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Studying neocortex and hippocampus in parallel, we are struck by the similarities. All

three to four layered allocortices and the six layered mammalian neocortex arise in

the pallium. All receive and integrate multiple cortical and subcortical inputs, provide

multiple outputs and include an array of neuronal classes. During development, each cell

positions itself to sample appropriate local and distant inputs and to innervate appropriate

targets. Simpler cortices had already solved the need to transform multiple coincident

inputs into serviceable outputs before neocortex appeared in mammals. Why then do

phylogenetically more recent cortices need multiple pyramidal cell layers? A simple

answer is that more neurones can compute more complex functions. The dentate gyrus

and hippocampal CA regions—which might be seen as hippocampal antecedents of

neocortical layers—lie side by side, albeit around a tight bend. Were the millions of

cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal

cell layers would be some 40 times larger. Even if evolution had managed to fold this

immense sheet into the space available, the distances between neurones that needed

to be synaptically connected would be huge and to maintain the speed of information

transfer, massive, myelinated fiber tracts would be needed. How much more practical

to stack the “cells that fire and wire together” into narrow columns, while retaining

the mechanisms underlying the extraordinary precision with which circuits form. This

demonstrably efficient arrangement presents us with challenges, however, not the least

being to categorize the baffling array of neuronal subtypes in each of five “pyramidal

layers.” If we imagine the puzzle posed by this bewildering jumble of apical dendrites,

basal dendrites and axons, from many different pyramidal and interneuronal classes, that

is encountered by a late-arriving interneurone insinuating itself into a functional circuit,

we can perhaps begin to understand why definitive classification, covering every aspect

of each neurone’s structure and function, is such a challenge. Here, we summarize

and compare the development of these two cortices, the properties of their neurones,

the circuits they form and the ordered, unidirectional flow of information from one

hippocampal region, or one neocortical layer, to another.
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On his deathbed in 1934, Santiago Ramón y Cajal wrote to his last

student, Rafael Lorente de Nó, continuing a life-long discussion:

“the mouse is not a good choice for the study of cortical circuits

because of its paucity of short-axon cells...”∗.
∗Ramón y Cajal S. Letter to Lorente. 1934. Courtesy of Dr

Francisco Alvarez, translation by Rafael Yuste. Lorente de Nó, like

many since, did not agree.

PRINCIPAL CELLS

Origins of Principal Cells in the Neocortex
This section draws heavily upon many excellent reviews
(Nadarajah and Parnavelas, 2002; López-Bendito and Molnár,
2003; Cheung et al., 2007; Molnár et al., 2012; Tabata
et al., 2012; Evsyukova et al., 2013; Tan and Shi, 2013;
Sekine et al., 2014; Hoerder-Suabedissen and Molnár, 2015;
Kawauchi, 2015; Molnár and Hoerder-Suabedissen, 2016).
(Montiel et al., 2016, Figure 1; https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4832283/figure/cne23871-fig-0001/).

Principal cells, i.e., glutamatergic, spiny excitatory pyramidal
and spiny stellate cells are generated in the ventricular zone
(VZ) from asymmetrical division of progenitor radial glial cells
(Miyata et al., 2001; Noctor et al., 2001) or basal progenitors
in the subventricular zone (Noctor et al., 2004; Shitamukai
et al., 2011; Wang et al., 2011). Post-mitotic neurones then
move to the multipolar cell accumulation zone (MAZ) just
above VZ. There they stay (1–3 days: Kitazawa et al., 2014),
extending and retracting multiple fine processes (Tabata
and Nakajima, 2003; Tabata et al., 2009), until they begin to
move toward the intermediate zone (IZ) below the cortical
plate (CP, future gray matter). In IZ, the neurones become
bipolar and “climb” through the CP toward the marginal
zone (MZ), using the process of a single radial glial cell as a
scaffold (Rakic, 1972; http://rakiclab.med.yale.edu/research/;
Kawauchi, 2015 Figures 1, 2, https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4595654/figure/F1/; https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4595654/figure/F2/). Their leading
process becomes anchored in MZ, they part company with their
radial glial partners and their somata are pulled up to lie beneath
MZ, or CP (Nadarajah et al., 2001; Sekine et al., 2011; Kitazawa
et al., 2014).

The earliest born pyramidal cells form the deepest layer,
L6. As later born neurones migrate, they pass through L6,
forming sequentially more superficial layers. Phylogenetically,
development of an additional germinal layer, the subventricular
zone (SVZ) coincides with the appearance of L2-4 and
emergence of the mammalian six layered neocortex (Noctor
et al., 2004; Wu et al., 2005); the layers of phylogenetically
older, three layered cortices being considered equivalent
to L1, L5, and L6. The primate goes further, adding an
additional germinal layer, the outer subventricular zone (OSVZ)
(Lukaszewicz et al., 2005), which in the Macaque results
in correspondingly deeper supragranular layers (Hoerder-
Suabedissen and Molnár, 2015; Montiel et al., 2016). (Molnár
et al., 2006, Figures 5, 7, https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC1931431/figure/F5/; https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC1931431/figure/F7/).

Origins of Principal Cells in the
Hippocampus
Hippocampal CA regions are often considered to contain a single
pyramidal cell layer, though developing CA regions also include

neurones generated in SVZ (Kitazawa et al., 2014). Whether this

population remains distinct from those arising in VZ is unclear.
Likewise, whether there is an ordered, birth-date-dependent,

inside-out layering of stratum pyramidale in hippocampal CA
regions appears a matter for debate. However, while there may

not be the wide range of pyramidal classes to be found in
neocortex, CA1 pyramids are not all identical; to quote Lorente

de Nò (1934) “There are two types of pyramids, superficial and
deep ones. The superficial are arranged in one or two very dense

rows. The deep pyramids are grouped into several less dense rows
below.. . . ”’

“Deep” refers to the earliest born cells whose migration

terminates close to the germinal layers, adjacent to the ventricles,

cells destined to lie adjacent to stratum oriens (Supplementary
Figure 1. http://uclsop.net/interneuron-reconstruction/ca1-
pyramid). Superficial pyramids, lying adjacent to the future

stratum radiatum, are born 1–2 days later, contain the calcium
binding protein, Calbindin (Cb), Zinc (Slomianka and Geneser,
1997) and reelin and are more commonly dye-coupled, one with

another (indicative of electrical gap junctions) than pyramids

devoid of Cb (Baimbridge et al., 1991; Mercer et al., 2006; Mercer,
2012 for review). They also express different transcription factors
(similar to deep/superficial expression in neocortex: Britanova

et al., 2005; Dobreva et al., 2006; Leone et al., 2008); the deep

cells expressing Sox5 and the superficial cells, SatB2 (Slomianka
et al., 2011) and Zbtb20 (Xie et al., 2010), which may control Cb-
expression (Nielsen et al., 2010). Even in CA regions disrupted

by mutations, like Reeler, pyramids maintain separate identities,

forming distinct—if mislocated—layers. Later born cells spend
longer in MAZ; regions of IZ devoid of cell bodies, become
filled with axons after early born cells have passed through
(Kitazawa et al., 2014) and connections with these axons may

delay migration of later born multipolar neurones (Altman
and Bayer, 1990b). Later born superficial pyramids fire earlier,

with higher probability during sharp wave ripples, while deep
pyramids more frequently exhibit place fields, fields that are

more plastic. Deep pyramidal firing correlates more with specific
landmarks, superficial with general context (Geiller et al., 2017,
for review).

The CA3 hippocampal plate (HP, future stratum pyramidale)
becomes apparent at E18 (rat), expanding to adopt its
pronounced curved profile by E22 (Altman and Bayer, 1990b).
This expansion presents long migration paths for neurones
generated in VZ, especially those destined to lie near the
dentate gyrus. Radial movement from the tangential migratory
stream into developing CA3 stratum pyramidale is promoted
by Math2 (transcription factor), while continued tangential
migration toward the developing dentate gyrus is promoted by
Prox-1 (Sugiyama et al., 2014). CA3 pyramids are—on average—
born earlier than CA1 neurones (E16-E20); with those that will
lie close to CA1 born first (Bayer, 1980; Altman and Bayer,
1990b,a). Like CA1 pyramids, newly generated CA3 pyramidal
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cells move from VZ to MAZ, becoming multipolar and waiting
there longer than CA1 cells (Nakahira and Yuasa, 2005); possibly
for innervation from dentate gyrus (Altman and Bayer, 1990b).
That neurones born at the same time in dentate gyrus and CA
regions, exhibit similar gene expression patterns and become
preferentially connected with each other (Deguchi et al., 2011),
has important implications for functional circuitry.

A distinct CA2 region, delineated by PCP4 immunostaining,
is thought to emerge postnatally and to reach adult dimensions
at P21 (San Antonio et al., 2014). Until relatively recently, rodent
hippocampi were thought not to contain a CA2 region and
further developmental detail has yet to materialize.

Sister Cells and Local Connectivity
Future neocortical pyramids climb radially, up a single, straight,
radial glial process to reach their final destination. Sister cells,
resulting from divisions of a single progenitor, therefore come
to lie in a narrow, radially oriented “column.” “The Radial Unit
Hypothesis,” proposed by Rakic (1988) as the anatomical basis
for neocortical columnar architecture (Mountcastle, 1957), states
that the position of a neurone’s precursor in VZ determines its
final horizontal coordinates, while its birth date determines its
radial position.

In contrast, sister CA pyramids become distributed
horizontally, often across large areas of stratum pyramidale
(Kitazawa et al., 2014; Sugiyama et al., 2014). The leading
processes of radial glial cells that direct migration here are not
always straight, or radially oriented, as in neocortex. In CA1,
they often curve, to run almost parallel with layer boundaries
(Nakahira and Yuasa, 2005). In addition, migrating multipolar
neurones continue to extend and retract processes in HP,
contacting several radial glial cells, selecting one and migrating
along a different path, in a “zig-zag” manner (Nowakowski and
Rakic, 1979; Kitazawa et al., 2014; Xu et al., 2014; Hayashi et al.,
2015, for review).

This raises an interesting question about local pyramidal
interconnectivity. Neocortical pyramidal cells preferentially
innervate their sisters (Yu et al., 2009; Costa and Hedin-Pereira,
2010), which exhibit, for example, similar orientation preferences
in primary visual cortex, V1 (Li et al., 2012). Electrical coupling
may precede sister-to-sister chemical synapse-formation since
this similarity in orientation preference is lost when gap junctions
are blocked from P1-7, or Cx26 (connexin 26) mutated (Li et al.,
2012). If similar orientation preferences do not result solely
from another influence, such as preferential innervation of sister-
cells by common afferent axons, the physical separation of sister
neurones may be a significant factor in determining whether they
“wire together.”

