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The rodent main and accessory olfactory systems (AOS) are considered functionally and
anatomically segregated information-processing pathways. Each system is devoted to
the detection of volatile odorants and pheromones, respectively. However, a growing
number of evidences supports a cooperative interaction between them. For instance, at
least four non-canonical receptor families (i.e., different from olfactory and vomeronasal
receptor families) have been recently discovered. These atypical receptor families are
expressed in the sensory organs of the nasal cavity and furnish parallel processing-
pathways that detect specific stimuli and mediate specific behaviors as well. Aside from
the receptor and functional diversity of these sensory modalities, they converge into a
poorly understood bulbar area at the intersection of the main- main olfactory bulb (MOB)
and accessory olfactory bulb (AOB) that has been termed olfactory limbus (OL). Given
the intimate association the OL with specialized glomeruli (i.e., necklace and modified
glomeruli) receiving uncanonical sensory afferences and its interactions with the MOB
and AOB, the possibility that OL is a site of non-olfactory and atypical vomeronasal
sensory decoding is discussed.
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INTRODUCTION

Perception of semiochemicals in macrosmatic mammals is attributed to two sub-systems: the main
(MOS) and the accessory olfactory systems (AOS), which detect volatile odors and pheromones,
respectively. The MOS and AOS are regarded as anatomically and functionally independent
streams of information processing; however, numerous evidence supports a combined, synergic
interaction (Xu et al, 2005; Mucignat-Caretta et al, 2012; Matsuo et al., 2015). Notably,
dissociated vomeronasal neurons are activated by volatile odorants (Sam et al., 2001), whereas
two pheromones, 2,5-dimethyl pyrazine and 2-heptanone recruit both the olfactory epithelium
(OE) and the main olfactory bulb (MOB; Lin et al., 2004). Imaging studies (Xu et al.,, 2005)
demonstrated that mice MOB and accessory olfactory bulb (AOB) are activated by either odorants
or pheromones. Further, genetically-induced loss-of-function of the dorsal part of the main
olfactory bulb (dIMOB) suggests that it mediates pheromone recognition (Matsuo et al., 2015).
Here we overview first canonical interactions between olfactory and vomeronasal receptors
with the MOB and AOB, respectively. Then, bulbar paths for non-conventional odorants and
pheromones, as well as those for other sensory systems, are outlined. Lastly, the possible role of
the transition between the MOB and AOB, or olfactory limbus (OL), in integrating polymodal,
i.e., non-olfactory and atypical vomeronasal, sensory information is discussed (Figure 1).
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FIGURE 1 | (A) Diagramatic representation of putative bulbar and sensory inputs to the olfactory limbus (OL) and medial nucleus of the amygdala (MeA). AON,
anterior olfactory nuclei; AOB, accessory olfactory bulb; dMOB, dorsal part of the main olfactory bulb; MOB, main olfactory bulb. Arrows designate putative
afferences to the OL. (B) Diagram of the OL (pink-colored) with the main (blue) and accessory (orange) olfactory bulbs. Insert at the bottom left. Light micrograph of a
biocytin-injected large principal cell whose apical dendrites diverge to resolve, in the anterior accessory olfactory bulb (AOB; orange) and necklace (deep purple)
glomeruli. (C) Slice recordings of the large principal cell seen in “B”, insert. To note is the numerous spikes grouped into episodic bursts in a similar fashion to that
observed by pacemaker neurons. Adult rat olfactory bulb.
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Olfactory and Vomeronasal Pathways
Sensory cells (SCs) in the OE express a single olfactory receptor
(OR) from a repertoire of ~1000 OR genes (Nagayama et al.,
2014). Axons from SCs expressing a given receptor project to
one or two glomeruli in the MOB (Nagayama et al., 2014), which
is the first information processing station for the perception of
odorants (Gire et al, 2012). The glomerular neuropil gathers
apical dendrites of mitral (MCs) and tufted (TCs) neurons,
SCs axons, and processes of periglomerular and short-axon
neurons. Receptor potentials from the OE are decoded in
glomeruli to generate a coherent glomerular-output (Gire et al,,
2012). SCs recruit specific sets of glomeruli in the MOB, that
produce a spatial representation of olfactory stimuli (Rubin and
Katz, 1999). A second processing domain within the MOB is
represented by reciprocal synapses between granule cells and
MCs or TCs, so that the MCs and TCs out-put is modulated by
granule cells (Yokoi et al., 1995). Centrally, axons from MCs and
TCs project via the lateral olfactory tract to the anterior olfactory
nucleus, the olfactory tubercle, the piriform cortex, the cortical
amygdala and the lateral entorhinal cortex (Sosulski et al., 2011).

