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This paper describes a new resource, HDBR (Human Developmental Biology Resource)
Expression, for studying prenatal human brain development. It is unique in the age range (4 post
conception weeks [PCW] to 17PCW) and number of brains (172) studied, particularly those under
8PCW (33). The great majority of the samples are karyotyped. HDBR Expression is also unique in
that both the large-scale data sets (RNA-seq data, SNP genotype data) and the corresponding RNA
and DNA samples are available, the latter via the MRC-Wellcome Trust funded HDBR1(Gerrelli
et al., 2015). There are 557 RNA-seq datasets from different brain regions, the majority between
4 and 12PCW. During this time the major brain regions are established and the early stages of
cortex development occur (Bystron et al., 2008; O’Rahilly and Muller, 2008). In addition, there are
42 RNAseq data sets from spinal cord and 29 from cerebral choroid plexus. There are also 243
additional tissue specimens in paraffin wax blocks available for individual gene expression studies.
For almost all of the brains and specimens in wax blocks there are corresponding SNP genotype
data.

Large-scale/high-throughput studies, such as next-generation sequencing, are providing raw
material in a wide variety of research fields (for review of concepts and methodologies of RNA-
seq, see Shin et al., 2014). Studies of human development are hampered by difficulties in obtaining
tissue which means that publicly available large-scale data sets are particularly useful because data
can be used and re-used (Kang et al., 2011; Zhang et al., 2011; Fietz et al., 2012; Miller et al., 2014;
Darmanis et al., 2015).

MATERIALS AND METHODS

Human Tissues
Human embryonic and fetal tissues were obtained from the MRC/Wellcome-Trust funded
Human Developmental Biology Resource. HDBR is a tissue bank regulated by the UK Human
Tissue Authority (HTA2) and operating in line with the relevant HTA Codes of Practice. Tissue
samples are collected with appropriate maternal written consent and approval from the NRES
Committee North East - Newcastle and North Tyneside 1 (REC reference 08/H0906/21+5) or
NRES Committee London-Fulham (REC reference 08/H0712/34+5).

1www.hdbr.org.
2www.hta.gov.uk.
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FIGURE 1 | (A,B) Illustrate brain regions at two developmental stages: (A) 7 PCW. Regions of the brain plus the spinal cord have been defined in a 3 dimensional (3D)

model of a Carnegie Stage 19 (CS19) embryo generated by optical projection tomography (Sharpe et al., 2002). Red—telencephalon, green—diencephalon,

blue—midbrain, purple—hindbrain, deep red—spinal cord, gray—rest of head, and body. (B) 10 PCW. A 3D model of the brain and part of the spinal cord was

generated by magnetic resonance imaging and brain regions defined. The front of the brain is on the left. In the image, the left cerebral cortex has been removed to

show the inner view of the right cerebral cortex plus the inner structures of the telencephalon (choroid plexus and basal ganglia) as well as structures that lie between

the two cerebral cortexes (diencephalon and midbrain) which are fully or partially hidden when looking at a whole brain of this age. Red—cerebral cortex,

gray—cerebral choroid plexus, orange—basal ganglia, green—diencephalon, blue—midbrain, purple—cerebellum and pons, pink—medulla oblongata, deep

red—upper part of spinal cord. For both images, the 3D models were visualized and brain regions were defined using MAPaint, custom-designed software from the

Edinburgh Mouse Atlas Project team3. (C) Shows principal component analysis (PCA) analysis carried out on all RNAseq datasets. Choroid plexus samples (khaki

green) provide the most distinct set. Forebrain (green) and hindbrain (blue) samples separated out but with some slight overlap. Midbrain samples (purple) and

unidentified brain samples (red) fell within the forebrain and hindbrain clusters. (D) Shows Venn diagrams comparing genes that are differentially expressed in a subset

of RNAseq data sets from cortical samples at 9 and 12 PCW. The upper panel compares the top 200 genes expressed differentially between 9 and 12 PCW (anterior,

central, posterior, and temporal cortex samples grouped for each age) where the expression differences had the lowest p-values with the top 200 differentially

expressed genes with the largest fold changes. There were 81 genes that were identified as differentially expressed between 9 and 12 PCW where the expression