In both mature neocortex and CA regions, powerful electrical
synapses form between closely neighboring pyramids (CA1,
Baimbridge et al., 1991; CA1-3, neocortex, Mercer et al., 2006;
Mercer, 2012); an average of 25% of steady state and 10%
peak action potential (AP) voltage change transferring to the
coupled cell. The resultant post-junctional “spikelets” can trigger
overshooting APs. Quite unlike electrical junctions between
interneurones (neocortex: Gibson et al., 1999; Tamás et al.,
2000; Amitai et al., 2002; Simon et al., 2005; hippocampus:

Fukuda and Kosaka, 2000; Meyer et al., 2002; Allen et al.,
2011), these junctions form between somata and proximal
apical dendrites; hence the very high electrical-coupling ratios.
Vertically distributed neocortical sister-cells are, therefore, well
positioned for such connections; horizontally distributed sister-
CA pyramids are not (unless axon-axonic electrical junctions
are also involved: Schmitz et al., 2001; Wang et al., 2010).
However, other factors, such as the preferential innervation
of CA1 pyramids by CA3 pyramids exhibiting similar gene
expression patterns (Deguchi et al., 2011), may also contribute
to the emergence of functionally related sister-cell groups across
regions. Indeed, CA1 sister pyramids rarely develop electrical
or chemical synapses with each other, but they do receive
common input from nearby fast-spiking (FS, but not non-
FS) interneurones and exhibit synchronous synaptic activity,
indicative of common excitatory drive (Xu et al., 2014). During
development, early born GABAergic “hub” neurones with
long range connections (which later develop into projection
interneurones: Picardo et al., 2011) facilitate such connectivity
(Bonifazi et al., 2009; Villette et al., 2016). Spiny cells connected
by chemical synapses receive common excitatory (Song et al.,
2005; Yoshimura and Callaway, 2005; Kampa et al., 2006) and
inhibitory inputs (Xu et al., 2014) and deliver coincident outputs,
more frequently than unconnected cells, and input-convergence
from electrically coupled pyramids via chemical synapses is high
(5:11, Bannister and Thomson, 2007).

Development of the Wide Range of
Neocortical Pyramidal Cell Classes
(Table 1; Cheung et al., 2007; Hoerder-Suabedissen and Molnár,
2012, 2013, 2015; Hayashi et al., 2015, for reviews).

Both the inside out, sequential formation of L2-L6 and
the sequential generation of the different classes of pyramids
destined for a single layer, ensure a shifting environment as
new cells are born and begin to migrate. Distinct expression
patterns of a large array of genes coding for transcription factors
and regulators, growth factors, receptors, peptidase inhibitors,
acetylation regulatory factors, glycoproteins, kinases, guidance-,
signal-, adhesion-, and extracellular matrix- molecules, reelin,
its receptors and their downstream signaling pathways, not
to mention those genes for which no function has yet been
found, have been identified in sub-populations of progenitors
and differentiating neurones. The milieu into which a neurone
is born, those it travels through as it migrates from VZ/SVZ,
through MAZ, IZ and into CP/HP and where it eventually
establishes itself, are both temporally and spatially regulated. One
example is the postmitotic expression of Sox5 in subcortically
projecting deep layer pyramids and Satb2 in corticocortically
projecting, superficial layer cells (Slomianka et al., 2011).
The latter, if induced to express Sox5 ectopically, lose their
corticocortical projections and instead project subcortically
(Arlotta et al., 2005; Alcamo et al., 2008; Britanova et al., 2008;
Fishell and Hanashima, 2008, for review).

Neocortical Layer 6 Pyramidal Cells
Like other layers, L6 contains several distinct classes of spiny,
glutamatergic principal cells (Thomson, 2010 for review).
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TABLE 1 | Summary of properties of pyramidal cells in cortical layers 3–6, for references, see text.

Layer 6 spiny cell

type

Structural features Excitatory inputs Outputs Firing characteristics

Dendrites Axons

L6 Cortico-thalamic

pyramidal cells

Small-medium, upright

pyramidal cells. Apical

dendritic tuft in L4

Axon ascending to L4

(some also to lower

L3). Drumstick-like

branches in L4

Reciprocal from

specific thalamic nuclei.

From L6

cortico-cortical

pyramids

To specific thalamic nuclei and

nRT. Local outputs

predominantly to L6-L4

GABAergic interneurones

(synapses on shafts of aspiny

dendrites). Facilitating EPSPs

to all targets

Modest Accommodation and

Adaptation. Almost tonic

discharge in response to

maintained depolarization.

L6 Cortico-thalamic

pyramidal cells

Short, small-medium,

upright pyramidal cells.

Apical dendritic tuft in L5

Ascending to L5. Some

with drumstick-like

branches

Thalamus. L6

cortico-cortical

pyramids

To specific and non-specific

thalamus and local L5/6

interneurones. Facilitating

EPSPs to all targets

Modest Accommodation and

Adaptation. Almost tonic

discharge in response to

maintained depolarization.

L6 Cortico-cortical

pyramidal cells (latexin

positive)

Small-medium

“pyramids.”Dendrites

confined to L5/6. Several

structural classes: short

upright pyramids, bipolar,

inverted and multipolar

“pyramids”

Long horizontal

branches confined to

L5/6

Other local and distant

cortical neurones

Preferentially innervate cortical

pyramids with depressing

EPSPs

Rapidly and powerfully adapting.

Spike inactivation can be

“rescued” with ramp-shaped

current

L6

Claustrum-projecting

pyramidal cells

Tall, upright, long thin

apiical dendrite to L1-no

tuft

Long horizontal

branches confined to

L5/6

Other local and distant

cortical neurones

Claustrum, L5/6 pyramids with

depressing EPSPs

Near tonic firing

Layer 5 spiny cell

type

Structural features Excitatory inputs Outputs Electrophysiology

Dendrites Axons

L5 Large burst-firing

pyramids, upper L5

Thick basal dendrites L5,

Thick apical with tuft

L3-L1

Largely confined to

deep layers, short

branches

Local inputs include

other large and small

L5 cells and a powerful

focused input from

deep L3 as well as

distant cortical and

subcortical. Most

inputs accocunted for

To non-specific thalamic nuclei,

superior colliculus, pons, spinal

cord (targets depending on

cortical region). Depressing

EPSPs to most targets

Intrinsic burst-firing

superimposed on a depolarizing

envelope. Resting Potential in

vitro near firing threshold.

L5 smaller

cortico-thalamic

pyramids

Smaller upright pyramids.

Slender apical dendrites

terminating in L2/3 with

little/no tuft

Ascending to L2/3 and

horizontal branches

No reciprocal input

from thalamus

Large boutons to non-specific

thalamus. Depressing EPSPs

Adapting and accommodating

firing pattern

L5 smaller

cortico-cortical

pyramids, incl.

transcallosally

projecting cells

Smaller upright pyramids.

Slender apical dendrites

terminating in L2/3 with

little/no tuft

Long horizontally

oriented

Other cortical pyramidal

cells, local and distant

Local and distant cortical

neurones with largely

depressing EPSPs

Radidly adapting and

accommodating firing pattern

Layer 4 spiny cell

type

Structural features Excitatory inputs Outputs Electrophysiology

Dendrites Axons

L4 pyramidal cells

predominantly

innervating L4 cells

Often small, simple cells.

A modest number of

slender dendrites, basals

in L4, apical obliques in

L3, with a tuft in L1

Local axonal arbor and

a descending arbor

with sparse branching

in L5 and/or L6

From local L4 cells

(28% of input), 6% from

specific thalamus

(large, potent

en-passant boutons on

dendritic shafts), 45%

from L6 corticothalamic

(small boutons, on

spines). Almost none

from L3. Remainder

currently unaccounted

for

Predominantly other L4 cells.

Strength and probability falling

off rapidly with separation.

Proximal, basal dendritic

inputs. Brief, depressing

EPSPs

Rapidly adapting and

accommodating

(Continued)
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TABLE 1 | Continued

Layer 4 spiny cell

type

Structural features Excitatory inputs Outputs Electrophysiology

Dendrites Axons

L4 pyramidal cells

preferentially

innervating L3 cells

Often small, simple cells.

A modest number of

slender dendrites, basals

in L4, apical obliques in

L3, with a tuft in L1

Strong, ascending,

topographically precise

input to L3 and

descending projection

with sparse branching

in L5 and/or L6

Predominantly to L3 cells.

Pyramids more than

interneurones. Proximal, basal

dendritic inputs. Brief,

depressing EPSPs

Brief, short interspike interval

spike train followed by brief

afterdepolartization, slow

hyperpolarization then tonic firing

L4 Spiny stellate cells Often small, simple cells,

with slender dendrites

largely confined to L4. No

apical dendrite

Ascending

topographically precise

input to L3, descending

projection with sparse

branching in L5

Probably similar to the above

Layer 3 spiny cell

type

Structural features Excitatory inputs Outputs Electrophysiology

Dendrites Axons

L3 pyramidal cells Well developed basal and

apical oblique dendrites

and a tuft in L1. Largest

cells close to L4 border

Dense, fairly narrow

ramifications in L3 and

L5, not in L4 (but see

text for mouse)

Inputs from L4 and

thalamus to deep L3

proximal basal

dendrites. Tall, brief,

depressing EPSPs.

High hit-rate inputs

from other local L3

pyramids. Cortical and

thalamic inputs

account for most

synapses. 97% of L3

pyramid-pyramid

inputs onto spines of

less proximal basal and

apical oblique dendrites

Dense local innervation of L3

pyramids and interneurones

and patchy, long distance

terminal axonal arbors. Dense,

very high probability

innervation of large (not small)

L5 pyramids sharing the same

vertical axis. To interneurones

in L4 that have dendrites in L3,

but not to spiny L4 cells.

Transcallosal projections

Very negative resting potentials

−80mV (in vitro). “Typical”

adapting/accommodating

pyramidal cells

With the exception of presynaptic L6 cortico-thalamic pyramids, all pyramidal inputs to FS, parvalbumin-immunopositive interneurones recorded were depressing and all excitatory

inputs to SOM cells were facilitating.

Few studies in L4 have systematically correlated anatomy with electrophysiology and connectivity. Some characteristics, like their inputs and the descending projections may, or may

not be common to 2 or more subclasses.

The birth-dates of two broad groups are distinguished by
their expression of latexin (carboxypeptidase-A inhibitor).
Corticortical cells, which express latexin are born after
corticothalamic cells which do not: E15 cf E14 (Arimatsu
and Ishida, 2002). (Thomson and Lamy, 2007, Figure 5, https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC2518047/figure/F5/).

Only earlier born, corticothalamic pyramids receive direct
thalamic input. One subclass of these upright cells, with apical
dendritic tufts in L4, send narrow, ascending axonal arbors to L4
(and sometimes lower L3) where it terminates with characteristic
short, drumstick-like side branches. These neurones project
subcortically to “specific,” or primary sensory thalamic nuclei
and to nucleus reticularis thalami (nRT, the thalamic inhibitory
nucleus) (Zhang and Deschenes, 1998). All L6 corticothalamic
pyramids fire with minimally accommodating/adapting, near
tonic discharge and preferentially innervate GABAergic cells
with consistently facilitating patterns of transmitter release
(West et al., 2006). In neocortex, >90% of their synaptic
boutons contact dendritic shafts of non-spiny neurones (White

and Keller, 1987), including L4 (Tarczy-Hornoch et al., 1999;
Beierlein et al., 2003) and L5 interneurones (Staiger et al.,
1996). Despite their frequent innervation of parvalbumin
(PV) interneurones (which receive depressing inputs from all
other pyramidal classes), L6 corticothalamic pyramids elicited
facilitating EPSPs (excitatory postsynaptic potentials) in all
cell types studied, including ventroposterior, posterior medial
thalamic and nRT neurones. This contrasts with the depressing
EPSPs elicited by L5 pyramids in posterior medial thalamic
nucleus (Reichova and Sherman, 2004).

The second corticothalamic subclass, more commonly found
in deep L6, projects to both specific and non-specific thalamic
regions such as PO (posterior thalamic group) The apical
dendrites of these short, upright pyramids and their ascending
axons typically terminate in upper L5. Neither subgroup of
corticothalamic cells has long horizontal axon collaterals in the
infragranular layers, all branches turn toward the pial surface.