Regarding the AOS, it detects mainly pheromonal cues within
a cigar-shaped structure: the vomeronasal organ (VNO; Holy
et al., 2000) that contains four populations of SCs distributed
into two layers (Dulac and Axel, 1995). An apical layer of SCs
expressing members of the vomeronasal receptor family 1 (VRI;
Dulac and Axel, 1995), some members of the formyl-peptide
receptor family (FPR; Riviere et al., 2009) and canonical ORs
(Lévai et al., 2006); whereas basal cells express the vomeronasal
receptor family 2 (V2R; Herrada and Dulac, 1997; Matsunami
and Buck, 1997; Ryba and Tirindelli, 1997). Regardless of
receptor expression, SCs project via vomeronasal nerves to the
AOB in a segregated fashion (Schwarting and Crandall, 1991)
originating anterior and posterior streams that distribute in the
anterior AOB (aAOB) and posterior AOB (pAOB; Larriva-Sahd,
2008). Thus, axons from SCs in the apical VNO terminate in
the aAOB, while those from the base of the VNO resolve in the
PAOB (Schwarting and Crandall, 1991). Upon local information
processing within the AOB, large principal cells (LPCs; Larriva-
Sahd, 2008) project via the lateral olfactory tract to the medial
amygdala and to the hypothalamus, modulating reproductive
functions (Boehm et al., 2005) and parental behavior (Wu et al.,
2014).

Parallel Processing in the Olfactory Bulbs:

Non-canonical Paths

SCs differing from “canonical” SCs by the receptor and/or
signaling cascade, and by their glomerular targets, have
recently been described. First, is a sub-population of SCs
in the OE that utilizes guanylyl cyclase-D (GC-D) receptor
and cGMP-stimulated phosphodiesterase 2 to transduce
stimuli (Fulle et al, 1995). These unique SCs project to
glomeruli confined to the caudal MOB-aAOB intersection:
the so-called necklace glomeruli (NGs; Shinoda et al., 1989).
The dMOB-aAOB interface, together with one or two NGs
structure the OL (Larriva-Sahd, 2012; Figure 1). GC-D-OSCs
that project to the NGs have been shown to detect the natriuretic

peptides guanylin and uroguanylin, implying that this pathway
may modulate water-ion homeostasis (Leinders-Zufall et al,
2007). Further, sensing of near-atmospheric levels of CO, (Hu
et al., 2007) and socially transmitted food preferences are also
mediated by this GC-D subsystem (Munger et al., 2010). Thus,
in contrast to canonical MOB glomeruli, NGs are innervated by
SCs expressing distinct ORs (Mombaerts et al., 1996), although
both display robust interglomerular connections (Figure 1A;
Shinoda et al., 1989; Cockerham et al., 2009).

It was recently demonstrated that GC-D-OSCs located in the
basal recesses of the OE express a novel family of receptors
named MS4A that, unlike that of GPCRs, span SC membrane
four times (Greer et al., 2016). SCs expressing this family of
receptors project their axons to the region of the NGs and seem
to be activated by fatty acids and a naturally aversive pheromone
(Greer et al, 2016). Interestingly, Greer et al. (2016) showed
that these SCs can express more than one receptor at a time.
This exciting description of the MS4A putative receptors further
suggests that the OL area, including the NGs, may be regarded
as a “polymodal” integrative structure as it gathers inputs from
assorted sensory modalities (Figures 1A,B).

Another subset of SCs from the OE has been reported to
express the transient receptor potential channel M5 (TRPM5)
and to be activated by putative semiochemicals (Lin et al,
2007). Additional investigations led to the characterization
of a parallel circuitry involving SCs associated with gender-
related social cues relevant for reproduction (Thompson
et al., 2012). Namely, it was found that TRPM5-OSCs
innervate ventro-medial MOB glomeruli and, in turn, MCs that
receive these afferences convey the information transduced by
TRPM5-OSCs to the medial amygdala (Figure 1; Thompson
et al, 2012). The description of this specific MOB circuit
mediating pheromonal effects is consistent with that of previous
experiments defining that MCs in the ventral MOB are
activated by socially relevant volatiles from conspecifics of
the opposite sex (Kang et al., 2009). Moreover, MCs in
the ventral MOB projected to the medial amygdala that is
implicated in pheromonal responses (Kang et al., 2009, 2011).
Thus, both the MOB and AOB are themselves capable of
decoding a variety of specific signal molecules prior to projecting
farther centrally. Altogether, these evidences strengthen the
notion that the MOB and AOB, primarily committed to
the detection of odorants and water-soluble pheromones, are
intrinsically capable of decoding non-canonical environmental
cues.

Still another sub-population of SCs recently described in
the OE expresses trace-amine associated receptors (TAARs).
TAARs are GPCRs and are thought to mediate stereotyped
behaviors elicited by volatile amines (Liberles and Buck,
2006). Several sub-types of TAARs have also been identified
in the Grueneberg ganglion (GG; Fleischer et al., 2007), a
mass of cells in the anterior nasal cavity, assumed to be
involved in chemo-sensation and thermo-sensation (Fleischer
et al, 2007; Chao et al, 2014). It is interesting that, in
mice, activation of SCs expressing TAAR5 mediate con-specific
attraction through the detection of trimethylamine (Lin et al,
2013) and TAAR4 triggers avoidance which mediated by the
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FIGURE 2 | Position, interactions and putative connectivity of the olfactory limbus (OL, pale green). The OL lies between the caudal region of the main olfactory bulb
(dMOB; pale blue) and the anterior part of the accessory olfactory bulb (AOB; pink-colored). To note is that the necklace glomerulus (NG, turquois) receives
dendrites from both a modified mitral cell in the dMOB and a tufted cell in the OL. A modified glomerulus (MG, dark green) receives dendrites from large principal
cells (red) in the aAOB. Forked arrows designate axon collaterals of a large principal- (deep red) and a mitral-cell (black) that possibly (?) synapse with mitral- and