differences had both the lowest p-values and showed the highest fold change. All 200 genes with the largest fold change had a p-value < 0.05. The lower panel

compares genes differentially expressed between anterior and posterior cortex at the two stages. At 9 PCW, 146 genes were differentially expressed between the

anterior and posterior cortex. At 12 PCW, 185 genes were differentially expressed between the anterior and posterior cortex. 17 of these genes were differentially

expressed between the anterior and posterior cortex at both 9 and 12 PCW. The lists of differentially expressed genes corresponding to those summarized in the

upper and lower panels are shown in Supplementary Tables 3, 4, respectively, on the HDBR website.

Tissues were collected over a period of 11 years (February
2003–January 2014) with the majority (82%) collected between
January 2010 and January 2014 (01/28/2014 last collection
date). Tissues were either fixed at 4◦C in 4% paraformaldehyde

3http://www.emouseatlas.org/emap/analysis_tools_resources/software/eMAP-

apps.html.

and embedded in paraffin wax following standard protocols

(Bussolati et al., 2011) or dissected (as described below) and

tissues frozen at −80◦C for RNA and DNA preparation. For

the embryos and fetuses that were fixed and embedded, a small

sample of the embryonic-derived part of the placenta or skin

tissue was taken for DNA preparation.
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There were three sets of tissues: (a) samples of embryonic-
derived placenta or skin from embryos or fetuses that had been
fixed and paraffin wax embedded. These tissues were used solely
for DNA preparation and SNP genotyping. (b) Brain tissues
where each sample was subdivided and part used for RNA
preparation and part used for DNA preparation, followed by
RNA-sequencing and SNP genotyping respectively. (c) Brain
tissues where each sample was subdivided and part used for
RNA preparation and part used for DNA preparation, followed
only by RNA-sequencing. This meant that, where tissues from
several different brain regions (and/or spinal cord, and/or
choroid plexus) were collected from individual human embryos
or fetuses, SNP genotyping was only carried out once. However,
DNA was prepared separately from each of the regions sampled
for a particular individual embryo or fetus, and these are available
for future studies, e.g., epigenetic analysis (Reilly et al., 2015).

Brain Tissue Dissections
The dissection protocol depended on the developmental stage
of the embryo or fetus, reflecting the size of the brain, and the
state of disruption of the tissue. The aim was to dissect brains
into forebrain, midbrain and hindbrain and at later stages, to
further dissect the forebrain into: (1) telencephalon (left and right
in some cases) and diencephalon or (2) cortex (left and right in
some cases; temporal lobe removed and it and the remaining
cortex divided into strips depending on size), basal ganglia
and diencephalon; hindbrain (cerebellum and medulla). The
midbrain was collected as a single sample except in a few cases
where it was dissected into left and right parts. Figures 1A,B
show brains at two developmental stages (7PCW and 10PCW,
respectively) highlighting the areas that were dissected. Where
the cortex was divided into strips, this was done evenly across
the cortex. In most cases five strips were generated but in some
cases this varied because of the size of the brain (Ip et al., 2010).
In all cases the most anterior strip was labeled 1 and the strips
numbered sequentially from there toward the most posterior
strip (usually labeled 5).

We also collected 29 cerebral choroid plexus samples and 42
spinal cord samples. There are also 99 samples where the region
of brain could not be determined and these are simply labeled
“brain fragments.”

The tissues were sent to AROS Applied Biotechnology4 who
prepared DNA and RNA and carried out SNP genotyping and
RNA-sequencing as described below.

DNA and RNA Preparation
DNA was extracted from 435 human embryonic and fetal tissue
samples on the QIAsymphony SP using manufacturer’s5 protocol
DNA HC. DNA was quantified on the QuBit system (specific for
dsDNA).

RNA was extracted from 705 human embryonic and fetal
tissue samples. After lysis using the TissueLyser and removal
of fat from the sample with chloroform, RNA (including small
RNAs) was purified on the QIAsymphony SP using protocol
miRNA v05. The RNA yield was estimated using Nanodrop A260

4http://arosab.com.
5https://www.qiagen.com/gb/.

measurement and the quality evaluated for approximately 15% of
the samples using an Agilent Bioanalyzer. Seventy samples had
either too little RNA or the RNA was of insufficient quality. A
further 3 samples failed the quality control tests at the library
preparation stage (see below), 4 samples were excluded because
they did not match their corresponding DNA genotyping data
meaning that RNAseq datasets were obtained from 628 tissue
samples in total.