In cats and primates, where L4 subdivisions are
morphologically and functionally distinct, subclasses of
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corticothalamic cells are found, each with its apical dendritic
branches and axonal ramifications restricted to a specific L4
sublayer (Lund, 1987; Wiser and Callaway, 1996). Further
specificity was demonstrated by a study combining in vivo
physiology and morphology in cat V1 (Hirsch et al., 1998a,b). L6
pyramidal simple cells (“simple” implying significant direct input
from lateral geniculate nucleus, LGN and resembling “specific”
thalamocortical pyramids) targeted L6 and/or L4, layers rich in
simple cells. L6 complex cells (receiving integrated, rather than
“specific” corticothalamic inputs), targeted L2/3 and L5, layers
rich in complex cells.

In striking contrast to corticothalamic pyramidal cells,
are the rapidly adapting, corticocortical L6 pyramids, which
preferentially innervate other pyramidal cells with “depressing”
synapses and display an array of morphologies (Mercer et al.,
2005), short, upright pyramids whose apical dendrites terminate
in L5, bipolar cells and inverted pyramids. All have long,
horizontal axons confined to L5/6 (Zhang and Deschenes,
1998; Mercer et al., 2005), some crossing areal boundaries.
Their pronounced spike accommodation/adaptation cannot be
overcome by injecting larger square-wave current pulses; these
only result in more rapid and profound soma/initial segment
Na+ channel inactivation. However, a ramp-shaped current
superimposed on the original threshold square-wave pulse,
activates tonic firing of overshooting APs, probably originating
at more distant axonal locations and propagated, or reflected
passively, back to the soma (unpublished; Stuart et al., 1997;
Colbert and Pan, 2002; Clark et al., 2005, for axonal spike-
initiation).

The near tonically firing claustrum-projecting cells form the
third major L6 pyramidal class, with long slender apical dendrites
that reach L1 without forming a tuft there and a broad, axonal
arbor confined to L5 and L6 (Katz, 1987). Like L6 corticocortical
cells, claustrum-projecting pyramids preferentially innervate
pyramids locally, with “depressing” synapses (Mercer et al.,
2005).

L6 is often perceived as a predominantly thalamo-recipient
layer, but only corticothalamic pyramids receive powerful, direct
thalamic input. Nor do corticocortical cells receive powerful
excitation from neighboring thalamo-recipient corticothalamic
cells. Some descending inhibitory projections from L4 ramify in
L6, but excitatory projections from superficial layers are often
narrow and sparse. Binzegger et al. (2004, cat V1) estimated
the numbers of synapses supplied to each layer by cortical and
LGN relay neurones. When compared with estimates based
on stereological analysis (Beaulieu and Colonnier, 1985), the
estimates for excitatory synapses were within 10% for L2/3
and L5, but differed by 32% for L4 and 70% for L6. Many
additional corticocortical, or subcortical inputs are required
to account for the boutons in these thalamo-recipient layers.
(Thomson, 2010, Figure 4; https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2885865/figure/F4/).

In cats and primates most subplate (SP) neurones disappear
during development; a few remaining in the underlying white
matter as interstitial neurones (Kostovic and Rakic, 1980; Luskin
and Shatz, 1985; Valverde et al., 1989; Naegele et al., 1991).
However, in rodents, degeneration in SP is less dramatic and

the SP becomes L6b (or L7) (Valverde et al., 1989; Ferrer et al.,
1992).

Neocortical Layer 5 Pyramidal Cells
The principal inputs to L5 (and to L5 pyramidal dendrites in
L3) are local and more distant corticocortical projections. In
turn, large L5 pyramidal cells project to many subcortical targets,
including “non-specific” thalamic nuclei, superior colliculus,
pons and spinal cord (targets depending on cortical region).
Smaller L5 pyramids project to other cortical and subcortical
regions and transcallosally, to contralateral neocortex.

Upper L5 contains the largest neocortical pyramids (only these
approaching the size and spine densities of CA pyramids). In
cat V1, the large cells that project to the colliculi, and/or the
pons (Hallman et al., 1988), have thick apical dendrites with
well-developed apical tufts in L1/2 and substantial basal dendritic
arbors largely contained within L5. The largest, Betz cells (Betz,
1874), are found in motor cortex and project via the corticospinal
tract to the spinal cord. Large L5 cells display a stereotypical
“intrinsically burst-firing” behavior (Connors et al., 1982); the
burst of two or more, high frequency spikes being superimposed
on a well-developed depolarizing envelope, due to activation
of a dendritic Ca2+ spike (Purpura and Shofer, 1965; Llinas,
1975; Larkum et al., 1999). The short interspike-interval train of
two or more spikes, typical of rapidly adapting/accommodating
neurones (smaller L5-, L6 corticocortical-, and some L4
pyramids), should not be confused with stereotypical bursts
(though it often is); it is not superimposed upon, or triggered
by a stereotypical depolarizing envelope and does not occur
repetitively if the cell is held near spike threshold. Quasi burst-
firing can also be elicited in adapting cells electrically coupled to
intrinsic bursters (Mercer et al., 2006). The local axons of large L5
pyramids arborize almost exclusively within the deep layers while
the smaller pyramids also project to the superficial layers (Larsen
and Callaway, 2006).

A significant input to these large, intrinsically burst-firing
pyramids comes from smaller L5 pyramids. Whether these
smaller pyramids project to non-specific thalamus, or to other
cortical regions was not determined. In adult rat L5, small
adapting pyramids were 10 times more likely to innervate
large burst-firing pyramids than vice versa (unpublished data:
Thomson and West, 1993; Deuchars et al., 1994). Large L5
pyramidal cells that are close neighbors are, however, relatively
densely interconnected (hit rate of 1:10: Markram, 1997). Large,
but not small L5 pyramids, also receive a dense, highly focussed,
input from deep L3 pyramids (hit rate > 1:4, Hübener et al.,
1990; Thomson and Bannister, 1998, for reconstructions of cat
L5 pyramids).

The apical dendrites of small-medium corticothalamic and
corticocortical L5 pyramids are slender, rarely extend beyond
L2/3 and have no significant apical tuft. L5 corticothalamic
pyramids provide large boutons to non-specific thalamic regions
from which they receive no reciprocal inputs, in contrast to
L6 corticothalamic cells which are reciprocally connected with
“specific” thalamic nuclei and deliver small boutons (Van Horn
and Sherman, 2004). A separate population of smaller, shorter L5
pyramids projects transcallosally (Hübener et al., 1990; Kasper
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et al., 1994). Transcallosal cells are found in all layers except L1
(Kasper et al., 1994).

Neocortical Layer 4 Spiny Cells: Pyramidal Cells and

Spiny Stellate Cells
If we can assume that three layered cortices in some non-
mammalian species do a perfectly good job, as far as the
requirements of those animals are concerned, receiving e.g.,
sensory information in one layer (equivalent to mammalian L6)
and integrating that information with signals from elsewhere,
in the adjacent layer (equivalent to L5), which then sends
instructions to other brain regions, we could ask why a presumed
need for more complex and sophisticated organization and
integration of that information could not have been achieved
simply by expanding these two existing layers. Whether this was
attempted in some long lost evolutionary dead-end, we may
never know, we can only assume that such an attempt did not
survive. Instead, a new germinal zone, SVC and three new layers
(L2-L4) to which the SVC contributes spiny cells, were added.
Interestingly, these new layers repeat the pattern established in
deeper layers: peripheral input into L4, with integration within,
and distribution from L2/3.

Layer 4 contains two broad classes of spiny excitatory cells.
Typically, the basal dendrites of L4 pyramidal cells are contained
within L4 with apical oblique dendrites in L2/3 (though they
receive little or no input from local L3 pyramids) and an apical
dendrite extending into L1, often forming a small tuft there.
Spiny stellate cells lack an apical dendrite, most or all of their
dendrites are confined to L4 (Lund, 1973). Perhaps the most
striking distinguishing feature of L4 spiny neurones in rat and
cat, especially when compared with the “chunkier” pyramids in
adjacent layers, is their simple (Rojo et al., 2016) and delicate
appearance (Bannister and Thomson, 2007).

Despite being a major thalamo-recipient layer,
thalamocortical inputs to L4 contribute only 6% of the
synapses onto spiny stellate neurones in cat V1 and up to
22.9% in mouse (Benshalom and White, 1986), terminating
predominantly on dendritic spines via large en-passant boutons.
In contrast, ascending L6 corticothalamic pyramidal axons,
form synapses with small boutons, but provide 45% of the
excitatory inputs onto L4 spiny cells (cat, primate, Lund
et al., 1988, for review). In primate V1 axons from area MT
terminate in L1, L4B, and L6. This contrasts with other so called
“feedback” connections from “higher” visual areas terminating
in L1; projections that might more meaningfully be termed
“cognitive” or “attentional” feed-forward. In V2 they terminate
primarily in L1 and L5 or L6 (Rockland and Knutson, 2000). A
further 28% of the excitatory input to L4 spiny cells originates
from within L4 (cat, Ahmed et al., 1994). Despite the small
numbers of thalamocortical inputs, their large boutons provide
secure, faithful transmission of early presynaptic spikes, albeit
followed by pronounced presynaptically mediated depression.
Thalamocortical synapses have three times more release sites
than those of local circuit axons, with higher release probabilities,
making the average thalamocortical connection several times
more effective (Gil et al., 1999, mouse S1), at the start of a spike
train.

The axons of L4 spiny neurones make dense, topographically
precise ascending projections to L3 and sparse descending
projections to upper L5 (rat, cat) (Valverde, 1976; Parnavelas
et al., 1977; Feldman and Peters, 1978; Gilbert, 1983; Burkhalter,
1989) where they innervate pyramids and (less commonly)
interneurones (Thomson et al., 2002). Pyramids and spiny
stellates contribute to these projections and both provide
relatively narrow, horizontal arbors within L4. In cat V1, some
spiny cell axons make most of their synapses within L4, others
form a larger proportion in L3 (Binzegger et al., 2004), a
finding supported by morphometric analysis coupled with paired
recordings in rat barrel cortex (Lübke et al., 2003) and one
that correlates with distinct electrophysiological classes (below).
The sparse projection, from L4 to L6, appears to originate
predominantly with pyramids (unpublished).

The firing patterns of adult L4 pyramidal and/or spiny stellate
cells correlated with distinct connectivity patterns. Stereotypical
intrinsic bursts were rare. Around 60% displayed rapid spike
accommodation and frequency adaptation (recoverable with a
superimposed ramp) and innervated other L4 spiny cells. The
remaining 40% produced a short train of 3–5 short interspike
interval spikes, followed by a brief afterdepolarization, then
a slow afterhyperpolarization upon which a spike-train of
increasing interspike interval was superimposed. These cells
preferentially innervated L3 pyramids (Bannister and Thomson,
2007). This raises interesting questions about patterns of
synaptic input in vivo and how they might interact with
the cells’ inherent firing characteristics; tonic input to L3,
phasic to neighboring L4 pyramids in reponse to maintained
depolarization.

Connectivity ratios for pairs of L4 pyramids were relatively
low (1:18 adult rat; 1:14 cat V1), with no selection for firing
characteristics, and fell off extremely rapidly with increasing
horizontal somatic separation. All identified synaptic contacts
onto spiny cells (L4 and L3, rat and cat) were onto proximal
primary, secondary, and tertiary, electrotonically compact basal
dendrites, and all EPSPs were brief and depressing (Bannister and
Thomson, 2007).

