (i.e., TMT-opsin and
Opsin4) co-localized in the thalamus of adult teleosts are also
under the control of daily cycles and light; while opsins in other
brain regions may or may not. The current neuroanatomical
organization of deep brain opsins and photosensitivity in adult

teleosts supports the complexity of the brain photoreceptor
system to serve non-visual functions of light. However, although
functional roles of deep brain opsins in larval zebrafish have been
reported, no studies to date have directly shown functional roles
of deep brain opsins in adult teleosts.

EVOLUTIONARY PERSPECTIVES

So far, researchers studying the mammalian non-visual
photoreception mainly examined the roles of Opsin4-expressing
retinal ganglion cells (RGCs). RGCs innervate hypothalamic
regions, especially the suprachiasmatic nucleus (SCN) (Hattar
et al., 2002), and other brain regions including the olivary
pretectal nucleus (OPN) (Hattar et al., 2006; Baver et al., 2008).
The SCN is a master pacemaker (biological clock) in mammalian
brain known to govern daily rhythms in physiological activities
(e.g., melatonin secretion by the pineal, reproduction, and
sleep). The OPN relays inputs to the Edinger–Westphal nucleus
(EW), which is known to control the pupillary light reflex
(Kozicz et al., 2011). In addition, the habenula (an indirect
target of mammalian RGCs) exhibits light-dependent rhythmic
activity (Zhao and Rusak, 2005; Hattar et al., 2006), and it is
known to direct raphe serotonergic regulation of aversive mood
(Hikosaka, 2010). Genetic ablation studies in mice confirmed
the roles of retinal Opsin4 in circadian and pupil responses
to light as well as mood (Lucas et al., 2001, 2003; Panda et al.,
2002, 2003; Ruby et al., 2002; Hattar et al., 2003; LeGates et al.,
2012). Note that the SCN, EW, habenula, and the raphe are also
listed as photoreceptive brain regions in teleosts. Mammalian
retinal Opsin4-expressing cells also innervate the thalamus,
which may serve as an intermediate regulator involved in
non-image-forming functions of light (Noseda et al., 2010;
Hammer et al., 2015). As shown in teleosts, the thalamus is a
major photoreceptive region that can mediate time- and light-
dependent physiology. Taken together, while neuronal systems
involved in non-visual functions of light may be evolutionarily
light sensitive in vertebrates, intrinsic photosensitivity of the
neuronal systems was replaced by the neuronal input from retinal
photoreceptors in mammals. Therefore, studying deep brain
opsin photoreceptors in teleost fish will help identify neurons
responsible for non-visual light responses in mammals.

In birds, the hypothalamus is considered to be a major
photoreceptive brain region, since it contains multiple deep
brain opsins, i.e., VA-opsin, Opsin4, and Opsin5 (Halford et al.,
2009; Kang et al., 2010; Nakane et al., 2010). These opsins in
the hypothalamus have been proposed to play a role in the
control of seasonal reproduction in birds (Halford et al., 2009;
Kang et al., 2010; Nakane et al., 2010). The hypothesis was
further supported by recent reports showing the potential Opsin5
regulation of thyroid-stimulating hormone in the pars tuberalis
of the pituitary, which triggers photoperiodic response in the bird
gonads (Nakane et al., 2014); and the co-expression of VA-opsin
with gonadotropin-releasing hormone (GnRH), a key regulator
of reproduction in the bird hypothalamus (Garcia-Fernandez
et al., 2015). It is unknown whether multiple opsins co-existing
in the bird hypothalamus co-operate to regulate reproduction
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or have distinct roles. In most vertebrates except for
birds, kisspeptin neurons play a crucial role to transmit
photoperiodic information to the hypothalamic GnRH-
mediated reproductive system (Parhar et al., 2012). It will
be interesting to examine whether GnRH neurons or the
kisspeptin neurons are directly photoreceptive in teleost fish,
or they are innervated by other photoreceptive nuclei (e.g., the
thalamus).

The major brain regions and the neurochemical systems
associated with non-visual functions of light are fundamentally
conserved among vertebrates. Light-dependent alteration
in brain neurotransmitter systems (e.g., hypothalamic
dopaminergic and raphe serotonergic) involved in light-
dependent physiologies (e.g., adjusting skin pigmentation and
depression-like behaviors) has been reported in Xenopus and
rats (Dulcis and Spitzer, 2008; Gonzalez and Aston-Jones,
2008; Dulcis et al., 2013). However, the involvement of non-
visual (deep brain) opsin photoreceptors in that remains largely
unknown. In Xenopus, only Opsin4 photoreceptor was localized
especially in the supraoptic/chiasmatic nucleus (Provencio
et al., 1998). While rod/cone-like-opsin and (pineal) pin-
opsin immunoreactivity in the hypothalamus was subsequently
reported in amphibians and reptiles, information about known
deep brain opsin photoreceptors localized in their brain is
limited (Yoshikawa et al., 1998; Okano et al., 2000; Vigh
et al., 2002; Pasqualetti et al., 2003). In mice, a study mapped
the distribution of Opsin3 photoreceptors in the cortex,
hypothalamus, thalamus, cerebellum, and the spinal cord
(Blackshaw and Snyder, 1999). How light can reach directly
to deep brain photoreceptors through the mammalian skull
remains questionable, but there might be an alternative pathway.
In fact, through the ear canal, promising effects of transcranial
light on plasma monoamine levels and Opsin3 expression in
the brain of adult mice was recently observed (Flyktman et al.,
2015). Note that some Opsin3-expressing brain regions (i.e.,
hypothalamus and thalamus) are photoreceptive brain regions

in teleosts. Besides, a recent study identified novel vertebrate
opsins and showed their expression in brain regions including
the cerebellum of adult zebrafish (Davies et al., 2015). Further
studies in teleosts will help elucidate conserved mechanisms that
non-visual (deep brain) opsin photoreceptors mediate time-
and light-dependent physiologies involving neurotransmitter
systems.

CONCLUDING REMARKS

Deep brain opsin photoreceptors in multiple brain regions
involving conserved neurochemical systems can mediate the
control of time- and light-dependent physiologies in adult teleost
fish. Knowing the detailed neuroanatomical organization of
individual deep brain opsins in vertebrates (especially non-
mammals) would help advance our understanding of the
physiological importance of non-visual photoreception.
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