SNP Genotyping
SNP genotyping was carried out according to the Illumina
Infinium LCG Quad Assay protocol6. Briefly, DNA was
denatured, amplified and then hybridized to Illumina’s
HumanOmni5-Quad BeadChip (HumanOmni5-4v1_B).
Array-based single base primer extension was performed using
labeled nucleotides (C and G nucleotide were biotin-labeled
while A and T were dinitrophenyl-labeled). Then, after washing
and drying, the BeadChips were imaged using the Illumina
iScan system. After scanning the idat files were imported into
the Illumina GenomeStudio software for genotyping calls and
gender calls (average call rate 98.3%).

RNA-Sequencing and Analysis
cDNA was generated from the RNAs using Illumina’s Stranded
mRNA Sample Prep Kit followed by library preparation following
Illumina’s guidelines for the TruSeq Stranded mRNA LT sample
prep kit. Four hundred ng of total RNA was used as the input for
each sample. The concentration of each library was determined
using the KAPA qPCR kit (KK4835) and triplicate reactions using
three independent 106-fold dilutions of the libraries. The size
profile of approximately 15% of the libraries was evaluated using
an Agilent Bioanalyzer DNA 1000 chip. The average final library
size was between 272 and 467 bp (includes 120 nucleotides of
adapter sequence). The libraries were sequenced on an Illumina
HiSeq2000.

RNA-seq data were processed and analyzed to identify
differentially expressed genes. The quality of sequencing reads
was first checked with FastQC7. Poly-N tails were trimmed off
from reads with an in house Perl script. The 12 bp on the left
ends and 4 bp on the right ends of all reads were clipped off with
Seqtk8 to remove biased sequencing bases observed in FastQC
reports. Low quality bases (Q < 30) and standard Illumina
(Illumina, Inc. California, U.S.) paired-end sequencing adaptors
on 3′ ends of reads were trimmed off using autoadapt9 and only
those that were at least 20 bp in length after trimming were
kept. The high quality reads were then mapped to the human
reference genome hg38 with Tophat2 (Kim et al., 2013). Reads
aligned to genes were counted with HTSeq-count (Anders et al.,
2015). Differentially expressed genes were then identified with
Bioconductor (Gentleman et al., 2004) package DESeq2 (Love
et al., 2014).

6http://support.illumina.com/content/dam/illumina-support/

documents/documentation/chemistry_documentation/infinium_assays/

infinium_lcg_quad_assay/infinium-lcg-quad-assay-guide-15025908-d.pdf.
7http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
8https://github.com/lh3/seqtk.
9https://github.com/optimuscoprime/autoadapt.
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HDBR EXPRESSION RESOURCE

Table 1 summarizes the developmental stages and tissue regions
for which there is RNA-seq data. For each individual tissue
sample there is information on the name of the sample (e.g.,
HDBR251), the ID number of the embryo or fetus which it
came from (e.g., 1406), the developmental stage and karyotype,
all of which can be found in the sample attributes and
variables accompanying the data sets uploaded to ArrayExpress10

(Kolesnikov et al., 2015). For most of the samples there is
also information on the time to collection and this, with the
information on each sample, can also be found in Supplementary
Table 1 on the HDBR website11. The ID number of the embryo
or fetus enables all the RNA-seq data sets from a single embryo
or fetus to be identified. Similarly this ID number links to the
corresponding SNP genotyping data. There are also ID numbers
for embryos and fetuses for which there is SNP genotyping data
and a corresponding wax block available for individual gene
expression analyses. Each data entry in the SNP genotyping data
repository also has the information for the corresponding tissue
sample from which DNA was prepared (placenta or skin) as well
as what tissues are in the wax block. The information on all the

10https://www.ebi.ac.uk/arrayexpress/.
11http://www.hdbr.org.