Neocortical Layer 3 Pyramidal Cells
Layer 3 pyramidal cells are “typical” pyramids, with adapting
firing patterns, well developed basal and apical oblique dendrites
and an apical dendrite forming a tuft in L1. The largest are
close to the L4 border. More superficial L2 cells are, naturally,
very short with almost no apical dendrite. L3 pyramidal axons
ramify densely in L2/3 delivering depressing inputs to other L3
pyramids with a hit rate of 1:3 that falls off only gradually with
distance. Their main descending axons typically pass through L4
without branching to ramify in L5, in rat (Lorente de Nó, 1922;
Burkhalter, 1989), cat (O’Leary, 1941; Gilbert and Wiesel, 1983;
Kisvárday et al., 1986), and primate (Spatz et al., 1970; Lund et al.,
1993; Yoshioka et al., 1994; Kritzer and Goldman-Rakic, 1995;
Fujita and Fujita, 1996), where they innervate large L5 pyramids;.
Somewhat surprisingly some deep L3 pyramids in mice have
substantial axonal arbors within L4 (Larsen and Callaway, 2006).
Their targets in L4 are of interest, because although L3 pyramids
innervate L4 interneurones that have dendrites projecting into
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L3, they rarely, if ever excite L4 spiny cells in adult rat or cat
(Bannister and Thomson, 2007).

An additional, distinctive firing pattern has been described
in cat V1—chattering cells (Gray and McCormick, 1996). These
neurones generate extremely fast intrinsic spike-bursts, with
an intraburst firing rate up to 800 s−1 and a repeat rate of
20–70 s−1, in response to visual stimuli or suprathreshold
current injection. During visual stimulation these cells exhibit
pronounced oscillations in membrane potential that are largely
absent at rest. All chattering cells recovered after dye-filling were
typical L2/3 pyramidal neurones.

L3 receives a substantial trans-callosal input, larger than that
to L5 (Porter and White, 1986) and pyramids in both layers
project trans-callosally, often to topographically related cortical
areas. In L2/3 of rat barrel cortex, 97% of the connections,
both local and distant, made by L3 pyramidal axons are onto
dendritic spines. This is a striking target preference (seen in all
layers), when only 80% of all asymmetrical synapses in L3 are
onto spines (White and Czeiger, 1991) and L6 corticothalamic
cells preferentially innervate aspiny dendritic shafts in L4 and
L6 (Elhanany and White, 1990). In primate visual, motor and
somatosensory cortex, L3 (and to a lesser extent L5) cells also
provide dense innervation of patches of cortex a few 100 µ

wide and up to a few millimeters from the injection site within
L1–3 (Levitt et al., 1993, 1994). In prefrontal cortex, a narrow
stripe-like, rather than a patchy pattern is apparent (Levitt et al.,
1993).

Deep L3 pyramids can also receive thalamocortical inputs
from primary sensory thalamus, again, largely to proximal basal
dendrites, though the further they are from the L4 border,
the weaker this input becomes (White and Hersch, 1982). A
major part of the projection from the pulvinar (the most caudal
thalamic group, with roles in attention and oculomotor behavior)
also terminates in L3 extrastriate visual areas (Rockland et al.,
1999). The dense, focussed, excitatory input from L4 spiny
cells onto L3 pyramids also terminates proximally, on first,
second, or third order basal dendrites (Thomson et al., 2002;
Thomson and Bannister, 2003), while the many inputs from
other L3 pyramids are located more distally (mean 97 µm
cf. 69 µm: Feldmeyer et al., 2002), on both basal and apical
oblique dendritic branches. Proximal basal synapses result in
taller, narrower EPSPs (excitatory postsynaptic potentials) than
more distal inputs.

The Relationship between Dendritic Location and

EPSP Size and Shape
This relationship is partly due to the smoothing of current
transfer over the length of a cable with resistance and capacitance
(Rall, 1962) and partly to the activation of voltage-gated ion
channels distributed with unique patterns of surface expression
across somata, axons and dendrites of each class of neurone
(Nusser, 2009, 2012, for reviews). Amongst the conductances
whose density increases with distance from the soma, perhaps
the most studied has been the rapidly inactivating K+ current,
IA. The IA α-subunit Kv4.3 clusters in neocortical pyramidal
dendrites and dendritic spines (Burkhalter et al., 2006) and
IA density increases as INa decreases more distally in large L5

pyramidal basal dendrites (Kampa et al., 2006). In CA1 pyramidal
dendrites, the density of Kv4.2 also increases along the soma-
dendritic axis (Kerti et al., 2012), although the gradient was
shallower than expected from dendritic recordings of IA (e.g.,
Hoffman et al., 1997; Sun et al., 2011; Nestor and Hoffman,
2012); a discrepancy that might result from involvement of
other IA α-subunits, auxiliary subunits, or modulators of channel
conductance.

In mouse L3 pyramids, selective blockade of Kv4.2/4.3
enhanced glu-EPSPs activated by focal glutamate-uncaging
at single spines. It also promoted activation of fast, dendritic
spikes by summed glu-EPSPs at proximal dendritic locations
and of slower, all-or-none, stereotypical, depolarizing events
at proximal-intermediate dendritic locations (A Biro, A
Bremaud, A. Ruiz, unpublished). Without channel-blockers
these additional events required near simultaneous activation at
7–8 closely neighboring locations. Such events would enhance
responses of L3 cells to thalamocortical inputs. However, two
excitatory synapses provided by any one presynaptic axon
rarely, if ever innervate the same pyramidal dendrite, let alone
7 or 8. They distribute across the dendritic tree on different
branches, albeit at similar electrotonic distances from the
soma. How frequently 7–8 presynaptic terminals, each from
7 to 8 different presynaptic neurones, all impinging on a
single dendritic compartment, are activated simultaneously
in life, is difficult to predict. More distal inputs e.g., from
other L3 neurones or cortical regions may lower the threshold
for such events (Branco and Häusser, 2011), perhaps when
attention to a behaviourally important input is required. In
both mouse A1 and V1 L4, local circuit activation amplified and
prolonged thalamocortical responses, without altering frequency
or direction selectivity and with spectral range and tuning
(auditory), or with frequency and direction selectivity (visual)
preserved (Li et al., 2013a,b).

Unidirectional Flow of Excitation in
Neocortex and Hippocampus
Both cellular and circuit properties appear to have developed
to preserve the integrity of the signals arriving from the
periphery. In L4, thalamocortical input arrives in proximal
postsynaptic compartments that are near optimal for rapid,
faithful transmission to soma/axon. The signals carrying this
information may then be enhanced or suppressed in L3 and
additional features, like direction in V1, computed there.
However, the purity of salient feature representation in the direct
thalamocortical signal is not compromised by excitation from
other layers; from cells dealing with more highly integrated and
processed information. The flow of excitatory input from the
thalamus is unidirectional: from thalamus (and L6) to L4, L4 to
L3, and L3 to L5 and transmitted thence to other cortical and
subcortical regions. The strength of a response may be altered by
coincident inputs from the recipient layer, from other layers, or
regions; the response may be tuned, or suppressed by inhibition
in L4 activated from elsewhere, but its fundamental integrity is
preserved (Thomson et al., 2002; Thomson and Lamy, 2007, for
review).
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In this, the neocortical circuit is strongly reminiscent of
hippocampus where dentate granule cells, activated by inputs
from enthorinal cortex, send excitatory inputs to CA3, CA3
pyramids send excitatory inputs to CA2 and CA1 and CA1
pyramids project to different layers of the enthorinal cortex
via the subiculum. CA1 pyramids do not project “back” to
excite CA3 pyramidal cells. The CA1 neurones that innervate
CA3 and dentate gyrus are not glutamatergic pyramidal cells,
but GABAergic interneurones—“back projection cells” (below
and Supplementary Figure 1, http://uclsop.net/interneuron-
reconstruction/backprojection/). Some CA2 pyramids, as well as
interneurones, do project “back” to CA3 (Figure 1; Mercer et al.,
2007, 2012b; Mercer, 2012), but their targets there have yet to be
identified.

One of the reasons such an elegant organization in
neocortex has been difficult to accept, or even imagine
(e.g., Binzegger et al., 2004) is the apparent chaos that
results from neocortical layering, cf the discreet regional
organization in hippocampus. In neocortical layers 2–6, there
are somata, axons and apical and basal dendrites arising
from many different classes of neurones whose somata reside
in any of these layers. The inputs from other layers, from
other cortical and subcortical areas may terminate neatly in
specific layers, or sublayers, but what do they find there
but a jumbled multiplicity of potential targets. To propose
that these axons can seek out and connect only to specific
targets amongst this confusion—not only to connect to
certain subclasses of neurones, but to specific postsynaptic
compartments belonging to those neurones—seemed quite
preposterous.

It is, however, the case. Those of us not skilled in the art
may view electron micrographs of the neocortical neuropil with
a sense of horrified bewilderment, but axons and dendrites
apparently know with whom they are destined to communicate
and make it their business to find each other. We have
come to accept that GABAergic interneuronal axons can find
and innnervate very specific targets, eschewing all others in
their path, so why have we assumed that excitatory axons
make synaptic contacts indiscriminately, with any old neuronal
element they happen to pass? (see also Markram et al., 2015).
Different pyramidal classes are born on different embryonic
days, express different combinations of gene products at different
times during migration and differentiation, migrate through
gradually changing chemical and physical environments, halt for
different lengths of time en route and receive different incoming
synapses. Neocortical pyramidal (unlike interneuronal) axons
may often follow almost linear, class-specific trajectories, but
their targets are more flexible—employing spines to sample the
environment and twisting and bending to capture an attractive
input.

We do not yet know which molecules are involved in
this synaptic partner-identification; they are likely to be
different at each class of synapse (defined by the subclasses
of pre- and post-synaptic neurones). But we do know that
each class of synapse, so defined, displays its own unique
characteristics: specificity in transmitter(s) used, pre- and post-
synaptic receptors inserted, frequency-dependent patterns of

transmitter release, postsynaptic compartments involved and
thereby the modulation of each input by cable and voltage-gated
properties and by other nearby inputs.

Subplate Neurones and Afferent Axons
Neocortex
There is considerable evidence that epigenetic cues are required
for the final differentiation of neocortical neurones, still
somewhat multi-potent on arrival. Obvious candidates for such
cues are in-growing axons, particularly, perhaps, thalamocortical
axons in primary sensory regions (López-Bendito and Molnár,
2003, for review).

Connections between the neocortex and subcortical structures
course through the internal capsule, a thick fiber tract
lying between the caudate nucleus and thalamus. Subplate
neurones, diverse in site of origin, birth date, survival
and gene expression, exhibit a range of morphologies and
axonal projection patterns (Hoerder-Suabedissen and Molnár,
2013), including pioneer axons to the emerging internal
capsule and commissural fibers of the early hippocampus
(Sarnat and Flores-Sarnat, 2002). The subplate zone becomes
a “waiting compartment” in which thalamocortical-, basal
forebrain cholinergic-, callosal, commissural, and ipsilateral
corticocortical-afferents cease growing until an appropriate
environment or signal emerges.

