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A commentary on

Gene Therapy: A Promising Approach for Neuroprotection in Parkinson’s Disease?
by Valdés, P., and Schneider, B. L. (2016). Front. Neuroanat. 10:123. doi: 10.3389/fnana.2016.00123

This review discusses the possible use and effectiveness of gene therapy in Parkinson’s disease
(PD) (Valdés and Schneider, 2016). This is an excellent critical review about the possibilities
of developing a successful gene therapy to provide neuroprotection in PD. The review analyzes
potential targets for gene therapy such as: (i) genes associated with familial forms of the disease
such as alpha-synuclein that aggregates to neurotoxic oligomers, or genes with loss-of-function
mutations involved in recessive forms of the familial forms of the disease (Parkin and PINK1).
However, both the silencing of the alpha-synuclein gene and the long-term chronic overexpression
of Parkin and PINK1 induce degeneration in the nigrostriatal system, and the question is, whether
this gene therapy can help patients with sporadic Parkinson’s disease. (ii) Genes associated
with autophagy such as the lysosomal enzyme B-glucocerebrosidase, and the transcription factor
TFEB which is involved in the regulation of lysosomal expression and the regulation network.
(iii) Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1la), a master
regulator of mitochondrial biogenesis. PGC-1a activity exhibits direct interaction, and the alpha-
synuclein pathology and Parkin control PGC-1a expression. (iv) Genes related to endoplasmic
reticulum stress including GRP78/BiP and IREla. (v) Neurotrophic factors such as mesencephalic
astrocyte-derived neurotrophic factor and cerebral dopamine neurotrophic factor. However,
clinical studies done with neurturin, a member of the GDNF family, showed no benefit for PD
patients (Valdés and Schneider, 2016).

A successful gene therapy has to point to what triggers these mechanisms in the disease
in order to halt the progression. In the Parkinsonism types associated with metals, pesticides,
neuroleptics, or other factors we know what induces these forms of the disease. We know
that specific mutations induce the familial forms of the disease and that gene therapy can be
an option for these forms. However, what induces the degeneration of dopaminergic neurons
containing neuromelanin in the idiopathic form of the disease is still unknown. The discovery
of genes associated with a familial form of the disease represents an enormous advance in basic
research undertaken in order to understand the role of these proteins in the loss of dopaminergic
neurons in the nigrostriatal system. There is a general consensus in the scientific community
that the formation of neurotoxic oligomers of alpha-synuclein, mitochondria dysfunction, protein
degradation dysfunction, neuroinflammation, and oxidative and endoplasmic reticulum stress
are all involved in the loss of nigrostriatal dopaminergic neurons (Segura-Aguilar et al., 2014,
2016). However, many of these mechanisms are part of a vicious circle, which eventually leads to
neurodegeneration.
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Another possible candidate for triggering dopaminergic
neuron degeneration in the nigrostriatal system is aminochrome.
Aminochrome is an o-quinone formed during the oxidation
of dopamine to neuromelanin within dopaminergic neurons
which are lost during the degenerative process associated with
Parkinson’s disease. Aminochrome induces: (i) mitochondrial
dysfunction, (ii) dysfunction of protein degradation, (iii) the
formation of neurotoxic oligomers of alpha-synuclein, (iv)
oxidative stress, (v) endoplasmic reticulum stress and (vi)
neuroinflammation (Santos et al., 2017) (Figure 1B). However,
aminochrome can also participate in neuroprotective reactions.
There are two neuroprotective reactions which allow the
oxidation of dopamine to o-quinones, resulting in the formation
of the pigment neuromelanin. The first of these is the two-
electron reduction of aminochrome to leukoaminochrome,
catalyzed by DT-diaphorase (Figure 1A). This enzyme is a
unique flavoenzyme that catalyzes the two-electron transfer
reduction of quinones to hydroquinones, which is expressed
in both dopaminergic neurons and astrocytes in the substantia
nigra. DT-diaphorase prevents aminochrome-induced cell
death, mitochondrial dysfunction, oxidative stress, proteasomal
system dysfunction, autophagy dysfunction, a- and B-tubulin
aggregation (required for the fusion of autophagosomes and

lysosomes), and the formation of neurotoxic alpha-synuclein
oligomers (Segura-Aguilar et al., 2014). It has been suggested that
the formation of alpha-synuclein oligomers during dopamine
oxidation to o-quinones is mainly dependent on non-covalent
interactions between alpha-synuclein and these o-quinones
(Bisaglia et al., 2010). Interestingly, DT-diaphorase prevents
alpha-synuclein oligomers’ neurotoxicity (Muioz et al., 2015).
The second neuroprotective reaction involves the conjugation of
aminochrome with GSH (Figure 1A). Glutathione transferase
M2-2 (GSTM2) catalyzes the conjugation of GSH and
aminochrome  to  4-S-glutathionyl-5,6-dihydroxyindoline,
which is stable under biological oxidizing conditions as it
cannot be oxidized by hydrogen peroxide, superoxide or
oxygen. GSTM2 also catalyzes the conjugation of GSH with
dopamine o-quinone to form 5-glutathionyl dopamine, and the
degradation product of this conjugate, 5-cysteinyl dopamine,
has been detected in the neuromelanin, substantia nigra, and
cerebrospinal fluid of PD patients. GSTM2 is only expressed
in astrocytes and prevents aminochrome-induced cell death,
autophagy, and lysosome dysfunction in an astrocyte cell-line
model (U373MG cells). However, GSTM2 also plays a protective
role against aminochrome-induced cell death in dopaminergic
neurons. U373MG cells secrete GSTM2 into the conditioned
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FIGURE 1 | (A) Neuroprotective and (B) neurotoxic mechanisms of aminochrome.
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medium of differentiated SH-SY5Y cells, which then take
up GSTM2 from the conditioned medium, thus preventing
aminochrome-induced cell death in the SH-SY5Y cells (Cuevas
et al,, 2015; Segura-Aguilar et al., 2016; Figure 1A). Both of
these protective reactions against aminochrome neurotoxicity
can be a target for gene therapy in the sporadic form of PD.
The prevention of aminochrome-induced neurotoxic effects
is essential to halt the progression of the disease because: (i)
aminochrome induces mitochondrial dysfunction, the formation
of neurotoxic oligomers of alpha-synuclein, dysfunction of
protein degradation, and oxidative and endoplasmic reticulum
stress and (ii) aminochrome is formed inside dopaminergic
neurons lost during the disease (Figure 1B).

In conclusion, the use of adeno-associated virus vectors (AVV)
in various clinical studies has shown that the use of these vectors
is safe and efficient. Different gene therapies are in progress
for both the familial and sporadic forms of Parkinson’s disease.
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The aims of these therapies for the familial form of the disease
include the reduction of the levels of SNCA and the expression of
Parkin. For sporadic Parkinson’s these proposals are focused on
the dysfunction of autophagy (AAV-GBA-1 and AAV-Beclin-1),
mitochondrial ~ dysfunction (AAV-PGC-1la), endoplasmic
reticullum (AAV-XBP1ls and AAV-GRP78/Bip), neurotrophic
support (AAV-neurturin, AAV-GDNEF, AAV-MANE and
AAV-CDNF), and aminochrome neurotoxicity during
dopamine oxidation to neuromelanin (AAV-DT-diaphorase
and AAV-GSTM2). It seems plausible that a new possible
target for gene therapy will continue to increase in the next
years.
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