SNP genotype data can also be found in Supplementary Table 2
on the HDBR website.

The RNAseq data files are all fastq format and the raw
data files for the SNP genotype have been uploaded. Both
the RNAseq and SNP genotyping files are identified by the
sample name which links to the sample information in the
“sample attributes and variables” tab in ArrayExpress and
in the Supplementary Tables on the HDBR website. The
experiment number for the RNAseq data set is E-MTAB-
4840 and for the SNP dataset is E-MTAB-4843. The RNAseq
data set will be incorporated into the European Bioinformatics
Institute (EBI) Expression Atlas12 which is EBI’s value-added
database for high-quality data from large microarray and
RNA-sequencing experiments. In the latest version, Expression
Atlas analyses selected large RNA sequencing experiments
to produce “baseline expression,” the abundance of each
gene and splice site variant from the individual biological
components (e.g., tissues or cells) used in the experiment
(Petryszak et al., 2014). The HDBR RNAseq dataset will
provide baseline expression from different brain regions across
a substantial time period of early human development (4 to 17
PCW).

12http://www.ebi.ac.uk/gxa/.

TABLE 1 | Developmental stage and tissue distribution of RNAseq datasets.

Stage (post conception week) 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 Any stage

Brain 2 8 6 26 171 81 27 62 77 31 19 12 22 10 2 1 557

Forebrain 1 2 1 1 74 57 17 46 52 14 8 10 16 6 305

Telencephalon 48 46 11 38 45 10 7 10 15 6 236

Cortex 16 28 4 18 25 6 4 8 10 3 122

Temporal lobe 1 11 2 8 10 1 2 2 3 2 42

Basal ganglia 15 5 1 5 2 3 1 1 33

Whole telencephalon 16 2 1 1 1 21

Telencephalon fragments 4 6 8 18

Diencephalon 19 6 4 5 3 3 1 1 42

Whole forebrain 1 2 1 1 3 3 2 2 3 18

Forebrain fragments 4 2 1 1 1 9

Midbrain 1 2 1 1 22 8 3 4 10 3 1 56

Hindbrain 2 1 3 42 15 5 8 11 4 2 3 1 97

Cerebellum 17 5 2 4 4 2 1 1 36

Pons 1 1 2

Medulla oblongata 14 4 2 2 0 2 1 25

Whole hindbrain 2 1 3 6 5 1 2 3 2 29

Hindbrain fragments 5 4 5

Brain fragments 2 3 21 33 1 2 4 4 10 9 2 2 3 2 1 99

Spinal cord 1 2 8 16 4 4 3 3 1 42

Choroid plexus 11 6 2 3 4 1 1 1 29

All 2 9 8 34 198 91 33 68 84 33 20 12 23 10 2 1 628

Each cell represents the number of RNAseq datasets for a particular tissue at each developmental stage. The totals given in the rows with the tissue labeled in red are the summation of

the datasets for the tissues in indented rows below e.g., “Brain” is the sum of the Forebrain, Midbrain, Hindbrain, and “Brain fragment” cells in the column for each stage. “Fragments”

is used for samples where the precise region is unknown. For ease of viewing the table the subdivisions of Telencephalon and Hindbrain (3rd level of indent) are given in italics.
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Overview of RNA-Seq Datasets and
Preliminary Characterization of Datasets
from a Subset of Cortical Samples
Principal component analysis (PCA) analysis was carried out
based on the normalized gene expressions from the RNA-seq
datasets with the samples categorized according to gross region
(forebrain, midbrain, hindbrain, and spinal cord). The datasets
from brain fragments and choroid plexus were also included.
From Figure 1C it can be seen that there is clustering according
to brain region and choroid plexus samples appear as a separate
tight group.

A subset of 64 RNA-seq datasets from anterior, central,
posterior, and temporal cortex taken at either 9 or 12 PCW were
selected for further differential expression analysis. Figure 1D
shows that there is a larger number of genes differentially
expressed with age rather than cortical spatial location at
these stages. It is also clear, however, that there is differential
expression between anterior and posterior cortex at both stages
and the evidence suggests that the expression profiles of
both the anterior and posterior cortex change from 9 to 12
PCW.
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