Early born GABAergic cells migrate tangentially from their
germinal zone in the LGE (lateral ganglionic eminence) and
into the MGE (medial ganglionic eminence), forming a stream
of cells between the MGE and globus pallidus (E11.5 to E14).
These “corridor” cells form a permissive pathway through
which thalamocortical axons can grow (López-Bendito et al.,
2006) (Molnár et al., 2012: Figures 1 and 2; https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC4370206/figure/F1/; https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC5040712/figure/F2/).
Otherwise chemical repellents and the structure of the PSPB
(pallial-subpallial boundaries): high cell-density, and a radial
glial fascicle running across the trajectory of thalamocortical
axons, would hinder their onward growth toward the cortex.
Cortigofugal axons may also assist the forward growth of
thalamocortical axons through this barrier (Molnár et al., 1998;
Molnár and Butler, 2002).

Like many cortical neurones, most thalamic neurones are
born between E13 and E19 (rat), the LGN, for example, between
E12 and E14. By E16/E17, nuclear differentiation in thalamus
has begun and both neocortex and dorsal (specific) thalamus
have started to generate prospective reciprocal connections. To
reach their destinations, these axons must overcome and cross
several emerging barriers, or boundary zones: the diencephalic-
telencephalic (DTB) and (PSPB) form transient barriers to
axon growth, but interestingly, also a route for early born
migrating neurones that form the permissive corridor. A largely
transient population of pioneering subplate neurones sends
the first projections to the internal capsule (IC) and beyond;
though the axons of other cortical neurones actually invade
and innervate specific thalamic nuclei first. However, without
subplate projections, thalamocortical axons cannot traverse the
PSPB to enter the telencephalon. Moreover, subplate ablation
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FIGURE 1 | Reconstructions of CA2 interneurones filled during intracellular recordings in adult rat hippocampus (from Mercer et al., 2007, 2012b). The largest

population of interneurones recorded and filled in CA2 were basket cells. Like those in CA1, CA2 basket cells had dendrites that extended through stratum oriens,

sometimes entering the alveus, and through stratum radiatum and into stratum lacunosum moleculare. Their axons arbourized extensively in stratum pyramidale and

in some, also in very proximal stratum oriens and/or radiatum (wide axonal arbor basket cells). Two distinct subtypes of CA2 basket cells were identified. The first (CA2

narrow dendritic arbor basket cells) resembled those of CA1 with a narrow, aspiny dendritic arbor and axon confined to CA2. In contrast, both the axons and

dendrites of the CA2 wide dendritic arbor basket cells, extended into all three CA-subfields and the horizontally oriented, distal dendritic branches were sparsely spiny.

Similarly, two subtypes of CA2 bistratified cells were reported, CA2 narrow and wide dendritic arbor bistratified cells. The dendrites of both subtypes extended through

stratum oriens and radiatum without entering stratum lacunosum moleculare, those of wide dendritic arbor cells extending further horizontally than is typical of CA1

bistratified cells and becoming sparsely spiny. Bistratified cell axons ramified in both CA2 and proximal CA1, but stopped abruptly at the CA2/CA3 border. The somata

of CA2 SP-SR interneurones were found in stratum pyramidale and their dendrites extended to stratum oriens, branched extensively in stratum radiatum, rarely

penetrated SLM, but often extended horizontally to CA1 and CA3. Their axons emerged from the soma and arbourized almost exclusively in stratum radiatum of CA2.

The axons and dendrites of CA2 stratum radiatum, Reelin-immunopositive interneurones ramified predominantly in CA2 stratum radiatum, with a few axonal branches

extending into neighboring regions.

at this time, prevents formation of ocular dominance columns,
inhibition in L4 does not mature, barrels are disrupted and
spindle activity abolished (Hoerder-Suabedissen and Molnár,
2015).

By P0, axons from L6 have reached the ventrobasal thalamic
nucleus (primary somatosensory) and over the next 4 days they
invade and form a barreloid pattern. Corticothalamic fibers
do not, however, ramify within LGN until the eyes open and
spontaneous activity begins. By E16-19 thalamocortical axons
have accumulated in the subplate, but they also wait, extending
horizontal collaterals that may facilitate reorganization of maps
at a later date, until peripheral afferents innervate the appropriate
dorsal thalamic nucleus (Molnár et al., 2012).

Here we see an important change in the forward growth of
thalamocortical axons from the external route seen in lower
vertebrates lacking a six layered cortex, where they run over
the developing cortex, to the internal route of mammals, via
the corpus callosum. The midline repellent, Slit2, redirects the

migration of corridor neurones, switching thalamic axons from
an external to a mammalian-specific internal path (Bielle et al.,
2011). It is proposed that this switch allowed the neocortex to
grow radially. Interestingly, the hippocampus is deep in the brain
and bounded by dense fiber tracts. Perhaps it was not able to grow
in this way.

Having accumulated in the subplate, the growth of
thalamocortical axons into neocortex is prevented if SNARE-
complex proteins, essential for AP-driven, Ca2+-dependent
transmitter release (though not spontaneous, “miniatures,”
Ramirez and Kavalali, 2011) are knocked out. With the arrival
of thalamocortical axons, transient circuits form between
thalamic axons, subplate and L4 neurones. Multiple interactions
now control the growth of- and connections made by-
incoming axons and the development of cortical neurones
and circuits. For example, two extracellular molecules: NRN1
(Neuritin-1, a GPI-anchored neuronal protein that modulates
neurite outgrowth) and VGF (a nerve growth factor), both
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manufactured by thalamic cells and transported to their
neocortical terminals, promote L4 spiny stellate dendritic
growth—selectively (Sato et al., 2012). Lhx2 promotes activity-
dependent L4 dendritic growth toward thalamic afferents, by
inducing the transcription factor BBtbd3 (Wang et al., 2017),
while several neurotrophins are implicated in the critical stages
during which precise thalamocortical connections are made
(Ma et al., 2002; Yamamoto and Hanamura, 2005). As L4
and its thalamic inputs mature postnatally, spiny stellate cells
receive a transient input from SOM interneurones in L5b, which
themselves receive thalamic input. Development of thalamic
input to spiny stellates is delayed in the absence of this transient
input (Marques-Smith et al., 2016), while thalamic afferents
are misdirected to inappropriate barrels when Proteoglycan-2
(PRG-1, a phospholipid- interacting molecule) is knocked out
(Cheng et al., 2016).

Hippocampus
As in neocortex, expression patterns demonstrate that pyramidal
classes are predestined at E15.5 while they are still in IZ. For
example, SCIP (POU domain transcription factor), is present
in future CA1 pyramids (Frantz et al., 1994; Tole et al., 1997),
while KA1 (GluR subunit) is expressed in future CA3 neurones
(Wisden and Seeburg, 1993; Tole et al., 1997) and many
regulators that control neurogenesis in neocortex also act here
(Urbán and Guillemot, 2014).

From LII and LIII of the entorhinal cortex information from
many subcortical structures is relayed to the hippocampus via
the perforant path, providing powerful input to the molecular
layer of the dentate gyrus and to distal apical dendritic tufts of
CA1-3 pyramidal cells in stratum lacunosum moleculare. Mossy
fibers project from dentate granule cells to CA3 stratum lucidum,
innervating the most proximal apical dendrites of CA3 pyramids
with huge boutons. In turn, CA3 pyramidal axons (Schaffer
collaterals) project to stratum radiatum and oriens of CA1. The
hippocampus also sends information to and receives inputs from
subcortical regions: medial septum, cingulate gyrus, mammillary
bodies, thalamus and amygdala as well as regions of association
cortex.

The precise position of CA2 in this unidirectional trisynaptic
pathway has been unveiled more recently (Chevaleyre and
Piskorowski, 2016; Dudek et al., 2016; for reviews). LII of
the entorhinal cortex provides strong, proximal excitation to
CA2 pyramidal cells via dentate and mossy fiber synapses in
stratum lucidum (Kohara et al., 2014). CA2 is also thought
to receive direct input from LIII of the entorhinal cortex in
stratum radiatum and lacunosum moleculare (Chevaleyre and
Siegelbaum, 2010) in addition to Schaffer collaterals (Chevaleyre
and Siegelbaum, 2010; Jones and McHugh, 2011). In turn, CA2
pyramids project preferentially to calbindin-negative, deep CA1
pyramids which lie adjacent to stratum oriens (Kohara et al.,
2014). CA2 pyramids also project “back” to the supramammillary
nucleus (Tamamaki et al., 1988; Cui et al., 2013) and in some
cases, back to LII of the medial enthorinal cortex (Rowland et al.,
2013).

During development, a projection from CA1 non-pyramidal
cells to the medial septum, (hippocampo-septal pathway)

(Supèr and Soriano, 1994) develops before the reverse, septo-
hippocampal projection: E15 vs. E17 (mouse) (for parallel studies
in rat and involvement of Cajal-Retzius cells: Ceranik et al., 1999,
2000). Chemo-repulsive semiphorins repel septal axons, promote
growth cone collapse and may contribute to target selection;
GABAergic septo-hippocampal fibers terminate preferentially on
sema3C-expressing GABAergic interneurones, while cholinergic
septo-hippocampal fibers terminate on sema3E- and sema3A-
expressing CA pyramidal and dentate granule cells (Pascual et al.,
2005).

By E17, LIII entorhinal axons are ramifying densely and
exclusively in stratum lacunosum moleculare. Invasion of the
dentate comes later, but by E19, the first entorhinal axons
begin to ramify there, predominantly in the outer molecular
layer (Supèr and Soriano, 1994). Commissural fibers first enter
the contralateral hippocampus at E18 and arborize in stratum
radiatum and oriens, along with the Schaffer collaterals. The
earliest commissural fibers to enter the dentate gyrus are seen
even later, at P2, terminating in the inner zone of the molecular
layer and the hilus. Thus, as in neocortex, incoming pathways do
not meander indiscriminately; they invade their ultimate target
layers and regions from their earliest appearance, some following
paths marked by early born, non-pyramidal neurones.

Again, a host of genes selectively expressed at different
times, in different locations and in different cell classes in the
developing hippocampus appear to contribute to its normal
development. For examples, see Fazzari et al. (2010) for signaling
with Nrg1(Neuregulin1, a ligand for ERBB3 and 4) and ErbB4
(receptor tyrosine kinase, an epidermal growth factor receptor);
Silva et al. (2015), for LGI1 (Leucine-rich, glioma inactivated
1) in both neocortex and hippocampus; (Mingorance et al.,
2004), for tempero-spatial patterns of Nogo expression and its
debated involvement in perforant path development (Urbán and
Guillemot, 2014).

A Note on Cajal-Retzius Cells (Cajal, 1891, 1899a,b,

1904; Retzius, 1893)
Large numbers of calretinin-expressing (CR), bipolar or
multipolar Cajal-Retzius neurones appear in the molecular layer
of the developing CP, becoming distributed through all layers.
Collaterals of their thick primary axon make synaptic contact
first with pyramidal cells in emerging L6, then sequentially with
pyramids in L5 to L2 (del Rio et al., 1995). In hippocampus they
become densely innervated by afferent axons from entorhinal
cortex, whose ramification in CA stratum lacunosum moleculare
and dentate outer molecular layer is severely reduced if Cajal-
Retzius cells are ablated. Up to 90% of these cells disappear
during development; the remainder form a sparse population
in adult neocortical L1 (del Rio et al., 1995), hippocampal
stratum lacunosum moleculare and the dentate gyrus outer
molecular layer (Del Río et al., 1997). Cajal-Retzius neurones
produce GABA, possibly ACh, calmodulin, PV(parvalbumin)
and CR and neuropeptides. They express important mediators
of radial neuroblast migration and lamination of the cortical
plate: Reelin (a secreted extracellular matrix protein, essential for
the normal “inside-out” development of neocortical layering),
Lis1 (a motor protein Dynein-regulator), and Dscam (Down
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syndrome cell adhesion molecule). In addition to forming the
first intrinsic synaptic circuits of the cortical plate and its first
afferent and efferent connections with subcortical structures,
Cajal-Retzius neurones may contribute to ocular dominance
column-formation, to regulation of neurogenesis, and to cortical
repair (Sarnat and Flores-Sarnat, 2002, for review).