. Tufted cell

detection of a carnivore odorant (2-phenylethylamine; Ferrero
et al, 2011). Additionally, axons of TAAR-expressing SCs
resolve in dMOB glomeruli (Johnson et al., 2012), a territory
that receives axon collaterals from the aAOB (Figure 1;
Vargas-Barroso et al., 2016). Lastly, all SCs expressing TAARs
project to dorsomedial MOB glomeruli (Johnson et al., 2012;
Pacifico et al., 2012); whereas all GG neurons, which also
express V2r83 receptors of the V2R family (Fleischer et al,
2006), project to the NG territory (Storan and Key, 2006).
In brief, axons of SCs detecting specific sorts of stimuli,
thought to be implicated in a variety of innate behaviors
converge in the atypical glomeruli that crown the OL
(Figures 1A, 2).

Overall, the discovery of gene families encoding receptors
that bind specific non-canonical stimuli adds up to the already
complex organization of the MOS and AOS (Fille et al., 1995;
Liberles and Buck, 2006; Leinders-Zufall et al., 2007; Johnson
et al., 2012; Larriva-Sahd, 2012; Thompson et al., 2012; Greer
et al., 2016). Incidentally, the view that flight or fight behaviors
are mediated by the MOB was unsuspected some decades ago
(Raisman, 1971; Baxi et al., 2006). Hence, the notion of a clear-cut
system segregation of odor and pheromone-detecting functions
(Raisman, 1971; Baxi et al., 2006), should be re-evaluated.

Overlapping responses and converging pathways within the
olfactory bulbs (Vargas-Barroso et al., 2016) offer alternative
substrates to understand influences of uncanonical sensory cues
(see above) upon the MOS and AOS (Larriva-Sahd, 2012; Nicol
etal., 2014; Matsuo et al., 2015; Greer et al., 2016), as commented
next.

OLFACTORY LIMBUS: A CROSS ROAD?

While integrated responses motivated by odorant and/or
pheromonal stimuli are customarily attributed to axonal
convergence beyond the olfactory bulb (see Mohedano-Moriano
et al., 2012; Keshavarzi et al., 2015), recent evidences support
the existence of an intra-bulbar network (Figure 1; Pardo-Bellver
et al.,, 2017). A direct link between the dMOB and AOB was first
suspected by experimental lesioning of the former, leading to
orthograde degeneration in the latter (Larriva-Sahd, 2008); then,
reciprocal interactions between them have been characterized
(Vargas-Barroso et al,, 2016; see Martinez-Garcia et al., 1991).
Indeed, a set of LPCs is antidromically activated by stimulation
of the dMOB (Vargas-Barroso et al., 2016). Moreover, dendrites
from LPCs structure both AOB and OL glomeruli, suggesting
that information transduced by distinct receptor families, or even
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by different sensory organs, converge into LPCs (Vargas-Barroso
et al., 2016, see Figure 4i therein). Additionally, LPCs projecting
to the dMOB, exhibit electrophysiological characteristics of
pace-maker neurons (Vargas-Barroso et al.,, 2016), suggesting
that pheromones recruiting specific AOB glomeruli might
sharpen the dMOB activity (Figure 2; see Matsuo et al., 2015).

As discussed earlier, the OL receives afferent information
from a variety of sensory organs and neurons expressing all
known OR families (see above; Fiille et al., 1995; Liberles and
Buck, 2006; Leinders-Zufall et al., 2007; Johnson et al., 2012;
Larriva-Sahd, 2012; Thompson et al., 2012; Greer et al., 2016).
First, neurons expressing TAARs have been reported in the OE
and the GG and shown to project to the postero-dorsal region
of the MOB that includes the NGs (Storan and Key, 2006;
Johnson et al., 2012; Pacifico et al., 2012). Second, GC-D-OSCs
and MS4A-OSCs also project to the former region (Greer et al.,
2016). Moreover, the aAOB receives projections from VIRs and
from the ORs and FPRs known to be expressed in the VNO
(see above; Lévai et al., 2006; Riviere et al., 2009). The receptor
families mentioned, irrespective of their expression in cells of any
of the sensory organs found in the nasal cavity and of their site of
projection, have all been found to mediate social signals far more
complex than odorant discrimination, such as thermo-sensation
(Chao et al., 2014), identification of specific nutrients and/or
aversive cues (Greer et al., 2016), infectious diseases (Riviere
etal.,, 2009) and aggression (Johnson et al., 2012).

In brief, the strategical position of the OL between the
dMOB and the aAOB, where afferences of SCs (i.e., TAAR,
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