GABAERGIC INTERNEURONES

Origins of the Many Classes of GABAergic
Cortical Interneurones
(Meyer and Wahle, 1988; Wonders and Anderson, 2006; Batista-
Brito and Fishell, 2009; Vitalis and Rossier, 2011; Miyoshi et al.,
2013; Li and Pleasure, 2014; Wamsley and Fishell, 2017, for
reviews; Yavorska and Wehr, 2016, Figure 1, https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC5040712/figure/F1/; Batista-Brito
and Fishell, 2009, Figure 3, https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC4465088/figure/F3/; Cauli et al., 2014, Figure 1,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067953/
figure/F1/; Jovanovic and Thomson, 2011, Figure 1, https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3139172/figure/F1/;
Brandão and Romcy-Pereira, 2015, Figure 1, https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC4412069/figure/F1/).

In humans, 65% of neocortical interneurones develop from
Mash1-expressing progenitor cells of the VZ and SVC. Mash1
is a gene responsible for differentiation of GABAergic neurones
and is also expressed in the subpallium (Letinic et al., 2002;
Jakovcevski et al., 2011). In most mammals, however, the
majority of GABAergic cortical interneurones are born in the
subpallium, divisible into lateral (LGE), medial (MGE), and
caudal (CGE) ganglionic eminences and preoptic area (POA).
Interneurones expressing PV are born in ventral MGE (vMGE);
those expressing SOM in dorsal MGE (dMGE); interneurones
expressing the 5HT3 receptor (5HT3R, ionotropic serotonin
receptor, Lee et al., 2010) plus cells variously expressing CR, CCK,
VIP, SOM, PV, reelin and NPY (neuropeptide Y) are born in CGE
(Lee et al., 2010). Finally, a mixed population of CR, CCK, VIP
(vasoactive intestinal polypeptide), SOM, PV, reelin, and NPY
cells are born in POA. Between E9.5 and E15.5, PV cells in vMGE,
SOM cells in the dMGE and cells expressing reelin, SOM, CR,
are born. 5HT3R cells are born later (E12.5–E15.5). The orphan
nuclear receptor COUP-TFII is expressed in the CGE and in
hippocampal interneurone-specific interneurones. It is required,
with COUP-TFI, for caudal migration of cortical interneurones
(Cauli et al., 2014), while activation of 5HT3AR promotes
migration and appropriate positioning of CGE-derived reelin-
cells (Murthy et al., 2014) (Yavorska and Wehr, Figure 2, https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC5040712/figure/F2/).

The interneurones then migrate tangentially toward the
cortex. Corticofugal axons expressing TAG-1 (an axonal
glycoprotein) provide a pathway for early-born MGE
interneurones, while later-born interneurones migrate
preferentially along axons lacking TAG-1 (McManus et al.,
2004; Denaxa et al., 2011). Along two main migratory
streams (in MZ and SVZ) they interact with soluble chemo-
attractants and-repellents. For example, Cxcl12, interacting

with its receptors, Cxcr4, Cxcr7, is a potent chemo-attractant
for MGE-derived interneurones and required for normal
positioning of these interneurones (Li et al., 2008; López-
Bendito et al., 2008). Activation of GluRs and GABABRs,
promotes tangential migration of interneurones into the cortex
(Luhmann et al., 2015). Early born, SOMinterneurones, in
receipt of strong thalamic input at this time, innervate PV
interneurones and pyramids. These transient circuits promote
maturation of thalamocortical input to PV interneurones
(Tuncdemir et al., 2016; see above, for the influence of transient
circuits involving thalamorecipient-SOM interneurones, on
spiny stellate maturation). CGE-derived interneurones must
insinuate themselves into the cortex even later, after many other
interneurones are in place. To migrate properly and develop
appropriate processes, they need network activity and, after P3,
glutamate-release (De Marco García et al., 2011).

Each subpallial region expresses different combinations of
transcription factors and both birth-date and -location influence
the classes of interneurones generated. By P0, a large part of
their fate has been defined by their own genetic programmes,
but most interneurones arrive after pyramidal neurones and early
interneurones have populated the cortex. Additional factors fine
tune their structure and function: interactions with pyramidal
cells influence their final positions, electrical activity regulates
late acquisition of neurochemical identity and of soluble factors,
which also influence chemical identity and thereby the relative
proportions of interneuronal subtypes (Brandão and Romcy-
Pereira, 2015, for review).

Ambiguity and Uncertainty in the Classification of

Interneurones
Many recent studies have used rodents—young enough for many
neuronal properties still to be maturing. Neonatal voltage gated
channels, transporters and receptors are replaced during the first
few postnatal weeks, resulting in a dramatic—up to four fold—
reduction in the time course of many electrophysiological events.
This “juvenile” period is also a time of synapse proliferation and
pruning, and the speed and complexity of short term synaptic
dynamics (Thomson, 2000a,b, 2003) increase in parallel. Some
of the ambiguity encountered in attempts to classify cortical
interneurones could result from cells at different stages of
maturity; a day or two at these ages could make quite a difference:
Kvα1 (Butler et al., 1998); SK2 (Cingolani et al., 2002); Kv3.2
(Tansey et al., 2002); Kv3.1b (Du et al., 1996); speeding of AMPA-
R-EPSPs, P8 cf P35; shortening of synaptically released glutamate
waveform, P8-P18 (Cathala et al., 2003, 2005); GABAA-R α6-
subunit expression, P7 cf P30 (Tia et al., 1996; time course of
NMDA-R mediated EPSCs (Hestrin, 1992; Cathala et al., 2000);
NMDA-R subunits (Farrant et al., 1994); switch from FLIP to
FLOP GluR splice variants P8-14 (Monyer et al., 1991). (Batista-
Brito and Fishell, 2009, Figure 5, https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4465088/figure/F5/).

Moreover, reconstructions of “juvenile” cells typically
demonstrate rather limited axonal ramification.

Studying a more restricted developmental stage might,
therefore result in a “tidier” picture. However, cortical
interneurones have to establish their own territories within
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a field of already established cortical layers, sublayers and
regions; environments, moreover, that continue to change
throughout development and in ways not entirely prescribed
genetically. Following detailed studies of the crab stomatogastric
ganglion,Marder and Prinz (2002) concluded that “...similar
neuronal and network outputs can be produced by a number of
different combinations of ion channels and synapse strengths. This
suggests that individual neurons of the same class may each have
found an acceptable solution to a genetically determined pattern
of activity, and that networks of neurons in different animals may
produce similar output patterns by somewhat variable underlying
mechanisms....” It is perhaps not surprising, therefore, that
while many properties are common to all members, where a
given clearly definable subclass exists, others may be subject to
variation andmodification by the existing environment. It is only
necessary to study the convoluted trajectories of interneuronal
axons (and pyramidal dendritic branches) to appreciate how
thoroughly they explore their environment for appropriate
synaptic partners.

Hippocampal Interneurones
(Klausberger et al., 2003, for review) (Figure 1. Supplementary
Figure 1 for 3D reconstructions of CA1 interneurones).
(Klausberger and Somogyi, 2008, Figures 1,2, https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC4487503/figure/F1/; https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC4487503/figure/F2/; Bezaire
and Soltesz, 2013, Figure 1, https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3775914/figure/F1/; Markram et al., 2004).

Hippocampal interneurones are generated in much the same
way and in the same regions as neocortical interneurones, though
they take a more caudal path to their destination. They must also
become integrated into an existing network, but the organization
of that network, with only one principal cell layer and major
pathways spatially separated, is more straightforward.

Proximally Targeting Hippocampal Interneurones
Two broad classes of interneurones target somata/proximal
dendrites and axon initial segments of pyramidal cells,
respectively. Many of their axonal branches become
significantly—if sporadically—myelinated and their synaptic
boutons are large and contain mitochondria; facilitating the fast,
precisely timed, proximal inhibition they provide.

Basket cells “Baskets” of axons bearing large synaptic
boutons that surrround principal cell somata were first described
in cerebellum (Golgi, 1883, 1906) then elsewhere (Cajal,
1888, 1906; Lorente de Nó, 1922; Kritzer and Goldman-
Rakic, 1995; Buhl et al., 1997; Ali et al., 1998; Tamás et al.,
1998). A hippocampal interneurone destined to inhibit
pyramidal somata has little choice but to innervate stratum
pyramidale. Similarly, to sample all excitatory inputs controlling
activity in its target cells, it extends its dendrites across all
layers, from stratum oriens to lacunosum moleculare—an
easily identifiable, classical CA basket cell. Some basket
cell axons can also extend to proximal stratum oriens and
stratum radiatum (wide arbor basket cells, Supplementary
Figure 1, http://uclsop.net/interneuron-reconstruction/
basket).

Three types of CA1 basket cells, the majority otherwise
fairly similar in their appearance, are distinguished by
immunoreactivity for PV, CCK/VIP; or CCK/VGLUT3
(Katona et al., 1999; Somogyi et al., 2004) and CB1R (type-
1 cannabinoid receptor: Takács et al., 2015) (Pawelzik et al.,
2002, for distributions of CA1 PV and CCK interneurones). CA1
CCK basket cells receive less synaptic input than PV baskets,
with proportionally more inhibition, suggesting that they do
indeed subserve different rôles (Mátyás et al., 2004) and unlike
PV basket cells, whose cell bodies lie predominantly in stratum
pyramidale, CCK basket somata are also found in stratum oriens
and radiatum, i.e. their sampling of incoming information also
has a different bias.

For neurones with such a similar overall structure and specific
target preference, it is surprising perhaps that PV andCCK basket
cells originate in different subpallial regions: PV interneurones
in vMGE, CCK interneurones in POA or CGE and may be born
later. PV interneurones (devoid of other common markers) are
typically fast spiking (FS) and deliver fast IPSPs mediated by
α1β2/3γ2-GABAARs to pyramids, while many CCK basket cells
display adapting firing patterns, have broader action potentials
(Pawelzik et al., 2002) and activate α2β2/3γ2-GABAARs on
pyramids. The different pharmacologies of these receptors
(hippocampus: Pawelzik et al., 1999, 2003; Thomson et al., 2000;
neocortex: Ali and Thomson, 2008) and the behavioral effects
of manipulating their efficacy (Möhler et al., 2002) suggest that
PV baskets mediate pharmacological sedation and contribute to
anti-convulsant therapies, CCK basket cells (and possibly axo-
axonic cells, Nusser et al., 1996) promote anxiolysis (Möhler et al.,
2002), while certain dendrite-preferring interneurones, acting on
α5β1γ2-GABAARs (Pawelzik et al., 1999, 2003; Ali and Thomson,
2008) influence cognition (Rudolph and Möhler, 2014).

Chandelier, or Axo-axonic cells innervate pyramidal axon
initial segments in deep stratum pyramidale and proximal oriens.
Their cartridge bouton arrays are only partially coincident
with basket cell axonal arbors (Buhl et al., 1994b). For
chandeliers with somata in stratum pyramidale this and
the often distinctive claw-like appearance of their apical
dendritic terminal branches as they extend into stratum
lacunosum moleculare assist their identification (Pawelzik et al.,
2002) (Supplementary Figure 1, http://uclsop.net/interneuron-
reconstruction/axo-axonic). For stratum oriens axo-axonic cells
with horizontal dendrites, see Ganter et al. (2004).

Dendrite-Targeting Interneurones
At least nine classes of CA1 interneurones preferentially
innervate pyramidal dendrites. Their termination zones suggest
that each class selectively innervates dendritic regions also
receiving a particular afferent pathway, or combination thereof.
The names they have acquired often reflect this preference
(Klausberger et al., 2003; Klausberger and Somogyi, 2008;
Bezaire and Soltesz, 2013, for reviews). As a gross generalization,
dendrite-targeting interneurones have finer, unmyelinated
axons and smaller, mitochondria-poor synaptic boutons than
proximally targeting cells. They display a range of firing patterns,
but are rarely classical FS. Those that have horizontally oriented
dendrites (OLM cells being a prime example), be they in stratum
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oriens, radiatum, or lacunosum moleculare, in CA1 or CA2,
often display an adapting firing pattern and a pronounced “sag”
current in responses to large hyperpolarizing current pulses,
which can elicit rebound firing and many receive facilitating
EPSPs from pyramids.

Perforant path associated cells Perforant path associated
cells whose axons and dendrites are restricted to stratum
lacunosum moleculare respond to perforant path input by
inhibiting pyramidal apical dendritic tufts that are also
in receipt of perforant path input. (CCK) (Vida et al.,
1998; Pawelzik et al., 2002) (Supplementary Figure 1,
http://uclsop.net/interneuron-reconstruction/ppa).

Bistratified cells have axonal arbors ramifying in stratum
oriens and radiatum, but not in stratum pyramidale or lacunosum
moleculare. Bistratified cells with somata in stratum pyramidale,
have dendrites that span stratum oriens and radiatum. Those
with cell bodies in stratum oriens, have horizontal dendrites
confined to stratum oriens.The axons of both subtypes are
associated with Schaffer collateral/commissural inputs to
intermediate pyramidal dendrites via α5β1γ2-GABAARs
(Pawelzik et al., 1999; Thomson et al., 2000; Thomson and
Jovanovic, 2010 for review). (Supplementary Figure 1, http://
uclsop.net/interneuron-reconstruction/bistratified).

(SOM, PV, CCK) (Buhl et al., 1994a, 1996; Halasy et al., 1996;
Pawelzik et al., 2002; Klausberger et al., 2004; Baude et al., 2007).

Schaffer collateral-associated cells innervate the same
regions as bistratified cells, but receive a different combination of
inputs. Their somata lie close to the stratum radiatum-lacunosum
moleculare border and their dendrites span both these layers and
stratum oriens. In addition to Schaffer collateral and commissural
input, therefore, these interneurones receive proximal input from
perforant path, but restrict their influence to the termination
regions of the Schaffer/commissural inputs (CCK: Vida et al.,
1998; Pawelzik et al., 2002). (Supplementary Figure 1, http://
uclsop.net/interneuron-reconstruction/sca).

Apical dendrite-innervating cells have axonal and dendritic
spans similar to those of the Schaffer collateral-associated cells,
but innervate the main apical dendritic trunks of pyramids,
rather than their apical oblique branches (Klausberger et al., 2005;
Klausberger, 2009) (CCK).

Oriens-lacunosum moleculare, or OLM cells (Cajal, 1911;
Lacaille et al., 1987; Lacaille and Williams, 1990; Buckmaster
et al., 1994; Blasco-Ibáñez and Freund, 1995), have horizontal
thorny dendrites restricted to stratum oriens (in CA1) where
they receive their most powerful drive from CA1 pyramids
(Blasco-Ibáñez and Freund, 1995) with facilitating EPSPs (Ali
and Thomson, 1998). In CA3, OLM dendrites also project
into stratum radiatum, where local CA3 pyramidal axons also
ramify. OLM cells do not, however, innervate stratum oriens,
pyramidale, or radiatum. They send one or more long axons
to stratum lacunosum moleculare, where they form a dense
arbor in the perforant path termination zone and deliver fast
IPSPs, almost invisible at the soma, but apparent in distal apical
dendritic recordings (Hannelore Pawelzik, 1960-2004; Hannelore
Pawelzik, unpublished) (Supplementary Figure 1, http://uclsop.
net/interneuron-reconstruction/olm).

(SOM: Morrison et al., 1982; Kosaka et al., 1988; Kunkel
and Schwartzkroin, 1988). (mGluR1α: Ferraguti et al., 2004) (up
to one third express PV weakly: Ferraguti et al., 2004; Varga
et al., 2012) one (metabotropic glutamate receptor 7, mGluR7,
selectively expressed in excitatory boutons contacting OLM cells:
Shigemoto et al., 1996).

GABAergic Projection Neurones
(Jinno, 2009, Figure 1, https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2718779/figure/F1/).

These are perhaps the group most difficult to classify and
one of the smallest 4% of CA1 interneurones. Since the majority
of reported cells in the following four classes have horizontally
oriented dendrites confined to stratum oriens, it is probable that,
like OLM cells, they receive strong excitatory input from CA1
pyramids and relay information about activity here to other
regions. In addition to long distance projections, they have local
axonal arbors in stratum oriens and radiatum.

(SOM; Jinno et al., 2007; Katona et al., 2017) PV possible:
Ferraguti et al., 2004).

Oriens-retrohippocampal projection cells project to
the subiculum. (SOM/Cb: Jinno et al., 2007; Klausberger
and Somogyi, 2008). A range of subtypes project to
subiculum, including an mGluR8-decorated, M2R-expressing,
SOM-negative trilaminar cell (Ferraguti et al., 2005).

Double projection cells (Klausberger and Somogyi, 2008)
project to the septum and subiculum (SOM/Cb, or CR). Some
also express mGluR1α and/or NPY and up to 30% express PV
weakly.

Back-projection cells (Sik et al., 1994; Katona et al.,
2017, for in vivo filled cells) project to CA3 and/or dentate
gyrus, sometimes crossing the fissure, which appears to be
an impenetrable barrier to other neuronal processes. (PV,
SOM, Cb-negative). (Supplementary Figure 1, http://uclsop.net/
interneuron-reconstruction/backprojection).

Cb-septal projection cells project to the septum (SOM, Cb)
(Gulyás et al., 2003).

Amygdala-projecting interneurones project from ventral
CA1 stratum oriens, pyramidale and radiatum, to the amygdala
(Lübkemann et al., 2015). (PV, Cb, SOM, NPY and/or CCK).

The Neurogliaform Family
The neurogliaform family (Overstreet-Wadiche and McBain,
2015, for review).

Two classes have been described, which differ predominantly
in the inputs they receive and the subcellular compartments they
inhibit.

Neurogliaform cells are often found at the stratum radiatum-
lacunosum moleculare border, with short, fine, often highly
convoluted dendrites and a dense and spatially restricted axonal
arbor, positioned to inhibit distal apical dendrites of pyramidal
cells; (nNOS (neuronal nitric oxide synthase), NPY, α-actinin-2,
COUP-TFII) (Price et al., 2005; Fuentealba et al., 2010).

Ivy cells are structurally similar to neurogliaform cells, but
lie close to the stratum radiatum-pyramidale border where
they inhibit proximal pyramidal compartments. Although the
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GABAARs activated by ivy cells demonstrate rapid kinetics
via receptors also utilized at PV basket synapses (α1β2/3γ2,
unpublished results), the proximal IPSPs elicited by ivy cells
are very slow. This may be due to non-synaptic, as well
as synaptic release of GABA, since what appear to be
synaptic vesicles in these axons are not always apposed to
postsynaptic specializations (Fuentealba et al., 2008a; see also
Oláh et al., 2009; Armstrong et al., 2012, for review) (nNOS,
NPY). (Supplementary Figure 1, http://uclsop.net/interneuron-
reconstruction/ivy).

Interneurone-Specific Interneurones
(Acsády et al., 1996; Freund and Buzsaki, 1996; Freund and
Gulyas, 1997) (CR and/or VIP and COUP-TFII: Gulyas et al.,
1999).

Interneurone-specific type I somata are found in stratum
pyramidale. Their dendrites and axons span stratum oriens and
radiatum. They innervate Cb interneurones, VIP-, but not PV-
basket cells and other IS-1 interneurones (CR).

Interneurone-specific type II somata lie near the stratum
lacunosum moleculare- radiatum border. Their dendites run
horizontally in lacunosum moleculare. They innervate distal
stratum radiatum, making multiple contacts with Cb, but not
PV-dendrites (VIP).

Interneurone-specific type III somata are found in stratum
pyramidale, their bipolar/bitufted dendrites span stratum
oriens through radiatum to lacunosum moleculare. Their
axons innervate stratum oriens, where they inhibit Cb and
SOM/mGluRa, interneurones including OLM cells (Acsády
et al., 1996) (CR, VIP and possibly nNOS).

We cannot leave hippocampal interneurones without
mentioning, however briefly, the elegant experiments in
which a neurone is recorded through different e.g., states, then
filled juxta-cellularly and identified; studies that demonstrate
distinctive patterns of firing in relation to network rhythms such
as theta and sharp wave ripples, for each class of interneurone
(Klausberger et al., 2003, 2004; Fuentealba et al., 2008b, 2010;
Klausberger and Somogyi, 2008; Varga et al., 2012; Katona et al.,
2017).

Can We Transfer What We Know about
Interneurones in CA Regions to the
Neocortex?
There are around twenty, more or less distinct, classifiable
classes of interneurones in CA1. Although those in CA3 remain
to be explored as thoroughly, there appears to be a similar
variety. In CA2, much the same profile is seen, but some
unique subclass features and a stratum pyramidale-stratum
radiatum interneuronal class, specific to this region, have been
demonstrated (Figure 1) (Mercer et al., 2007, 2012a,b).

Some of the distinguishing features used to classify
hippocampal interneurones, such as topographical relationship
to specific pathways, have not been systematically applied to
neocortical interneurone classification. If we look at broad classes
of GABAergic neurones, those, for example that express the same

markers, we find a similar picture in hippocampus and neocortex.
Nearly all neocortical interneurones also belong to three broad
groups, 40% expressing PV, 30% SOM and 30% 5-HT3αR, with
little overlap (Rudy et al., 2011). As a broad generalization, PV
interneurones (expressing neither SOM, Cb, nor CR) display fast
spiking (FS) behavior, innervate proximal regions of pyramidal
cells, generate fast IPSPs mediated by α1β2/3γ2 GABAARs
(Ali and Thomson, 2008) and receive depressing EPSPs from
pyramids (excepting L6 corticothalamic pyramids). SOM cells
including bipolar and bitufted neurones, display adapting or
“burst-firing” behavior, innervate pyramidal dendrites with
slower IPSPs (somatic recordings) and receive facilitating EPSPs
from pyramids. 5HT3R cells displaying various non-FS behaviors
are often relatively small cells with small overlapping axonal and
dendritic trees (Lee et al., 2010). Expression of mRNA for certain
voltage-gated ion channels clusters with three major calcium
binding proteins, PV, Cb, and CR, and correlates with firing
characteristics: fast IA K+ channel subunits in the PV cluster,
that rapidly repolarize action potentials, reducing Na+-channel
inactivation, would facilitate fast spiking behavior, while a T-type
Ca2+ current in the Cb cluster that would support burst-firing
behavior (Toledo-Rodriguez et al., 2004).

Neocortical proximally targeting interneurones include
subclasses of basket and chandelier or axo-axonic cells, but with
a far wider range of sizes, axonal and dendritic distributions,
potential inputs and targets than in hippocampus.

Basket cells in neocortex have complex choices tomake. Some
of the pyramids that a neocortical basket cell is destined to control
will receive excitatory input in several, or even in all layers, while
some spiny cells, like inverted, or bipolar L6 corticocortical cells,
or L4 spiny stellate cells, may receive inputs only in one. A
neocortical basket cell must also choose which spiny cells it will
inhibit - any or all pyramids in a given layer, or a specific subtype,
perhaps one receiving only certain inputs. Some smaller basket
cells have axonal arbors restricted to a single layer, or sublayer.
Large basket cells often innervate more than one layer, though
this choice is not indiscriminate; the axonal arbors are often
restricted to two related layers, such as the two thalamorecipient
layers, L4 and L6, or the integration layers, L3 and L5, with
only unbranched collaterals passing through intermediate layers
(e.g., L3 and L5: Lund, 1987; Lund et al., 1988; Buhl et al.,
1997; L6 and L4: Lund, 1987; Lund et al., 1988; Thomson et al.,
2002; Thomson and Bannister, 2003). These larger basket cells
often have dendrites that extend over several layers and some,
in cat and primate primary sensory regions, also generate long
horizontal axonal branches that terminate in smaller, but equally
dense arbors in more distant columns (Lund, 1987; Lund et al.,
1988; Kritzer and Goldman-Rakic, 1995; Lund and Wu, 1997;
Thomson et al., 2002; Thomson and Bannister, 2003).

Traditionally, as in hippocampus, neocortical basket cells
have been found to stain either for PV, or CCK. However,
neocortical basket cells have also been classified according to
axonal branch length and angle, bouton frequency etc. and these
parameters correlated with their potential to generate calcium
binding proteins and neuropeptides (RT-PCR). “Small basket
cells,” including “clutch cells” (Kisvárday et al., 1985) express
mRNA for VIP and SOM or CCK and variously PV, Cb, or CR.
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Large basket cells express mRNA for PV or Cb and variously
NPY or CCK. “Nest basket cells” express PV or Cb mRNA and
approximately equal proportions mRNA for NPY, SOM, or CCK
(Wang et al., 2002).

For quality reconstructions of identified neocortical basket
cells and of other GABAergic interneurones: (Jones, 1975; Jones
and Peters, 1984; Lund, 1987; Lund et al., 1988; Lund and
Yoshioka, 1991; Lund and Wu, 1997; DeFelipe, 2002; Thomson
et al., 2002; Thomson and Bannister, 2003; West et al., 2006) and
for connections with these cells: (Somogyi et al., 1983; Kritzer
and Goldman-Rakic, 1995; Buhl et al., 1996; Halasy et al., 1996;
Tamás et al., 1997; Dantzker and Callaway, 2000; Thomson et al.,
2002; Thomson and Bannister, 2003; West et al., 2006; Ali et al.,
2007).

Chandelier or Axo-axonic cells (Inan and Anderson, 2014).
Since the targets of chandelier cells are highly restricted—to
pyramidal axon initial segments (Somogyi, 1977; Somogyi et al.,
1982) and their function - to control pyramidal firing, is well
documented (if somewhat controversial), we can assign part of
their function according to the distribution of their cartridge
synapses. The synapses made by some neocortical axo-axonic
cells are restricted to a single layer, others to two physically
separated, but related layers/sublayers. Cartridge synapses, on
short, radially projecting collaterals make these cells easy to
identify (Szentagothai and Arbib, 1974; Lund, 1987; Lund et al.,
1988; Lund and Yoshioka, 1991; Kritzer and Goldman-Rakic,
1995; Lund and Wu, 1997; Thomson and Bannister, 2003).
Although most studies identify PV as a predominant marker for
chandelier cells, (DeFelipe et al., 1989; Kawaguchi and Kubota,
1997; Gonchar and Burkhalter, 1999) some primate and human
L5/L6 chandeliers contain Cb (del Rio and DeFelipe, 1997) and
a separate population of corticotrophin-containing cells has been
described in primate, although relative proportions vary between
species, layer and area (Lewis and Lund, 1990).

Neocortical dendrite-targeting interneuronesmay, like their
hippocampal equivalents, sample only certain inputs and seek
only those targets that receive specific inputs. We are inclined
to suspect that they most probably do, in the face of little direct
evidence.

Somatostatin (SOM) dendrite-targeting interneurones

(Yavorska and Wehr, 2016), often bipolar or bitufted, have
fine axons forming dense, vertically oriented arbors with small
boutons, spanning one, two or more adjoining layers. They are
typically adapting, or burst-firing, with broader APs than FS cells
and receive facilitating inputs from pyramids (Deuchars and
Thomson, 1995; Thomson et al., 1995; Thomson and Bannister,
2003), stronger inhibition from VIP interneurones than PV
cells receive and deliver slower IPSPs than basket cells (somatic
recordings), mediated by α5-subunit-containing-GABAARs (Ali
and Thomson, 2008).

Martinotti cells from the dMGE, were first described as
resident in L5, with a fine, dense axonal arbor extending to
L1 and innervating pyramidal dendrites (Martinotti, 1889);
leading some to claim, erroneously, any cell with a portion of
axon drifting northwards as a “Martinotti.” They display “low
threshold spiking” behavior (Kawaguchi and Kubota, 1996, 1997;
Beierlein et al., 2000, 2003; Wang et al., 2004; Ma et al., 2006).

This class is now agreed to include similar, but adapting/burst-
firing SOM cells in superficial layers. However, L5/6 and L2/3/4
Martinotti cells do differ; two distinct populations are identifiable
in GIN and X98 mice respectively (Ma et al., 2006), both
populations including SOM/Cb and SOM/NPY cells and in
mouse, SOM/Cb/CR or SOM/Cb/NPY (Ma et al., 2006).

Other, probably dendrite-targeting, SOM interneurones are
less distinctive.

SOM cells in L4/5 of the X94 mouse did not express Cb or
NPY,
SOM cells not labeled in X94, X98 or GIN lines express
NPY, nNOS and SPR (substance P receptor) (Xu andCallaway,
2009).

VIP Bipolar/bitufted interneurones, from the CGE, also
containing neither PV nor SOM, often show irregular spiking
behavior, supported by an ID-like K

+ current (Porter et al., 1998).
Their slender axonal tree preferentially innervates fine/medium
caliber dendrites of other VIP cells as well as pyramids (rat:
Peters, 1990; Acsády et al., 1996; Staiger et al., 1996, 1997; mouse:
Prönneke et al., 2015), with boutons often closely associated with
asymmetrical synapses (rat: Hajós et al., 1988). They receive high
probability, depressing inputs from pyramidal cells mediated
by AMPA-Rs with fast kinetics (GluR1/2 flop: Porter et al.,
1998), particularly strong inputs from deep layers and stronger
inputs from distant cortical areas: basal nucleus of Meynert and
thalamus (Wall et al., 2016) and fromPV cells (Staiger et al., 1997)
than other interneurones.

Double bouquet cells (Cajal, 1899b; DeFelipe et al., 2006)
with somata in L2/3/4 have a distinctive, narrow, axonal arbor
(“horse-tail”) descending to L6, in addition to a dense local arbor
(often unstained in Golgi preparations). They contain VIP or CR,
commonly display a “sag” in response to hyperpolazing current
and a range of firing patterns including stuttering and adapting,
but not classical FS (Prönneke et al., 2015).

(rat: VIP, Kawaguchi and Kubota, 1997 or CR, primate: Lund
and Lewis, 1993).

Smaller VIP/CCK or VIP/CR cells (Kawaguchi and Kubota,
1997) probably include small basket cells, like Arcade cells,
whose axon first ascends toward the pia, then turns south, to
form a cone-shaped arbor (Jones, 1975) innervating somata and
proximal dendrites.

Multipolar burst-firing dendrite-targeting cells which
are strongly interconnected (electrically and chemically) and
unusually express both PV and Cb, may form an additional VIP
subclass (mouse, Blatow et al., 2003).

5HT3R cells include subsets of later born CCK, CR and NPY
expressing neurones (Lee et al., 2010; Rudy et al., 2011), from the
CGE.

Neurogliaform cells (Cajal, 1891; Lund and Yoshioka, 1991;
Lund and Wu, 1997; Armstrong et al., 2012, for review) with
dense, convoluted dendritic and axonal arbors display late-
spiking behavior. As in hippocampus, non-synaptic, but AP-
driven, vesicular release (in addition to synaptic) may account
for the slow time course of the IPSPs, the presynaptic GABAergic
inhibition and activation of extrasynaptic α4βxδ-GABAARs these
cells elicit (Oláh et al., 2009).
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NPY (Xu and Callaway, 2009), COUP-TFII (Fuentealba et al.,
2010) 5HT3aR, but not VIP (Lee et al., 2010; Rudy et al., 2011).

COUP-TFII - Interneurone-specific interneurones? In rat
hippocampus, COUP-TFII is expressed in neurogliaform cells
and basket cells in stratum radiatum and by CR- and/or VIP-
interneurone-specific-interneurones (Fuentealba et al., 2010).
This member of the steroid/thyroid-receptor family is expressed
in the dMGE and CGE, in the SVZ in humans and by
interneurones, predominantly in L1-3. They do not co-express
PV, SOM, or Cb, but half express CR (80%), a quarter reelin (VIP
not tested). They display irregular or adapting firing patterns,
exhibit a pronounced “sag” and innervate small dendritic
shafts of both interneurones and pyramids (Human temporal
cortex; Varga et al., 2015). Two classes of mouse L2/3 CR
cells preferentially innervate interneurones: burst-firing, bipolar
VIP/CR-cells and adapting, accommodating multipolar CR-cells
and may be cortical equivalents of ISI-I and III respectively
(Caputi et al., 2009).

Projection neurones: A small population (6–9%) of low
threshold spiking SOM cells that also express NPY, nNOS and
SPR form a distinct morphological class with long distance
corticocortical or corticofugal projections (Yavorska and Wehr,
2016).

CONCLUSION

The similarities between hippocampal CA regions and
neocortical layers are striking: their development, the classes of
neurones which result and the unidirectional flow of excitation
through the regions and layers, which preserves the integrity
of original signals. The prominent differences may result from
a need for a far larger number of often smaller and simpler
principal neurones in neocortex to perform a wider range of
sophisticated computations, while avoiding the inefficiency
of long, myelinated “local circuit” connections. Stacking
principal cells in columns maximizes efficiency. However,
this new arrangement presents new challenges, both to axons
and dendrites that must make appropriate connections, to
interneurones that must infiltrate this apparent chaos and

to neuroscientists trying to understand the circuitry. Within
these columns, myriad neuronal compartments, belonging to
many neuronal classes, lie side by side. How do the axons that
ramify there, or those simply passing through, choose from
amongst these targets and how do postsynaptic compartments

know which to accept? Understanding the mechanisms already
apparent in simpler cortices, but hitherto largely unexplained;
mechanisms that ensure the rejection of inappropriate and the
formation of appropriate connections, each with its own unique
signature, is an exciting challenge for the future.
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